KEDIT for Windows User’s Guide
Version 1.6

Mansfield Software Group, Inc.
P.O. Box 532

Storrs, CT 06268
http://www.kedit.com

December 2007

This PDF file contains the full text of the KEDIT for Windows 1.6 User’s Guide. The entire docu-
ment is in black and white, aside from the colored KEDIT logo on the cover page.

The text of the KEDIT for Windows 1.6 Reference Manual is available in a separate PDF file.

The contents of both the Reference Manual and the User’s Guide are also available in HTML Help
format in the KEDIT for Windows Help file, KEDITW.CHM.

Copyright © 1983-2007 Mansfield Software Group, Inc.
All Rights Reserved.

KEDIT is a trademark of Mansfield Software Group, Inc.
Windows is a trademark of Microsoft Corporation.

Contents

Chapter 1. Introduction, 11
1.1 Overview of Documentation. 12

Chapter 2. Getting Started.0 i it v it vttt 14
2.1 Installing KEDIT 14

2.2 Your First KEDIT Session. 14

23The KEDIT Screen 15

2.4 Working inthe File Area 16

2.5 Working WithMenus 17

251 TheFileMenu 17

2.52The WindowMenu. 17
253TheEditMenu 18

254 The ActionsMenu 18
255TheOptionsMenu 19

2.6 Working with the Toolbar 20

27 GettingHelp. 20

2.8 EndingaSession. 21

Chapter 3. Using KEDIT for Windows 22
3.1 Frame Window and Document Windows 22

3.2 CUA and Classic Interfaces 25

3.3 Blocksand Selections 26

3.4 The KEDIT Command Line. 28

3.4.1 Command LineBasics 28

3.4.2 Some Useful Commands 29

3.5 Editing Multiple Files 33
351TheRing 33

3.5.2 One-File-Per-Window 36

36Fonts. 38

3. 7Character Sets 40
37.10verview e e 40

3.7.2 Converting between OEM and ANSI 42

3.8 International Support 45
3.8.1 Uppercase and Lowercase 45
382Dateand Time 46

39The DIRDIRFile 46

30Printing 48

3.11 Word Processing Facilities 49
311 Margins 49
312 Wordwrap L 51
3.11.3 Starting a New Paragraph. 51
3.11.4 Adjusting Text. 51
3.11.5 Formatting Text 52

3.12Syntax Coloring, 53

3.13 The Undo Facility 56

Chapter 4. Keyboardand Mouse 60

4.1 Using the CUA Interface 60
4.1.1 MovingtheCursor 60
4.1.2 Entering and Editing Text 61
4.1.3 Selecting Text 63
4.1.4 Marking Persistent Blocks 65
4.1.5 Moving and Copying Text 67
4.1.6 Other Block Operations 68
4.1.7 Menus, Files, and Windows 69
4.1.8 Command Line and Prefix Area 71
4.19 Miscellaneous 72

4.2 Summary of CUA Interface 73

4.3 Using the Classic Interface 80
43.1 Movingthe Cursor 80
4.3.2 Entering and Editing Text 81
433 MarkingBlocks 83
4.3.4 Moving and Copying Text 84
4.3.5 Other Block Operations 85
4.3.6 Menus, Files, and Windows 86
4.3.7 Command Line and Prefix Area 87
43.8 Miscellaneous 88

4.4 Summary of Classic Interface 89

4.5 Summary of Differences Between Classic and CUA Interfaces 95

4510VerviewW v o i e e e 95
4.5.2 Keyboard Comparison 96
4.5.3 Mouse Comparison. v v v ... 98
4.6 Entering Special Characters 99
Chapter 5. Menus and Toolbars 101
SAFileMenu. 101
ST INew 101
51.20pen.... 102
5.1.3Close 103
S51.48ave. 103
51.58aveAs... 104
51,6 Print.... 105
S.1.7Print Setup... 107
S.1.8Directory... 108
SA9Exit . ..o 109
5.1.10 Recently Edited File List 109
S2EditMenu 110
521Undo. e 110
522Redo. 110
523Cut. ..o 111
524C0DY. . .. e 111
525Paste. 111
52.68SelectAllo 112
527Delete 112
528Unmark 112
529MakePersistent 113
5210Find... 113
5211 Replace.... 115
5.2.12 Selective Editing.... 118
5213GoTo... e 119
S3ActionsMenu 120
53.1Bookmark.... 120
S32Fill... ..o 122
533 Sort.. ..o 122

53.50Lowercase. 124

540ptionsMenu 124
54.1ScreenFont... 125
542 Interface.... 126
543SETCommand... 130
544 8tatus... . ..o L 133
5.4.58ave Settings... 134

S55WindowMenu 135
551 NewWindow 135
552Cascade 136
5.5.3 Tile Horizontally 136
5.54Tile Vertically 136
S55Armange...o 136
55.6 Arrangelcons. 137
5.5.7 Document Window List. 137

S66HelpMenu 137
5.6.1 KEDITHelpFile 137
5.62User’sGuide 138
5.6.3 Reference Manual. 138
5.64KEDITWebSite 138
5.6.5 About KEDIT for Windows.... 138

57TopToolbar. 138
S71NewkFile. 138
5720penFile 139
573SaveFile 139
574PrintFile 139
575QuickFind 139
576FindNext 140
5.7.7Find DialogBox 140
578PreviousFile, 140
579 NextFile 140
5710Undo. 140
STI1Redo 141
5.7.12 Cutto Clipboard 141
5.7.13 Copy to Clipboard 141
5.7.14 Paste from Clipboard 141

5.8 Bottom Toolbar. 142

581CopyBlock 142

582MoveBlock. oo 142
5.83O0verlayBlock. o 142
5.84DeleteBlock 142
5.8.5ShiftBlock Left. 143
5.8.6 Shift Block Right 143
5.87Uppercase Block 143
5.8.8 Lowercase Block 143
5.8.9 LeftadjustBlock. 143
5.8.10 RightadjustBlock 144
S811FillBlock, 144
5.8.12 Set Bookmarkl 144
5.8.13 Goto Bookmarkl 144
5.8.14 Hide Excluded Lines. 145
5.8.15Show AllLines 145
5.9 Top Toolbar for DIR.DIRFile 145
591 SortbyName 146
5.9.2Sortby Extension. 146
593SortbySize 146
594 SortbyDate. 146
5.9.5 Parent Directory. 146
5.10 Top Toolbar for Empty Ring 147
SJ0.INewkFile. 147
5.1020penFile L. 147
5.10.3 Directory. 147
S04 ExitKEDIT 147
Chapter 6. Targets. i i i i i i i it i ittt e e 148
6.1 Typesof Targets 148
6.1.1 Absolute Line Number Targets 148
6.1.2 Relative Line Number Targets 149
6.1.3 String Targets 149
6.1.4 Word Targets 150
6.1.5 More About String Targets 151
6.1.6 Named Line Targets. 153
6.1.7 Line Class Targets. 153

6.1.8 Some Further Examples. 155

6.2 Other Uses for Targets 156

6.3 Group Targets 157
6.4 Column Targets. 158
6.5 The FocusLine 159
6.6 Regular Expressions 160
6.6.10verview 160
6.6.2 Regular Expression Text Specifiers. 163
6.6.3 Regular Expression Operators 166
6.64UsageNotes. 170
6.6.5 Regular Expression Summary 172
Chapter 7. The Prefix Area. 173
7.1 Prefix Commands 173
7.2 Prefix Area Keyboard Considerations 177
7.3 Prefix Command Equivalents 179
Chapter 8. Selective Line Editing and Highlighting 180
8.1 Selective Line Editing 180
8.1.1 General Discussion 180
8.1.2 The MORE and LESS Commands 182
8.1.3 Editing Files that have Excluded Lines. 183
8.14SETSHADOW 188
8.1.5 Prefix Commands Related to ALL 191
8.2 Selective Line Editing Details 194
8.2.1 Selection Levels. 194
822How ALLWorks 195
823HowXandSWork 196
8.3 Highlighting Facility 196
Chapter 9. Tailoring KEDIT, 198
O.1SETOptions it 198
92KEDIT Profiles. 200
9.2.1 Overview of KEDIT Profiles 200
9.2.2 Order of Processing. 205
9.2.3 Initialization Options 205

924 ASample Profile, 206

Chapter 10. Using Macros v ¢ v v v v v v v v v v o v o v o oo 208

10.1 Running Macros 208
10.2 Defining Macros 210
10.2.1 One-lineMacros 210
10.2.2 Multi-line Macros 212
10.2.3 Storing Your Macros 215
10.3 Features of KEXX 215
103.1 Comments 216
10.3.2 Variables and Assignments. 216
10.3.3 Expressions and Operators 217
10.3.4 Instructions. 220
103.5 Commands 224
10.3.6 Functions. 227
10.3.7 Passing an Argumenttoa Macro. 230
10.4 Debugging KEXX Macros 230
10.4.1 Using the Debugger 231
10.4.2 The TRACE Instruction and the DEBUG Command . 233
10.43 TraceOutput 235
Chapter 11. Sample Macros, 236
11.1 Counting the WordsinaFile 236
11.2 KEDIT Key Definitions. 239
11.3 Working with KEDIT’s Default Key Definitions. 241
11.4 Saving Your PlaceinaFile. 244
11.5 Saving the Contents of All Changed Files 246
11.6 Batch Macro Operations 249
11.7 Putting Sequence Numbers intoa File 252
11.8 Macros and KEDIT’s Toolbar. 256
Chapter 12. File Processing.o 258
12.1 FileLocking. 258
122 File Formats. L. 260
12.2.1 Reading a File fromDisk 261
1222 EditingaFile. 262
12.2.3 Writinga FiletoDisk 263
12.2.4 EOLIN NONE and EOLOUTNONE 264

1225TABSAVE o 265

123 Long Filenames.
Appendix A. XEDIT Compatibility

AppendixB.Glossary. 0 o oo n oo,

10

Chapter 1. Introduction

KEDIT for Windows is a text editor for Microsoft Windows. It provides many power-
ful and useful facilities for working with text files. KEDIT is typically used to edit
computer programs, notes and memos, e-mail, lists of information, and other textual
data files

c
o
=
Q
=}
©
(e)
S
=
=

KEDIT is aimed at users who have some familiarity with personal computers and with
the Windows user interface. Programming experience is useful for taking full advan-
tage of KEDIT’s macro facilities and extensive data manipulation capabilities, but is
not required for normal use of the editor.

As a text editor, KEDIT works with files that consist of lines of text, where each line
ends with a carriage return and/or a linefeed character. So, there are some types of files
that KEDIT is not intended for, such as binary files and graphics files. KEDIT is also
not a full word processor, and therefore does not automatically number pages or gener-
ate a table of contents, and does not have sophisticated printer support or support for
multiple fonts within a document. Further, KEDIT generally assumes that the files you
are editing are encoded using the ANSI or OEM character sets; most text files on Win-
dows have historically used the ANSI character set. KEDIT does not support Unicode,
a newer format that is beginning to come into wider use

While KEDIT can be useful to almost every Windows user who needs to work with text
files, special features are included in KEDIT for users of IBM’s mainframe editor
XEDIT. Many of KEDIT’s commands are compatible with corresponding XEDIT
commands, and KEDIT supports a prefix area like XEDIT’s. XEDIT users should note,
however, that not all XEDIT features are available in KEDIT, and there are a number of
differences between KEDIT and XEDIT. Most of the differences come about because
KEDIT tries to take full advantage of the more flexible keyboard and display interface
provided by the PC and by Windows.

11

1.1 Overview of Documentation

The KEDIT for Windows documentation is divided into two separate books: the
KEDIT for Windows User s Guide and the KEDIT for Windows Reference Manual.

The KEDIT for Windows User s Guide is the book you’re reading now. This guide pro-
vides an introduction to KEDIT, background information on most of KEDIT’s features,
and information on KEDIT’s menu structure, dialog boxes, and keyboard interface.

The second book, the KEDIT for Windows Reference Manual, contains details of all of
KEDIT’s commands, options, and macro facilities.

The entire contents of both the User’s Guide and the Reference Manual can also be
accessed interactively via the KEDIT for Windows Help system, accessed via the Help
menu from within KEDIT.

The User’s Guide has 12 chapters and two appendices:

e You are now reading Chapter 1, “Introduction”.

e Chapter 2, “Getting Started”, is an informal introduction to KEDIT.

e Chapter 3, “Using KEDIT for Windows”, discusses a number of aspects of
KEDIT, such as the command line, fonts and character sets, DIR.DIR directory

listings, and the undo facility.

e Chapter 4, “Keyboard and Mouse”, discusses the key combinations and mouse ac-
tions that you can use to interact with KEDIT.

o Chapter 5, “Menus and Toolbars”, discusses KEDIT’s menus and toolbars.

e Chapter 6, “Targets”, covers KEDIT’s target facilities. Targets provide a flexible
way to describe and locate any line within your file. You must have a good under-
standing of targets to make effective use of KEDIT. Regular expressions provide
even more options for specifying string targets.

e Chapter 7, “The Prefix Area”, describes the use of the prefix area, an optional fea-
ture of KEDIT that is compatible with the prefix area provided by XEDIT.

e Chapter 8, “Selective Line Editing and Highlighting”, describes the ALL com-
mand and related commands that provide for selective viewing and editing of sub-
sets of your file, and describes KEDIT’s highlighting facility.

e Chapter 9, “Tailoring KEDIT”, discusses ways in which you can tailor many as-
pects of KEDIT’s behavior to suit your preferences.

e Chapter 10, “Using Macros”, describes KEDIT’s macro facilities, which allow
you to reconfigure KEDIT and automate your editing tasks.

12

Chapter 1. Introduction

Chapter 11, “Sample Macros”, helps you learn more about KEDIT’s macro facili-
ties by giving detailed explanations of a number of sample macros.

Chapter 12, “File Processing”, discusses KEDIT’s file locking facility, the file for-
mats that KEDIT can read and write, and KEDIT’s handling of long filenames.

Many of KEDIT’s features are compatible with the features of XEDIT, the text ed-
itor used with IBM’s CMS system. Appendix A, “XEDIT Compatibility”, has
some notes for XEDIT users on the differences between the two editors.

c
o
=
Q
=}
©
(e)
S
=
=

The other Appendix is Appendix B, “Glossary”.

The Reference Manual has nine chapters:

Reference Manual Chapter 1, “Introduction”

Reference Manual Chapter 2, “Invoking KEDIT”.

Reference Manual Chapter 3, “KEDIT Commands”.

Reference Manual Chapter 4, “The SET Command”.

Reference Manual Chapter 5, “QUERY and EXTRACT”.
Reference Manual Chapter 6, “Macro Reference”.

Reference Manual Chapter 7, “Built-in Macro Handling”.
Reference Manual Chapter 8, “KEDIT Language Definition Files”.

Reference Manual Chapter 9, “Error Messages and Return Codes”.

Overview of Documentation 13

Chapter 2. Getting Started

2.1 Installing KEDIT

KEDIT for Windows 1.6 is a 32-bit program for Windows 2000/XP/Vista. To install
KEDIT for Windows, simply run the install program that you received, either on CD or
by download from the Internet, when you purchased your KEDIT license.

2.2 Your First KEDIT Session

The best way to learn about KEDIT for Windows is simply to start using it. You need to
be familiar with the basics of working with Windows and with Windows applications.
If you are used to working with other Windows applications, then you already know a
lot about working with KEDIT for Windows. This chapter therefore focuses on unique
aspects of KEDIT for Windows that first-time users of the product need to be aware of.

If you have just installed KEDIT for Windows on your system, it will work as
described in this chapter. However, KEDIT for Windows is highly configurable, so if
someone else has installed KEDIT for Windows for you and has made changes to the
default settings, KEDIT’s appearance and behavior may vary from what is described
here.

To start KEDIT, double-click on the KEDIT for Windows icon, which installed on your
desktop and in the Windows Start Menu by KEDIT’s install program.

14

Chapter 2. Getting Started

2.3 The KEDIT Screen

Frame window

Document
window

When you first start KEDIT, the screen looks something like this:

KEDIT - [CAKEDITWAUNTITLED.1] —
=| File Edit Actions QOptions Window Help ¥
Dl=jd (8] [ERDIEEIEEREE
Hew file. .. |+
* ¥ * Top of File * * *=
% * End of File ® # =
====3 | +
+ +
| Line=0 | Caol=1 | Alt=0,0:0 | Size=0 |Fi|es='| | “Windows=1 OWR |RAw | 418 PM

Screen 2.1: A first look at the KEDIT screen
Some important elements of the screen include:

e the frame window
e the document window

e and, within the document window, the file area and the command line

The main KEDIT window is called the frame window. Elements of the frame window
include the title bar, menu bar, toolbar and status line.

Within the frame window are one or more document windows. Note that, as in the
above illustration, the document window is often maximized so that it occupies the
entire frame window. But you can edit multiple documents and display them in separate
document windows that appear within the frame window.

On the outside of the document window are a title bar, displaying the fileid, and hori-
zontal and vertical scrollbars. Within the document window are the message line,
top-of-file line, end-of-file line, current line, command line, and file area.

When KEDIT starts up, it normally presents a new empty file to which you can add
text. This file is given a temporary name of UNTITLED.1, but when you save the file
you would give it a permanent name. Most often, however, you would not work with
UNTITLED.1 but would instead use the File Open dialog box to open an existing file
that you want to edit. This existing file would replace UNTITLED.!I on the screen.

The KEDIT Screen 15

©
()
t
©
-
(%)
(o))
c
E
<}
(O

Command line

Current line

Nonetheless, we will look again at UNTITLED.1 for the moment. Near the top of the
document window you may see the message “New file...”. Some of KEDIT’s mes-
sages, like this one, are presented to you in a message line at the top of the window.

Next, you will notice lines that say “Top of File” and “End of File”. KEDIT displays the
text of your file between these lines. In the empty file we are looking at now, there is
nothing between these lines because there is no text in the file yet, but the lines help to
distinguish between a file that has no data and a file that has a lot of blank lines.

The command line is one special feature of KEDIT that is not found in most windows
applications, since most windows applications rely solely on menus and dialog boxes
for input. KEDIT primarily uses menus and dialog boxes, but also uses the command
line, where you can type some of the more specialized or less frequently used
commands.

See Section 3.4, “The KEDIT Command Line”, for a discussion of KEDIT’s command
line.

When the cursor is on the command line, as it is when KEDIT starts up, a line near the
middle of the window, known as the current line, has a box drawn around it. In Screen
2.1 the box is drawn around the top-of-file line.

The current line is special because it is used in connection with many commands issued
from the command line. For example, if you issue from the command line the com-
mand to go to line 30 of a file, line 30 will be positioned as the current line, with a box
drawn around it.

Since the current line is important only in connection with the command line, the box is
drawn only when the cursor is on the command line.

2.4 Working in the File Area

Moving to the
file area

Adding a line

Changing text

Most of the document window is occupied by the file area. This is the area where your
file is displayed.

Most of your work is done with the cursor in the file area, which is the main body of the
document window. To move the cursor from the command line, simply press the cursor
up key. Now the cursor is in the file area.

Since this is an empty file, the only thing we can usefully do is to add some text to it.
You can’t type on the top-of-file or end-of-file lines, so you’ll need to add a blank line
to the file.

Press Enter to add a blank line to the file. Then, type some text, pressing Enter when-
ever you want to start a new line.

You can edit the text, using the mouse pointer or the cursor arrow keys to move through
the text, and using keys like Backspace and Delete.

16

Chapter 2. Getting Started

Overtype Mode
and Insert
Mode

KEDIT normally starts out in Overtype Mode, and characters that you type will replace
existing characters at the cursor position. When you are in Insert Mode, text at the cur-
sor position is pushed to the right when you type in new characters. You can press the
Insert key to toggle between Overtype Mode and Insert Mode.

Note that your current Insert Mode or Overtype Mode status is displayed on the status
line at the bottom of the frame window, where an indicator shows either “INS” or
“OVR”. As an additional reminder of which mode you are in, KEDIT makes the cursor
thicker when you are in Insert Mode and thinner when you are in Overtype Mode.

2.5 Working With Menus

Now let’s look at some of the things you can do using the KEDIT menus. For a full
description see Chapter 5, “Menus and Toolbars”.

2.5.1 The File Menu

Editing
multiple files

The File menu is used to begin editing files, finish editing files, and to do some related
tasks like printing a file.

At the moment you are editing the initial UNTITLED.1 file. We will now begin work-
ing with a second file. (For the purposes of this discussion, be sure that you have added
at least one line of text to UNTITLED.1. This is necessary because we want to show
how KEDIT can work with multiple files, and UNTITLED.1 is a special file that
KEDIT automatically closes if it is unchanged and you begin to edit another file.)

You can use File Open to begin editing an additional file. A sample file that you can use
to practice with, DICKENS.TXT, is installed by default in the main KEDIT program
directory, which is usually the C:\Program Files\KEDITW directory. Using the File
Open dialog box, navigate to that directory and open the file DICKENS.TXT. You will
then be working with two files: UNTITLED.1 and DICKENS.TXT. Each file is in its
own window. Since your document window is maximized, occupying the entire frame,
you’ll initially see only one window, but there are two there.

2.5.2 The Window Menu

Maximizing a
window

To work with your document windows, you can use the Window menu. If you want to
see all of your windows laid out on the screen you can select Window Tile Horizontally,
which arranges the windows from top to bottom. You can also try Window Tile Verti-
cally, which arranges your document windows from left to right. Window Cascade
arranges the document windows so that all their title bars are visible.

If you used one of the Window menu items just discussed, both of your document
windows (the document window with DICKENS.TXT and the document window with
UNTITLED.1) will be visible within the frame window. You may want to work with
document windows this way, or you may more often want to see only one window at a
time, maximized so that it occupies the entire frame window. To maximize a document

Working With Menus 17

©
()
t
©
-
(7]
(o))
c
E
<}
o

window you can either double-click on its title bar or you can click on the maximize
button at the right of the document window’s title bar. When windows are maximized,
one way to switch between document windows is to select the name of the document
window that you want to work with from the window list at the bottom of the Window
menu.

2.5.3 The Edit Menu

Find and
Replace

Using the
clipboard

Undo and
Redo

Selective
Editing

You can use the Edit menu for Find and Replace operations. For example, assume that
you’re using the file DICKENS.TXT and you want to find the string “Dickens”. Select
Find from the Edit menu to get to the Find dialog box. Then type in the string “Dick-
ens” and click on the Forward button to search forward in the file or on the Backward
button to search backward in the file. When you are finished with the Search dialog
box, click on the Close button. The Edit Replace dialog box is similar to the Edit Find
dialog box, except that it not only finds text strings within a file but can also replace
them with new strings.

You can also use the Edit menu to work with the clipboard. First drag with mouse but-
ton 1 to mark some text that you want to cut or copy to the clipboard. You can use Edit
Cut on the Edit menu to put the text in the clipboard and delete it from your file, or you
can use Edit Copy to put the text in the clipboard and leave it in your file. Once you
have copied text to the clipboard you can move the cursor to another location in the file,
or you can switch to another Windows application, and use Edit Paste to take the text
from the clipboard and place it into the file at the new location.

The Edit menu also has Undo and Redo entries. You can undo a change to your file with
Edit Undo. Immediately after you’ve undone a change to the file, you can use Edit
Redo to redo that change.

Another useful feature of KEDIT is its selective editing facility. You can use Edit
Selective Editing to access this facility. Selective editing lets you focus only on the
lines of your file that contain a particular string of interest, for example the name of a
variable in a computer program.

To try out the selective editing facility with DICKENS.TXT, use the Edit Selective
Editing menu item to get to the Selective Editing dialog box. Then type in the word
“Dickens” and press the Matching Lines button to view only the lines containing the
string “Dickens”. You will see the lines in the file containing “Dickens”, and you will
also see what are called “shadow lines”, indicating how many lines are omitted because
they do not contain the word “Dickens”. In a large file in which a word appears only a
few times, Selective Editing lets you zero in on exactly the lines you are interested in.
To go back to the normal mode of working with the entire file, again use Edit Selective
Editing and press the All Lines button.

2.5.4 The Actions Menu

Several editing operations are controlled through the Actions menu. You can set book-
marks at different locations in your file, so that you can easily return to these locations

18

Chapter 2. Getting Started

later in an editing session. You can sort the contents of your file, fill in portions of your
file with a specified character, uppercase text in your file, or lowercase text in your file.

2.5.5 The Options Menu

Screen font The Options Screen Font dialog box lets you control the font that KEDIT uses within
your document windows. Because KEDIT’s main focus is on the content of your file,
as opposed to its appearance, KEDIT’s facilities for working with fonts are limited.
KEDIT uses only fixed pitch fonts (that is, non-proportional fonts, in which each char-
acter has the same width). A single font is used for all of the text within your files; you
cannot display part of a file in one font and another part of a file in a different font. See
Section 3.6, “Fonts”, for more information about KEDIT’s font handling. Note that the
font that KEDIT uses when printing is controlled separately, via the File Print dialog
box.

CUA and The Options Interface dialog box is primarily intended for users of earlier text mode

Classic versions of KEDIT who are moving to KEDIT for Windows.

interfaces
By default, keyboard and mouse usage within KEDIT is very much like keyboard and
mouse usage in other Windows applications. But some KEDIT users would prefer to
stay with the keyboard and mouse conventions they are familiar with from text mode
versions of KEDIT. The Options Interface dialog box lets you choose between these
two ways of using KEDIT. The default interface is the Windows-style interface that we
will refer to as the CUA (Common User Access) interface. The text mode compatible
interface is referred to as the Classic interface.

©
()
t
©
-
(7]
(o))
c
E
<}
o

The Options Interface dialog box also lets users of the CUA interface fine-tune some
details of the keyboard and mouse behavior, making things work a bit more like they
did in text mode KEDIT.

For more on the CUA and Classic interfaces, see Section 3.2, “CUA and Classic
Interfaces”.

Settings KEDIT has a large number of settings that you can use to control, for example, whether
KEDIT displays scroll bars, what colors KEDIT uses to display your files, and whether
KEDIT’s wordwrap facility is enabled. These settings are also referred to as SET com-
mand options, because you can control them by using the dialog boxes discussed here
or by issuing the SET command from the KEDIT command line.

Three dialog boxes related to your settings are accessed through the Options menu:

e Options SET Command lets you work with individual settings. You can select a
setting from a list of all available settings or from groups of settings organized by
category. You can then examine the value of the setting, and can make changes to
that value.

e Options Status displays a list of the current values of most KEDIT settings.

Working With Menus 19

e Options Save Settings lets you save the current values of most settings for use in
future editing sessions.

2.6 Working with the Toolbar

Quick Find

The fastest way to get to many frequently-used KEDIT features is via the toolbar. For
example, the toolbar has items to undo a change, redo a change, save a file to disk, to
print a file, etc. The toolbar appears at the top of the window. When you position the
mouse over a toolbar item and click, the function of that toolbar button will be carried
out. If you linger over a button with the mouse, a small pop-up help box will appear,
indicating the function of the button. Additional information about the button appears
in the status line at the bottom of the frame window. An optional bottom toolbar pro-
vides additional toolbar buttons; you can use the TOOLBAR option of the Options SET
Command dialog box to enable the bottom toolbar. See Chapter 5, “Menus and
Toolbars”, for a full discussion of KEDIT’s toolbars.

One item on the toolbar is not a button, but is a special combo box known as the Quick
Find toolbar item. Quick Find displays the string you most recently searched for, and
provides a shortcut way of accessing most functions of the Edit Find dialog box. You
can press the Find Next button, located to the right of Quick Find, to search again for
this string. You can also type in a new string, or choose from a dropdown list of all the
strings that you have recently searched for.

2.7 Getting Help

To get into the help system from within KEDIT press F1.

e Press Fl1 from within any dialog box to get help related to that dialog box.

e Press F1 while pulling down a menu to get help with the current menu item.
e Press F1 at any other time to get to the help system’s main Contents screen.

You can also access the help system from the Help menu.

20

Chapter 2. Getting Started

2.8 Ending a Session

Saving Files

Closing Files

Leaving KEDIT

In this practice session we haven’t made any useful changes to DICKENS.TXT or
UNTITLED.1, so we don’t need to save them to disk. In future editing sessions, how-
ever, you will probably want to save your files before leaving KEDIT.

You can save a file to disk at any time during a KEDIT editing session by using the File
Save menu item or by using the Save File toolbar button.

When you are completely finished with a file you can select File Close from the menu.
That will close the file, removing it from memory and removing its document windows
from the screen. If you have made changes to the file that have not yet been saved,
KEDIT will ask if you want to save the file to disk before closing it.

Note that if you try to save a temporary file like UNTITLED.1 to disk, KEDIT will
prompt you for the name you want to save it under.

Now that we’ve had a very brief look at some of the facilities of KEDIT, let’s end the
KEDIT session.

The easiest way to leave KEDIT completely is to select File Exit. This will close any
files that are active within KEDIT, again prompting you, if necessary, to save any
unsaved changes, and will then take you out of KEDIT.

Ending a Session

21

©
()
t
©
-
(7]
(o))
c
E
<}
o

Chapter 3. Using KEDIT for Windows

This chapter takes brief looks at a number of topics that you will need to be familiar
with if you want to take full advantage of KEDIT for Windows.

3.1 Frame Window and Document Windows

Frame window
layout

Many Windows applications use a set of conventions known as the Multiple Document
Interface (MDI) to let you work with several documents at the same time. Since KEDIT
lets you edit several files at a time, KEDIT also uses the Multiple Document Interface.

In an MDI application there is one main window, known as the frame window, which
provides the work area in which one or more document windows are displayed.

The frame Window can be maximized, so that it occupies your entire Windows desktop,
it can be in its normal state (sometimes referred to as the restored state), where it occu-
pies only part of the Windows desktop and can be moved and resized, or it can be mini-
mized, so that it appears as an icon on your Windows desktop.

Just as the frame window can be maximized, restored, and minimized on your Win-
dows desktop, your document windows can be maximized, restored, and minimized
within the frame window. A document window can be maximized so that it occupies
the entire area of the frame window; it can be in its normal state, where it occupies only
a part of the frame window, and can be moved and resized; or it can be minimized, so
that it appears as an icon within the frame window.

KEDIT’s frame window is organized as follows:

= KEDIT =1
File Edit Actions Options Window Help
C[=[H] | | [2] [#]d8] [55]2d] (S]] [#]E=(mE]

| Line=0 | Cal=1 | Alt=0,0:0 | Size=0 |F|IBs='I | Windows=1 OVR |RAM 12207 PM
Screen 3.1: KEDIT's frame window

o Atthe top of the frame window is a title bar. The title bar displays the name of the
application, KEDIT. If you are working with a maximized document window, the

22

Chapter 3. Using KEDIT for Windows

frame window’s title bar also displays the name of the file that you are working
with. At the right of the title bar are icons that you can click on to maximize, mini-
mize, or restore the frame window. At the left of the title bar is the frame window’s
system menu icon. If you click on the system menu icon, you will get a menu that
allows you to do things like move, resize, or close the frame window. Closing the
frame window, which you can also do by double-clicking on the frame window’s
system menu icon, closes all of your document windows (you are prompted to save
any unchanged files) and ends your KEDIT editing session.

e Underneath the title bar is the menu bar, from which you can access all of KEDIT’s
menu items.

e Underneath the menu bar is the foolbar, which has a number of buttons that you
can click on to perform tasks like saving the current file, printing the current file,
etc. The toolbar also contains a special Quick Find item that displays the string that
you most recently searched for and provides a fast way to access some of the func-
tions of the Edit Find dialog box.

e The main portion of the frame window is the workspace in which your document
windows are displayed.

e Near the bottom of the frame window an optional bottom toolbar, with an addi-
tional set of useful toolbar buttons, can be displayed. The bottom toolbar is not dis-
played by default, but can be enabled through the TOOLBAR setting of the
Options SET Command dialog box.

e Atthe very bottom of the frame window is the status line, which gives assorted in-
formation on the status of your KEDIT session.

Status line The following information is displayed on the status line at the bottom of the frame
contents window:

e The line number of the cursor’s location within the current file (or the line number
of the current line, if the cursor is on the command line).

e The column location of the cursor.

e The alteration and undo counts. Three numbers are given. The first is the number
of changes to your file since it was last saved (for example, via the File Save menu
item or the SAVE command) or autosaved (via KEDIT’s autosave facility). The
second is the number of changes to your file since the last save; this number is not
reset after an autosave. The third number is the number of changes to your file that
can currently be reversed by using the Edit Undo menu item.

e The size of the current file.

e The number of files in the ring. The set of files being edited is known as the ring.
You can use KEDIT to edit up to a maximum of 500 files at a time.

e The number of document windows. This can be different than the number of files
in the ring if, for example, you have used Window New to create additional docu-
ment windows viewing the same file. If you have marked a block of text within

Frame Window and Document Windows 23

=
(]
w
X
o)
£
»
o=

Document
window layout

your file, KEDIT displays information about the type of block that is marked in
place of the number of document windows.

e Insert/Overtype status: “INS” if you are in Insert Mode, or “OVR” if you are in
Overtype Mode.

e File locking status: “Lock” if you are using KEDIT’s file locking facility to pre-
vent others from accessing a file that you are editing, “R/O” if you are editing a
file with the read-only attribute bit set in its directory entry, or “R/W”’ for any
other file.

e The time-of-day. This field is optional and can be turned off through the CLOCK
option of the Options SET Command dialog box.

e The hexadecimal and decimal codes for the character at the cursor position. By de-
fault, this item is not displayed; it can be enabled via the HEXDISPLAY option of
the Options SET Command dialog box.

Here is a description of the default document window layout, which is shown below.
Note, however, that the document window layout can vary greatly, since there are a
number of options that you can use to change its appearance:

= CAKEDITWADICKENS. TXT -

* * * Top of File ® * =
Charles John Huffham Dickens. 1812-1870

=]

Charles Dickens led a very active life, always setting a
full =schedule for himself which he pursusd with extreme
energy. In addition to working on his novels., weskly
journalism and public readings. he produced and appeared in
numercus anateur theatrical productions and had a busy
=zocial life. He had a wide circle of friend=s, a large
family and wa= adnired by such different people a= Cueen
Victoﬂia and Dostoswsky He= also was active in several
====3 +
- +

Screen 3.2: KEDIT's document window

e Atthe top of the document window is a title bar. The title bar gives the name of the
file that is displayed within the document window. At the right of the title bar are
icons that you can click on to maximize, minimize, or restore the document win-
dow. At the left of the title bar is the document window’s system menu icon. If you
click on its system menu icon, you will get a menu that allows you to do things like
move, resize, or close the document window. You can also close the document
window by double-clicking on the system menu icon. If the document window is
maximized, the file name involved is displayed in the frame window’s title bar and
the document windows’s system menu icon is displayed at the left of the menu bar.

o Attheright of the document window is the vertical scroll bar, which you can use to
scroll up or down within your file. At the bottom of the document window is the
horizontal scroll bar, which you can use to scroll left and right within your file.

e The main area of the document window is known as the file area. The file area dis-
plays a portion of your file; you can use the scroll bars to scroll different portions
of your file into view. In the middle of the document window is the current line.

24

Chapter 3. Using KEDIT for Windows

When the cursor is on the command line, KEDIT draws a box around the current
line to make it stand out, because most KEDIT commands issued from the com-
mand line operate on the current line or on some portion of your file beginning
with the current line.

e Between the bottom of the file area and the horizontal scroll bar at the bottom of
the document window is the command line. KEDIT displays an arrow (“‘====>"
at the beginning of the command line to make it easily distinguishable from the file
area. You can give commands to KEDIT by typing them on the command line and
then pressing the Enter key.

3.2 CUA and Classic Interfaces

KEDIT for Windows supports two sets of keyboard and mouse conventions. With the
default conventions, keyboard and mouse usage in KEDIT is very much like keyboard
and mouse usage in most other Windows applications. If you are comfortable using
other Windows applications, you will probably find KEDIT’s default keyboard and
mouse interface, referred to as the CUA interface, easy to get used to. Your other
choice is KEDIT’s Classic interface, in which keyboard and mouse usage is very much
like it was in earlier text mode versions of KEDIT, such as KEDIT 5.0 for DOS and for
0S/2. You can use the Options Interface dialog box to switch between the CUA inter-
face and the Classic interface.

The CUA interface got its name because the conventions involved were originally
based on IBM’s Common User Access (CUA) guidelines, but the version adopted in
KEDIT comes mainly from MicrosoftZ&s user interface guidelines.

KEDIT’s Classic interface is intended for users of text mode versions of KEDIT who
are converting to KEDIT for Windows and do not want to switch to a different set of
keyboard and mouse conventions. For example, with the Classic interface, pressing
Alt+W deletes the word at the cursor position, because this is what Alt+W does in text
mode KEDIT. But with the CUA interface, Alt+W instead pulls down the Window
menu, because this is how most other Windows applications work, and the word delete
function has been moved to Shift+Ctrl+W.

=
(]
w
X
o)
£
»
o=

Chapter 4, “Keyboard and Mouse”, gives the details of KEDIT’s keyboard and mouse
usage, with full discussions of the CUA interface and of the Classic interface, and with
a summary of the differences between the two.

Most KEDIT users will probably want to use the default CUA interface. This is cer-
tainly true if you are a new user of KEDIT who is not already accustomed to the con-
ventions of text mode KEDIT. It is also true if you are a user of text mode KEDIT who
is converting to KEDIT for Windows, because the CUA interface makes KEDIT work
like the other Windows applications that you are likely to be using.

KEDIT text mode users switching to the CUA interface sometimes find that they can
quickly adjust to most aspects of the new interface, but that the new behavior of a few
keys is hard to get used to. For example, in text mode KEDIT the Enter key moves the
cursor to the beginning of the next line and the Home key moves the cursor to the

CUA and Classic Interfaces 25

Notes

command line, while with the CUA interface the Enter key inserts a new line into your
file and the Home key moves the cursor to the beginning of the line it is on. To deal with
this situation, you can use the Options Interface dialog box to make the Enter key, the
Home key, and a few other keys work like they did in text mode KEDIT, even though
most of KEDIT’s behavior is based on the CUA interface.

The Options Interface dialog box is probably the most convenient way to choose
between the CUA and Classic interfaces, but you can also use the command SET
INTERFACE CUA to get the CUA interface and the command SET INTERFACE
CLASSIC to get the Classic interface.

This documentation will frequently refer to whether INTERFACE CUA or
INTERFACE CLASSIC is in effect. INTERFACE CUA is in effect when you are using
the CUA interface, either because it is the default interface, or because you chose it via
the Options Interface dialog box or the SET INTERFACE command. INTERFACE
CLASSIC is in effect when you are using the Classic interface, selected via Options
Interface or the SET INTERFACE command.

3.3 Blocks and Selections

This section introduces some of the concepts that you will need to understand to work
effectively with KEDIT’s blocks. Details of the keystrokes and mouse actions used to
select and operate on blocks are not given here but are covered instead in Chapter 4,
“Keyboard and Mouse”.

A block is a portion of your file that you have selected, most often by dragging the
mouse, so that you can operate on it as a unit. For example, you may want to copy the
block to the Windows clipboard, or you may want to uppercase the text within the
block, or sort it. KEDIT supports two types of blocks, non-persistent blocks (most
often referred to as selections) and persistent blocks. Selections are only available if
you are using the CUA interface, but persistent blocks are available under both the
CUA and Classic interface.

A selection, or non-persistent block, works the same in KEDIT as in most other Win-
dows applications: you can mark a selection by dragging the mouse pointer over the
text involved, or by pressing Shift in combination with a cursor-movement key to move
the cursor over the text. Once you have marked a selection, you must operate on it
immediately, for example by using the Edit Copy menu item to copy the selection to the
clipboard, or by pressing the Delete key to delete the selection. If you mark a selection
and then type some text, the selection is deleted and the text that you type is entered in
its place; this feature is referred to as ““typing-replaces-selection”. If you do not operate
immediately on a selection that you have marked, but instead move the cursor else-
where in your file, the selection is automatically unmarked; this is why selections are
referred to as non-persistent.

Most Windows applications support only non-persistent blocks, but KEDIT also sup-
ports persistent blocks. A persistent block is a block that, once it has been marked,
remains marked even if the cursor moves away from it. You can, for example, mark a

26

Chapter 3. Using KEDIT for Windows

persistent block, move elsewhere in your file, copy the block to the new location,
change some text within the block, and finally use the Edit Unmark menu item or press
Alt+U to unmark the block. The ability to move the cursor away from a block, and to
perform multiple operations on the block without unmarking it, can sometimes be quite
useful.

Both persistent and non-persistent blocks are available in any of three different shapes:

e A stream block is a stream of consecutive characters of your file, possibly span-
ning multiple lines of the file.

e Aline block is a group of consecutive lines of your file.

e A box block is a rectangular area of text within your file. For example, the text in
columns 10 through 20 of lines 50 through 80 of your file might make up a box
block.

If you are using INTERFACE CUA, you have access to both persistent blocks and
selections (that is, non-persistent blocks). The mouse marks selections, although you
can use the Options Interface dialog box to specify that the mouse should instead mark
persistent blocks. Shift+cursor key combinations also mark selections, as they do in
other Windows applications. To mark persistent blocks with the keyboard, you can use
the Alt+L, Alt+B, and Alt+Z keys, which mark, respectively, persistent line, box, and
stream blocks. You can also mark a persistent block by first marking a selection, and
then using the Edit Make Persistent menu item to convert the selection to a persistent
block.

If you are using INTERFACE CLASSIC, only persistent blocks are available to you.
This is because in text mode KEDIT all blocks are persistent blocks and selections are
not supported.

When a block is marked, the “Windows=""1item on the status line is replaced by an indi-
cation of the type of block involved (persistent or selection, and line, box, or stream).
When the block is not in the current file (this is possible only for persistent blocks) the
block type is followed by a greater than (“>""). When the block has just been marked
and you can press the Delete key to delete the block (this happens only with the CUA
interface), the block type is followed by an asterisk (““*””).

=
(]
w
X
o)
£
»
o=

Blocks and Selections 27

3.4 The KEDIT Command Line

3.4.1 Command Line Basics

Minimal
truncations

Current line

The command line provides a very handy way to pass instructions to KEDIT.

Although most KEDIT facilities are accessible via menus, toolbar buttons, or key com-
binations, some features have options and operands that are only available through
commands entered on KEDIT’s command line.

And, once you are familiar with certain frequently-used KEDIT commands, you might
find it faster to simply type them on the command line than to access them through the
menu system.

Finally, some of KEDIT’s less frequently used commands are available only from the
command line.

The command line is normally displayed at the bottom of the document window and
begins with an arrow (‘“====>"") to help distinguish it from the file area. To move the
cursor from the file area to the command line, press the F12 key. You can type a com-
mand on the command line, for example

DELETE 10

and then press the Enter key to tell KEDIT to execute the command. In this case you
issued the DELETE command with the operand 10, telling KEDIT to delete ten lines
from the current file.

In fact, most KEDIT commands can be abbreviated. For example, the DELETE
command can be entered as DEL, DELE, DELET, or DELETE. The shortest legal
abbreviation for a command is known as the minimal truncation. Since the minimal
truncation for the DELETE command is DEL, you could also type

DEL 10

to delete ten lines from your file. To make each command’s minimal truncation clear,
the command documentation in KEDIT’s Reference Manual and online help files gives
the minimal truncation in uppercase, with the rest of the command name in lowercase.
For example, the documentation for the DELETE command uses “DELete” to indicate
that DEL is the minimal truncation for DELETE.

Commands issued from KEDIT’s command line act relative to the current line, which
is normally displayed in the middle of the document window and which normally has a
box drawn around it whenever the cursor is on the command line. For example, with
the command

DEL 10

it is the current line and the nine lines following it, for a total of ten lines, that will be
deleted.

28

Chapter 3. Using KEDIT for Windows

Command
retrieval

You can use Ctrl+Cursor Up to redisplay the most-recently-issued command line. You
can then make changes to this command line text, perhaps fixing a typing mistake, and
then press Enter to reissue the command. You can press Ctrl+Cursor Up or Ctrl+Cur-
sor Down repeatedly to cycle backward or forward through your recently-entered com-
mand lines. KEDIT keeps track of the last 40 command lines, and saves them from one
editing session to the next.

If Ctrl+Cursor Up or Ctrl+Cursor Down are pressed when the command line is empty,
they cycle through all of your recent command lines. But if you type some text on the
command line and then press Ctrl+Cursor Up or Ctrl+Cursor Down, they will only dis-
play previous command lines that begin with that text. For example, you can type an
“a” on the command line and then press Ctrl+Cursor Up to retrieve the most recent
command line that began with an “a”.

If you simply want to reissue the last command and don’t need to display it again, you
can enter the = command on the command line or you can press F9.

3.4.2 Some Useful Commands

TOP and
BOTTOM

LOCATE

Here is an introduction to some commonly used commands. See Reference Manual
Chapter 3, “KEDIT Commands”, for full documentation of all of KEDIT’s commands.

You can use the TOP command to move to the beginning of your file, and you can use
the BOTTOM command to move to the end of your file.

With the Edit Find dialog box you can search your file for the text that you specify. You
can search forward or backward, and can match case, limit the search to whole words
only, and use regular expression notation. Using the Edit Find dialog box is similar to
using the LOCATE command from the KEDIT command line. For example, to find the
string ““payment”’, you can type “payment” into the Edit Find dialog box, or you can
type the following on the command line:

LOCATE /payment/

In the above example, KEDIT would locate the next line that contained the string “pay-
ment” and make that line become the current line. Note that the string target is sur-
rounded by delimiter characters which, as in this example, are usually slash characters
(““/”). The LOCATE command is used so frequently than you can normally omit the
word LOCATE and, as a shortcut, simply specify the target that you are looking for, as
in this example:

/payment/

An advantage of the LOCATE command over Edit Find is that LOCATE can do more
sophisticated string searches. You can, for example, use logical operators to combine
targets. For example, to locate the next line containing both “payment” and “check”,
you could use the command

/payment/ & /check/

The KEDIT Command Line 29

=
(]
w
X
o)
£
»
o=

CHANGE

By specifying numeric operands for the LOCATE command, you can move up or down
in your file, or to a specific line of your file; this use of the LOCATE command is equiv-
alent to using the Edit Go To dialog box. So the command

LOCATE 25

or the equivalent command

25

would make the line 25 lines below the current line become the current line. The
command

-25

would make the line 25 lines above the current line become the current line. Instead of
specifying how many lines to move relative to the current line, you can precede the

T3 1)

number with a colon (“:””) to go to a specific line number. The command
:25
would move to line 25 of your file.

Chapter 6, “Targets”, has a full discussion of the different types of targets that you can
use with LOCATE and other commands.

The CHANGE command is another example of a KEDIT command whose command
line options allow more complex expressions than the dialog box equivalent. Much of
the function of the CHANGE command is available through the Edit Replace dialog
box, which allows you to specify a string to find and a replacement string. You can use
the Edit Replace dialog box to find the next occurrence of a string and replace the
string, for each individual occurrence, or for all occurrences. And, as with the Edit
Find dialog box, you can match case, limit the search to whole words only, and use reg-
ular expression notation.

Using the CHANGE command on the KEDIT command line, however, provides even
greater flexibility and control. You can, for example, type

CHANGE /warp/woof/ 10 *

to change all occurrences of the string “warp” to “woof” on the current line and the nine
lines below it, for a total of ten lines. The first operand following the delimited strings
specifies what portion of the file will be affected: the 10 means that ten lines will be
affected. The next operand determines how many occurrences on each line will be
affected: the asterisk (““*’’) means that all occurrences on each of the ten lines will be
affected.

Another CHANGE command example:
C ;A/B;C/D; * 5

Here “C”, the minimal truncation of the CHANGE command, is used. Note that the

delimiter used in this example is the semicolon (*;”), since if the strings that you are
working with contain any slashes, then you must use some special character other than

30

Chapter 3. Using KEDIT for Windows

ALL

TAG

a slash as the delimiter. The first five occurrences of ““A/B’* on all lines from the current
line through the end of the file will be changed to ““C/D”’. This is because the first oper-
and following the delimited strings is an asterisk (““*’’), indicating that all lines from
the current line through the end of the file will be changed, and the next operand indi-
cates that the up to five occurrences on each line will be affected.

Another frequently-used command is the ALL command, whose function is also avail-
able through the Edit Selective Editing dialog box. You can use KEDIT’s ALL com-
mand to view and work with a subset of your file. For example, you can tell KEDIT to
display only those lines in your file that contain a particular string. The other lines of
your file are temporarily excluded from display and from processing of most
commands.

For example, to display only the lines of your file that contain the string ““yesterday”,
you can type “yesterday” into the Edit Selective Editing dialog box and press the
Matching Lines button, or you can issue the command

ALL /yesterday/

When you have finished working with the subset of your file, you can use the Edit
Selective Editing dialog box and press the All Lines button, or you can issue the ALL
command with no operands. KEDIT will again display all lines of your file.

When you enter the ALL command on the command line, more types of target specifi-
cations, and more complex specifications are possible than with the Edit Selective Edit-
ing dialog box. For example, you can enter

ALL /upper/ | /lower/

to select all the lines in your file containing either “upper” or “lower” to be displayed,
or

ALL ALTERED

to select only lines that have been added or changed in the current editing session.

For a full discussion of the ALL command and of other commands used with KEDIT’s
selective line editing facility, see Chapter 8, “Selective Line Editing and Highlighting”.

Similar to the ALL command is the TAG command, which tags, or highlights, specified
lines. For example

TAG /yesterday/

would highlight lines containing “yesterday”, without excluding the other lines of the
file from display. This can be handy if you want to see the targeted lines in the context
of the whole file.

For more on KEDIT’s highlighting facility, see Chapter 8, “Selective Line Editing and
Highlighting”.

The KEDIT Command Line 31

=
(]
w
X
o)
£
»
o=

KEDIT

SAVE, FILE,
QUIT and
QQUIT

SET and
QUERY

There is a command called KEDIT (which has K as its minimal truncation) that you can
issue from the command line, as an alternative to the File Open dialog box, when you
want to begin editing additional files. For example, you could use the command

K FILESWAP.KEX

to begin editing the file FILESWAP.KEX.

You can use the KEDIT command with no operands to move to the next file in the ring
of files being edited, and you can issue it repeatedly to cycle through all of the files that
you are editing:

K

This use of the KEDIT command is equivalent to using the Next File toolbar button.

For more about editing multiple files with KEDIT, see Section 3.5, “Editing Multiple
Files”.

Several KEDIT commands are concerned with saving your file to disk and/or removing
your file from the ring of files being edited:

e The SAVE command saves the current file to disk. Using SAVE is similar to using
the File Save menu item.

e The FILE command saves the current file to disk and then removes the file from
the ring. Using the FILE command is similar to using File Close, except that FILE
always writes the file to disk, regardless of whether it has been modified.

e The QUIT command removes the current file from the ring if it has not been modi-
fied; attempting to QUIT from a modified file yields an error message. Using the
QUIT command is similar to using File Close on an unmodified file.

e The QQUIT command removes the current file from the ring; the file is not saved
to disk, even if it has been modified. Using the QQUIT command is similar to us-
ing File Close and specifying “No” if you are asked whether to save a changed file
to disk.

KEDIT has over a hundred SET options that you can use to modify different aspects of
KEDIT’s behavior. Most of these SET options can be controlled from the Options SET
Command dialog box, and all of them can be controlled by issuing the SET command
from the KEDIT command line.

You might, for example, decide to change the margin settings (used in connection with
wordwrap, paragraph reformatting, etc.) and enter the command

SET MARGINS 7 67

where 7 and 67 are your desired left and right margin columns. The same SET option
could also be entered as

32

Chapter 3. Using KEDIT for Windows

MAR 7 67

since “MAR?” is the minimal truncation of the SET MARGINS option. Note that the
word “SET” is optional for nearly all of the SET options; if KEDIT sees a command
that it does not recognize, it checks to see if you are in fact using a SET command
option.

To check the status of an individual SET option, you can use the QUERY command,
whose minimal truncation is Q. For example,

Q MARGINS

will display the current margin settings in the document window’s message area.

You can use the STATUS command, which is equivalent to the Options Status menu
item, to get a dialog box displaying the value of almost all of the SET options.

For more about using KEDIT’s SET options, see Chapter 9, “Tailoring KEDIT”, and
Reference Manual Chapter 4, “The SET Command”.

HELP There are a number of ways to access KEDIT’s help system. You can use the Help
menu, you can press the F1 key at any time, or you can issue the HELP command from
the KEDIT command line. An advantage of the HELP command is that you can specify
the name of a KEDIT command, option, or function, or you can specify a KEDIT error
message number, and if possible the help system will jump directly to the topic that you
specify. For example,

HELP LOCATE
will display help for the LOCATE command, and
HELP ERROR 144

will display information about KEDIT error number 144.

=
(]
w
X
o)
£
»
o=

3.5 Editing Multiple Files

3.5.1 The Ring

You can use KEDIT to edit multiple files at the same time, up to a maximum of 500
files. Since KEDIT reads the files that you are editing into memory, the number of files
that you can edit may also be limited by available Windows virtual memory.

The set of files that you are editing is referred to as the ring. You can think of the files
you are editing as organized in a circular list. For example, if you were editing three
files, you could use the Next File toolbar button to move from the first file in the ring to
the second file, and then to the third file, and then back to the first file. And you could
use the Previous File toolbar button to move backwards in the ring, from the first file to
the third file, and then to the second file, and then back to the first file. Issuing the
KEDIT command with no operands:

Editing Multiple Files 33

Adding files to
the ring

KEDIT

is equivalent to using the Next File toolbar button—you move to the next file in the
ring. Issuing the KEDIT command with a minus sign as its operand:

KEDIT -

is equivalent to using the Previous File toolbar button—you move to the previous file
in the ring.

The file in which the cursor is located is referred to as the current file. When you begin
editing an additional file, the new file is added to the ring after the current file, and the
new file becomes the current file. When you remove a file from the ring, the file that
precedes that file in the ring becomes the current file.

Note that the discussion in this section assumes that, as will normally be the case, you
are in one-file-per-window mode. One-file-per-window mode is discussed below in
Section 3.5.2, “One-File-Per-Window”.

When you add a file to the ring (that is, when you begin editing an additional file),
KEDIT loads the file into memory, creates a new document window, and then displays
the file in that document window. There are several ways to add files to the ring. Here
are the most frequently-used methods:

e You can use the File Open dialog box to begin editing an additional file. There are
two versions of the File Open dialog box; SET FILEOPEN controls which version
KEDIT uses. With the default of FILEOPEN SINGLE, the File Open dialog box
can only add a single file at a time to the ring. But with FILEOPEN MULTIPLE,
you can select multiple files (by using Ctrl+button 1 or using button 2) from within
the File Open dialog box and add them all to the ring.

e You can use the File New menu item to begin editing a new, untitled file. The first
untitled file you edit will have the name UNTITLED.1, the second will have the
name UNTITLED.2, etc. When saving one of these untitled files to disk, you will
need to specify a more permanent name for the file, normally by using the File
Save As dialog box.

e You can issue the KEDIT command from the command line, specifying the fileid
of the file that you want to begin editing as its operand. To add multiple files to the
ring, you can specify multiple fileids or you can use asterisk (““*”’) and question
mark (““?””) as wildcards in the file name and extension. For example, to begin
editing SAMPLE.C:

KEDIT SAMPLE.C

or to begin editing TEST1.C and all files in the current directory with an extension
of . TXT:

KEDIT TEST1.C *.TXT

e You can drag-and-drop files onto KEDIT from the Windows Explorer.

34

Chapter 3. Using KEDIT for Windows

Multiple views

Removing files
from the ring

e From a directory listing displayed in a DIR.DIR file created by KEDIT’s DIR
command, you can double-click on a file description, or can move the cursor to a
file description and press Alt+X. KEDIT will add the file involved to the ring.

Two special cases to be aware of:

e If you attempt to add a file to the ring that is already in the ring, KEDIT simply
re-activates the copy of the file that you are already editing. For example, if you is-
sue the command

KEDIT C:\DATA\FINDINGS.TXT

but C:\DATA\FINDINGS.TXT is already in the ring, KEDIT will make the exist-
ing in-memory copy of C:\DATA\FINDINGS.TXT become the current file, and
will not reload C:\DATA\FINDINGS.TXT from disk.

e If, as is most often the case, no fileid is specified at the start of a KEDIT session,
KEDIT starts with a single untitled file in the ring, UNTITLED.1. If you then add
some other file to the ring, without having made any changes to UNTITLED.I,
KEDIT automatically removes UNTITLED.I from the ring, on the assumption
that you are really interested in editing the other file, and not UNTITLED.1.

KEDIT lets you view the same file in multiple document windows. For example, if you
are editing a large file, you could display the top of the file in one document window
and the bottom of the file in another document window. Use the Window New menu
item to create a new document window that displays an additional view of the current
file.

If you are using multiple document windows to view a file and want to remove one of
the document windows, you can use the Close menu item on the document window’s
system menu, or, as a shortcut for this, you can double-click on the document window’s
system menu. As discussed below, if there are multiple document windows displaying
a file, closing one of those document windows leaves the other windows open and
leaves the file in the ring. If a file is displayed in only a single document window, clos-
ing that window also causes KEDIT to remove the file from the ring, after giving you a
chance to save any changes that you have made to the file.

When you have finished working with a file, you can remove it from the ring. Depend-
ing on how you remove the file from the ring, the version of the file on disk may or may
not be updated to reflect any changes you have made to the file. The file will be
removed from memory, and you will need to add it back to the ring if you want to view
it again or make further editing changes to it.

Here are the most common methods of removing files from the ring:

e You can use the File Close window item. If the file has been changed, KEDIT will
ask whether it should first save the file to disk and, depending on your response,
will do so. Then KEDIT will remove the file from the ring and will close all docu-
ment windows displaying the file.

Editing Multiple Files 35

=
(]
w
X
o)
£
»
o=

e You can use the Close item on the document window’s system menu or, as a short-
cut for this, you can double-click on the document window’s system menu. KEDIT
will close the current document window. If, as is most often the case, the file is not
displayed in any other document windows, KEDIT will also remove the file from
the ring, after first asking whether any unsaved changes should be written to disk.

e From the command line, you can issue the FILE command, which will write the
file to disk and then remove it from the ring. You can also issue the QUIT com-
mand, which will remove the file from the ring without saving it to disk if the file
has not been modified, but which will give you an error message if the file has been
modified. You can also use the QQUIT command, which will remove the file from
the ring without saving it to disk, regardless of whether it has been modified. With
each of these commands, all document windows displaying the file will be closed
when the file is removed from the ring.

e You can close KEDIT. When you close KEDIT, KEDIT processes each file in the
ring, asking whether unsaved changes should be written to disk, and then remov-
ing the file from the ring. There are several ways to close KEDIT: you can select
the Close menu item from the frame window’s system menu, you can double-click
on the frame window’s system menu, you can press Alt+F4, you can use the File
Exit menu item, or you can close Windows itself, which will close KEDIT and all
other active applications.

Note the distinction between closing a file and closing a document window. Closing a
file, for example by using the File Close menu item or the FILE command, closes all
document windows displaying the file and removes the file from the ring. Closing a
document window, for example by using the Close menu item on the document win-
dow’s system menu or by double-clicking on the document window’s system menu,
closes the current document window, but only removes the file from the ring if there are
no other document windows viewing the file; if there are other document windows
viewing the file, they remain open and the file remains in the ring.

3.5.2 One-File-Per-Window

By default, KEDIT manages the relationship between files and document windows in
the same way as most other Windows MDI (Multiple Document Interface) applications
do. This is referred to as ““one-file-per-window’” mode, because each document win-
dow is associated with a particular file.

One-file-per-window mode is controlled by SET OFPW. With OFPW ON, you are in
one-file-per-window mode. This is the default, and is recommended for most KEDIT
users, since it is consistent with the behavior of other Windows applications and seems
to behave in the way that most users intuitively expect:

e Whenever you begin editing a new file, a new document window is created to dis-
play the file, and no other file will ever be displayed in that document window.

e Viewing another file involves switching to that other file’s own document window.
If you use the Next File or Previous File toolbar buttons to cycle through the files

36

Chapter 3. Using KEDIT for Windows

in the ring, you switch to a different document window whenever you switch to a
different file.

You can use the Window New menu item to create additional document windows
viewing the same file.

If there are multiple document windows viewing a file and you close one of them
by using, for example, the Close menu item in the document window’s system
menu, the other document windows remain open and the file remains in the ring. If
there is only one document window for a file and you close it, the document win-
dow is closed and the file is removed from the ring.

If you remove a file from the ring by using, for example, the File Close menu item,
all document windows displaying the file are closed.

The alternative to one-file-per-window mode is provided by OFPW OFF, which is
available primarily for compatibility with text mode versions of KEDIT. In text mode
KEDIT, where it is common to edit a large number of files but usually not practical to
display more than one or two windows, the relationship between files and windows is
different. A document window is not limited, as it is in one-file-per-window mode, to
displaying a single file, but can display different files at different times:

When you begin editing a new file with OFPW OFF, a new document window is
not created. Instead, the new file is displayed in the current document window. The
old file remains in the ring, even if it is no longer being displayed in any document
window. Note that files that are not displayed in any document window do not ap-
pear in the window list at the bottom of the Window menu.

Viewing a different file need not involve switching to a different document win-
dow. If you use the Next File and Previous File buttons on the toolbar to cycle
through the files in the ring, the current document window will display each of the
files in turn.

You can use the Window New menu item, or the SET SCREEN command, to cre-
ate additional document windows. These document windows can be used to view
any file in the ring, and are not limited to a single file.

If there are multiple document windows and you close one of them by, for exam-
ple, double-clicking on the document window’s system menu, the document win-
dow is closed but the file that it was displaying remains in the ring, and can still be
accessed via the remaining document windows. However, if there is only a single
document window, and you close it, KEDIT also removes all files from the ring
(after giving you a chance to save any changed files to disk), since the files would
otherwise be stranded, with no way to access them.

If there are multiple files in the ring and you remove a file from the ring by using,
for example, the File Close menu item, all document windows remain open, and
any document windows that were displaying the file removed from the ring will
display the file that preceded it in the ring. However, if there is only a single file in
the ring, and you remove it from the ring, all document windows are closed, since
no files remain in the ring for them to display.

Editing Multiple Files

37

=
(]
w
X
o)
£
»
o=

To summarize the behavior when OFPW OFF is in effect, there is no permanent associ-
ation between files and windows. Files can be displayed in one or more document win-
dows, and document windows can (at different times) display one or more files.
Removing a file from the ring does not cause any document windows to be closed, and
closing a document window does not cause any files to be removed from the ring,
except that closing the last document window removes all remaining files from the
ring, and removing the last file from the ring closes all remaining document windows.

3.6 Fonts

Fixed-pitch
fonts

ANSI and OEM

Choosing a
font

You can use the Options Screen Font dialog box to control the font that KEDIT uses
within document windows. A separate Font dialog box, accessible from the File Print
dialog box, controls the font used for printing.

As atext editor, KEDIT is more concerned with the content of your files than the details
of their appearance. This emphasis is perhaps the primary distinction between a text
editor like KEDIT and a word processor like Microsoft Word. The font that you select
with Options Screen Font is used for all of the text within your files. That is, you cannot
display part of a file in one font and another part of a file in a different font.

Because of KEDIT’s emphasis on column-oriented data (with features like the scale
line, box blocks, and column commands), KEDIT must display each column of data
consistently on the screen. Column 10 of each line, for example, must be lined up hori-
zontally with column 10 of every other line. KEDIT therefore uses only fixed-pitch
fonts (in which each character has the same width) to display text in your document
windows, as opposed to the proportional fonts (in which different characters can have
different widths) used by many other Windows applications.

Most Windows fonts use either the ANSI character set or the OEM character set. The
ANSI character set is the character set used by most Windows applications and by Win-
dows itself in most situations. The OEM character set, sometimes referred to as the
DOS character set, is used by most DOS text mode applications and is therefore used
by Windows for MS-DOS Prompt windows. The Terminal font and fonts with OEM in
their name use the OEM character set; most other Windows fonts use the ANSI charac-
ter set. As discussed below in Section 3.7, “Character Sets”, which has more informa-
tion about the ANSI and OEM character sets, KEDIT works best in most situations
with ANSI fonts.

When you try to decide what font to use with KEDIT, you will probably have a fairly
limited selection to choose from. This is because most Windows fonts are proportional
fonts, and KEDIT can only use fonts that are marked as fixed pitch. On a typical Win-
dows, the following types of fixed pitch fonts are available:

Courier New
The default font used by KEDIT for Windows is 10 point Courier New. Courier
New fonts are fixed-pitch TrueType ANSI fonts. As TrueType fonts, they are scal-
able to any size, so they are available in a wide variety of point sizes and they work

38

Chapter 3. Using KEDIT for Windows

Printer fonts

well with Microsoft’s ClearType, a feature of Windows XP and Vista which can
improve the appearance of many fonts.

Courier

Courier fonts are fixed-pitch bitmapped ANSI fonts. 10 point Courier font was the
default font in KEDIT for Windows 1.5 and earlier.

Terminal
Terminal fonts are fixed-pitch bitmapped OEM fonts, the same fonts used by Win-

dows for MS-DOS Prompt windows. Note that they are OEM fonts, and ANSI
fonts are recommended for most KEDIT users.

Options Screen Font only controls the font used for text within document windows. For
all other text displayed by KEDIT, such as the text in dialog boxes, on the status line,
and in menus, KEDIT uses standard Windows fonts, most often proportional ANSI
fonts, that you cannot change.

The font used when you print from within KEDIT for Windows is not the same as the
font that KEDIT uses on the display. If PRINTER WINDOWS is in effect, the printer
font is controlled by a separate Font dialog box accessible from the File Print dialog
box. If PRINTER LPT1;, etc., is in effect, the font used depends on your printer’s
built-in default font.

Fonts

39

=
(]
w
X
o)
£
»
o=

3.7 Character Sets

3.7.1 Overview

Unicode Not
Supported

ANSI and OEM

KEDIT for Windows was designed to be used with the ANSI and OEM character sets
discussed below.

KEDIT for Windows does not include support for Unicode, a newer format that pro-
vides better support for working with multiple languages and with languages like Japa-
nese that use thousands of different characters.

Unicode is able to handle such large character sets by using multiple bytes to encode a
single character. In contrast, the ANSI and OEM character sets use a single byte to
encode each character, and can therefore only represent 256 different characters.

Windows 3.1 and Windows 95/98/Me used ANSI as their native character set and pro-
vided only very limited support for Unicode. Current versions of Windows still support
the ANSI character set, but they use Unicode as their native character set, and an
increasing number of Windows applications can work with text stored in Unicode
format.

While it would be useful if KEDIT included support for text in Unicode format, this is
not a feature that we currently plan to add to KEDIT.

Note that most Windows applications, even applications that include Unicode support,
are also able to read and write text in ANSI format, and that programs like Windows
Notepad are often able to convert text between ANSI and Unicode format.

KEDIT can make use of two different character sets:

e As mentioned above, the ANSI character set was the native character set in
Windows 3.1 and Windows 95/98/Me. The ANSI character set is still supported by
current versions of Windows and is compatible with the most current Windows
applications.

e The OEM character set was used by DOS and by most DOS applications, such as
the DOS version of KEDIT. Its main use within Windows is for MS-DOS Com-
mand Prompt windows.

For most purposes, U.S. users of KEDIT need not be concerned about the differences
between the ANSI and OEM character sets, since they are identical for characters with
codes in the range 32-127, which includes all characters on the standard U.S. keyboard.

The ANSI and OEM character sets are very different, however, for characters in the
range 128-255. All accented letters fall into this category. The ANSI character set
includes a larger variety of accented characters than the OEM character set, but does
not include the box drawing characters found in the OEM character set or the special
graphic characters with codes below 32. Furthermore, even when the same characters

40

Chapter 3. Using KEDIT for Windows

ANSI preferred

English
language

are present in both character sets, characters above 127 often have different character
codes.

This means that text in the OEM character set will be incorrectly displayed if you are
using an ANSI font. To display OEM text correctly when you are using the ANSI font,
you must convert the text to ANSI. KEDIT has commands, discussed below, that can
convert text from OEM to ANSI, and from ANSI to OEM.

Conversions between OEM and ANSI are not always perfect, because each character
set has characters not found in the other. Box drawing characters in the OEM character
set convert to plus signs, underscores, and the like. Accented characters in the ANSI
character set that are not present in the OEM character set convert to their closest equiv-
alents. For example, an accented uppercase character may lose its accent.

Control characters below 32 in the OEM character set correspond to special graphic
characters such as smiley faces and musical notes. These characters are not defined in
the ANSI character set, and with an ANSI font a dummy character, such as a black rect-
angle, is displayed whenever they occur. Most frequently-used control characters with
codes below 32, such as the backspace, tab, carriage return, linefeed, and formfeed
characters, are unaffected by conversions between ANSI and OEM.

KEDIT for Windows lets you use either an ANSI or OEM font within document win-
dows, but uses ANSI fonts for all dialog boxes, menus, title bars, and on the status line.
If you keep your text in the OEM character set and work with it using an OEM font,
most editing operations done within the file area and from the KEDIT command line
will work properly, but characters with codes above 127 will not be displayed or
entered properly from dialog boxes such as the Edit Find dialog box and the Edit
Replace dialog box. For this reason, you will probably get the best results from KEDIT
for Windows if you are using an ANSI font and your files are in the ANSI character set.

If, as is the case for most U.S. users of KEDIT, your files are in English and contain no
special characters above 127, you can use either character set to work with your files:
ANSI fonts, which are normally preferred, or OEM fonts. You need not worry about
character set conversion issues.

If your files are in English, but depend on special characters above 127 (for example,
the British pound symbol, which has OEM code 156 and ANSI code 163), you will
probably want to work with the files in the ANSI character set, converting them if nec-
essary from OEM, as discussed below in connection with other languages.

Files that depend on box drawing characters above 127 will need to be edited using an
OEM font, and might be best handled by a DOS text editor. This is because the ANSI
character set does not have useful equivalents of most box drawing characters. Simi-
larly, if you depend on the graphic symbols associated in OEM fonts with control char-
acters below 32, you will need to use an OEM font or a DOS text editor. Both the box
drawing characters above 127 and the graphic symbols for characters below 32 were
made part of the original IBM PC character set because the original PC’s were typically
text-mode only and had no other way to display graphic symbols or to draw boxes, but
their usage is fading in graphical environments like Windows.

Character Sets

41

=
(]
w
X
o)
£
»
o=

Other
languages

If you use a language that has accented characters, you will probably want to use the ANSI char-
acter set and an ANSI font. Otherwise, accented OEM characters in your file will not be dis-
played or manipulated properly in KEDIT’s dialog boxes, which all use an ANSI font.

If you use an ANSI font such as KEDIT’s default 10 point Courier font for new files that you cre-
ate, and use only KEDIT for Windows or other Windows programs that use the ANSI character
set to work with these files, you will not need to worry about character set conversions, since the
files will always be in the ANSI character set.

Conversion issues arise when you have an existing file in the OEM character set (such as a file
created by the DOS version of KEDIT) and want to edit it with KEDIT for Windows. You will
need to convert it from OEM to ANSI in order to display and edit it properly. When you have fin-
ished editing the file, you can save it to disk in the ANSI character set and maintain it from then
on in the ANSI character set. If you instead want to maintain the file in the OEM character set,
you can convert the file back from ANSI to OEM and save it to disk in the OEM character set.

Conversion issues also arise when you create a file in the ANSI character set using KEDIT for
Windows, but need to use the file with a DOS program that requires the OEM character set. You
can edit such a file with KEDIT for Windows, convert it from the ANSI to the OEM character
set, and save it to disk in the OEM character set.

3.7.2 Converting between OEM and ANSI

OEM to ANSI

ANSI to OEM

Checking the
results

Conversion from the OEM character set to the ANSI character set is normally done when you are
using an ANSI font and you are beginning to edit a file that is in the OEM character set. Again,
conversion is only necessary for files that have characters with codes above 127 and is not neces-
sary if your files consist entirely of characters found on the standard U.S. keyboard.

You can normally tell if this conversion is necessary by looking at the file while using an ANSI
font within KEDIT for Windows: if most accented characters come out garbled, the file is proba-
bly in the OEM character set.

The usual way to convert a file from OEM to ANSI is to issue the command
OEMTOANSI ALL

from the KEDIT command line. The OEMTOANSI command can convert all or any
portion of your file from ANSI to OEM. Since you normally will want to convert the
entire file, you will normally specify OEMTOANSI ALL.

You will sometimes be able to convert a file to ANSI and then work with it from then on
in ANSI. In other cases, you will need to convert a file back to OEM before saving it to
disk, so that the file can be used by DOS programs that require the OEM character set.
The ANSITOOEM command handles this conversion. To convert the contents of an
entire file from the ANSI character set to the OEM character set, you can use

ANSITOOEM ALL

Remember that some characters may not convert successfully, because some characters
in the ANSI character set are not present in the OEM character set, and vice versa.
KEDIT does not control the details of what each character is converted to. Instead, it
calls routines within Windows, which do the conversion based on the Windows

42

Chapter 3. Using KEDIT for Windows

Non-reversible
conversions

Advanced
conversion
options

language drivers installed on your system. So you should check the results of all OEM
to ANSI and ANSI to OEM conversions until you gain confidence that the characters
you depend on are handled satisfactorily.

Another reason to check the results of character set conversions is that if you inadver-
tently use the OEMTOANSI command on text that is already in the ANSI character set,
or if you inadvertently use the ANSITOOEM command on text that is already in the
OEM character set, you can end up with garbled data in your file. (If you run into this
problem you can try to use Edit Undo immediately after the erroneous conversion to
reverse its effect.)

To verify that the result of an OEM to ANSI conversion meets your needs, you can
view the file in KEDIT for Windows with an ANSI font.

To verify that the result of an ANSI to OEM conversion meets your needs, you can
view the file in KEDIT for Windows with an OEM font, or you can view the file with a
DOS program, such as the DOS version of KEDIT, that uses the OEM font.

It is important to understand that converting a file from OEM to ANSI and back again,
or from ANSI to OEM and back again, can change the contents of your file if your file
uses characters that are not present in both character sets.

Consider, for example, a file in the OEM character set that contains box drawing char-
acters with codes above 127. Since these box drawing characters are not present in the
ANSI character set, converting this file from OEM to ANSI would cause these charac-
ters to be converted to their closest equivalents, which are underscores, plus signs, etc.
Converting this file back from ANSI to OEM would leave these characters unchanged,
since underscores and plus signs are present in both the OEM and ANSI character set
and Windows has no way of knowing that some of your underscores and plus signs
were originally box drawing characters. So converting box drawing characters to ANSI
and then back to OEM would leave you with underscores and plus signs, which is not
what you started with.

The details of which characters are available in both character sets depend on the DOS
code page you are using. In most countries all of the characters represented on the key-
board are available in both character sets and can be freely converted between OEM
and ANSI. Problems most often occur with special characters, such as box drawing
characters and mathematical symbols.

Advanced users of KEDIT may want to use SET TRANSLATEIN to have KEDIT con-
vert a file from ANSI to OEM as it reads the file in. With the default of
TRANSLATEIN NONE, no translation is done. But with TRANSLATEIN
OEMTOANSI in effect, KEDIT translates text from OEM to ANSI as it loads new files
into the ring and when processing the GET command.

A related command, SET TRANSLATEOUT, can be used to convert a file from ANSI
to OEM as it writes the file to disk. With the default of TRANSLATEOUT NONE, no
translation is done. But with TRANSLATEOUT ANSITOOEM in effect, KEDIT
translates text from ANSI to OEM as it writes files to disk during File Save and related
operations and when processing the PUT and PUTD commands.

Character Sets

43

=
(]
w
X
o)
£
»
o=

Notes

You should be cautious about using SET TRANSLATEIN and SET
TRANSLATEOUT, because OEM to ANSI conversion on a file that is already in
ANSI, and ANSI to OEM conversion on a file that is already in OEM, can leave you
with a garbled file.

So that it can be in effect before a file is read in, SET TRANSLATEIN is normally
issued from your profile. It is unlikely that you would want to automatically convert all
files from OEM to ANSI, because at least some of the files that you edit are likely to
already be in the ANSI character set. Because of this, the values of the
TRANSLATEIN and TRANSLATEOUT options are not saved by Options Save Set-
tings and are most often set via your profile. You would normally issue SET
REPROFILE ON in your profile to be sure that your profile is re-executed for each new
file added to the ring, and then examine the fileid for the file being edited to decide
whether TRANSLATEIN ANSITOOEM should be in effect. For files maintained on
disk in the OEM character set, you would also want to put TRANSLATEOUT
ANSITOOEM into effect. So your profile would contain something like this:

'reprofile on'
/* assume .XXX files are stored in OEM */
if fext.1l() = 'XXX' then do
'set translatein oemtoansi'
'set translateout ansitooem'
end

e KEDIT uses the ANSI character set for the data in DIR.DIR files, and that
DIR.DIR files with fileids containing accented characters will be displayed prop-
erly only if you are using an ANSI font.

e KEDIT for Windows assumes that your macros (that is, . KEX and .KML files) are
in the ANSI character set. If you have text mode KEDIT macros that use characters
with codes above 127 (these would be legal only within comments and character
strings), you may need to convert the macros from the OEM to ANSI character set.

e Character set conversions are sometimes necessary when you send data to the
printer. For example, if you attempt to print a file that uses the OEM character set
with PRINTER WINDOWS in effect and an ANSI printer font selected, accented
characters will print incorrectly unless they are converted from OEM to ANSI.

You can use the SET PRINTER command to control whether KEDIT automati-
cally attempts to make any necessary conversions. If SET PRINTER’s
NOCONVERT option is in effect, no conversion is done. If SET PRINTER’s
CONVERT option is in effect, as it is by default, and you are using an ANSI screen
font and an OEM printer font, or if you are using PRINTER LPT1:, etc., in which
case KEDIT assumes that the default printer font is an OEM font, text sent to the
printer is converted from ANSI to OEM. If you are using an OEM screen font and
an ANSI printer font, text sent to the printer is converted from OEM to ANSI. If ei-
ther the printer or screen font uses some other character set, such as a character set
consisting of special symbols, no conversion is done.

e Two functions are provided to allow macro writers to convert strings between the
OEM and ANSI character sets within KEXX macros. They are

44

Chapter 3. Using KEDIT for Windows

OEMTOANSI (string)
and

ANSITOOEM (string)

e There is not actually a single OEM character set. Instead, the OEM character set
depends on the DOS code page loaded on your system. Most U.S. users of KEDIT
work with code page 437, which corresponds to the original IBM PC’s character
set. But other code pages, such as the multilingual code page 850, are also in
common use.

e Itisalso notalways true that the native Windows character set is the ANSI charac-
ter set, although this is the case for most KEDIT for Windows users. Other Win-
dows character sets include the Eastern European, Cyrillic, Greek, and Turkish
character sets.

3.8 International Support

KEDIT for Windows is basically an English-language application, in that all of its
menus, dialog boxes, and help files are in English. However, KEDIT for Windows does
try to adjust to conventions for date and time handling, uppercasing and lowercasing,
and sorting that vary depending on your country and language.

KEDIT for Windows does this by examining your Windows settings, as determined by
the language drivers installed via the Windows Setup program and by the Windows
Control Panel’s International settings.

KEDIT for Windows does not include support for Unicode, for right-to-left languages
such as Hebrew and Arabic, or for languages with very large character sets, such as
Japanese, Chinese, and Korean.

=
(]
w
X
o)
£
»
o=

3.8.1 Uppercase and Lowercase

KEDIT’s handling of the UPPERCASE and LOWERCASE commands, and of
case-insensitive string searches, is affected by the setting of the first operand of SET
INTERNATIONAL. This operand can be either NOCASE (the default, which means
there is no international uppercase and lowercase handling) or CASE (which means
that there is).

When INTERNATIONAL NOCASE is in effect, only the 26 letters of the English
alphabet are handled by the UPPERCASE and LOWERCASE commands and given
special handling in case-insensitive comparisons.

When INTERNATIONAL CASE is in effect, KEDIT asks Windows which characters
are alphabetic and how they are uppercased or lowercased, and handles the
UPPERCASE and LOWERCASE commands and case-insensitive comparisons
accordingly. This allows accented characters, etc. to be treated properly, according to
rules determined by the Windows language drivers installed on your system.

International Support 45

The SORT command is also affected by the value of SET INTERNATIONAL; for the
details on this see the description of SET INTERNATIONAL in the Reference Manual.

Note that the handling done by SET INTERNATIONAL assumes that the characters
you are working with are in the ANSI character set, and it would not yield the expected
results for text that is in the OEM character set. SET INTERNATIONAL therefore has
no effect if the current screen font is an OEM font; international case processing is
always bypassed in this situation.

Two related KEXX functions are available to macro writers:

e ANSIUPPER(string) is a KEXX function that uppercases a string in the ANSI
character set. Both accented and non-accented alphabetic characters are handled,
regardless of the value of SET INTERNATIONAL.

o ANSILOWER(string) is a KEXX function that lowercases a string in the ANSI
character set. Both accented and non-accented alphabetic characters are handled,
regardless of the value of SET INTERNATIONAL.

Note that the KEXX UPPER() and LOWER() functions, and uppercasing done by
KEXX instructions like PULL and PARSE UPPER, affect only the 26 letters of the
English alphabet, regardless of the value of SET INTERNATIONAL.

3.8.2 Date and Time

The date format, as displayed in response to the QUERY TIME command and in
DIR.DIR files, is controlled by the Date Format values in the Windows Control Panel’s
International settings.

The time-of-day format, as displayed on the status line and in response to QUERY
TIME, is controlled by the Time Format values in the Windows Control Panel’s Inter-
national settings.

The file times in DIR.DIR files are always based on a 24-hour clock format, to allow
the files to be easily sorted according to date and time.

You can use the SET DIRFORMAT command to control whether a 2- or 4-digit year
(for example, “95” or “1995”) is displayed in DIR.DIR files.

The values returned in macros by the KEXX DATE() and TIME() functions are in a
standard format that does not depend on your country or language. However, options
on these functions allow you to access the date and time in several different formats,
and the DATECONV() function allows you to convert back and forth between the date
formats.

3.9 The DIR.DIR File

The DIR.DIR file is a special file that you can create within KEDIT to view a directory
listing. You can sort the contents of the DIR.DIR file by date, by size, or by the name or

46 Chapter 3. Using KEDIT for Windows

Creating a
DIR.DIR file

Sorting
DIR.DIR files

extension of the files involved. You can also select a file from within a DIR.DIR listing
and have KEDIT add it to the ring of files that you are editing.

For each file, the DIR.DIR listing gives the drive involved, the file name and extension,
the size of the file, the date and time that the file was last modified, and finally the file’s
directory path. The DIR.DIR listing can include both files and subdirectories; subdirec-
tories are indicated by the string ““<dir>"" appearing in place of the file size.

You can use the File Directory dialog box to create a DIR.DIR file. Open the File Direc-
tory dialog box, select the drive and directory whose contents you want to examine,
select the Show DIR.DIR File radio button, and then click on OK.

You can also create a DIR.DIR file by issuing the DIR command from KEDIT’s com-
mand line. If you issue the DIR command with no operands, you will get a listing of the
current directory. But you can specify a different directory, and can specify file names
and extensions, which can include asterisks (““*”) and question marks (“?°”) as wild-
card characters.

Some examples:

DIR

List all files in the current directory.

DIR D:\TEMP

List all files in the D:\TEMP directory.

DIR *.C *.H

List all files in the current directory that have an extension of .C or .H.

If a DIR.DIR file is already in the ring when you use File Directory or the DIR com-
mand to get a directory listing, the new directory listing replaces the existing contents
of the DIR.DIR file. You can use the DIRAPPEND command, which accepts the same
operands as the DIR command, if you instead want to add information to an existing
DIR.DIR file.

It is possible to save the DIR.DIR file to disk, but this is normally not done. Instead, you
let KEDIT create the DIR.DIR file in memory, and when you have finished with it, you
close it by using, for example, the File Close menu item or the QUIT command.
Because the DIR.DIR file is a special file that is normally never saved to disk, KEDIT
gives it special handling: it is not autosaved or locked, regardless of the settings of SET
AUTOSAVE or SET LOCKING, and even if you have made changes to it, File Close
and the QUIT command treat the DIR.DIR file as if it were an unmodified file, and
immediately remove it from the ring.

The SET DEFSORT command controls the order in which the DIR.DIR file is initially
sorted. By default, DIR.DIR is sorted according to the name and extension of the files
involved.

The DIR.DIR File

47

=
(]
w
X
o)
£
»
o=

Editing files

Displaying
long filenames

When a DIR.DIR file is the current file, KEDIT’s default toolbar changes to include
buttons that allow you to re-sort the DIR.DIR file by name, extension, size, or date. You
can also re-sort DIR.DIR files by issuing the DIRSORT command from the KEDIT
command line.

To edit one of the files listed in a DIR.DIR file, double-click on the line describing the
file you want to edit. Alternatively, with the default key definitions, you can place the
cursor on the line describing the file you want to edit and press Alt+X.

If you double-click on or press Alt+X for a line of the DIR.DIR file that describes a
subdirectory, KEDIT will replace the current DIR.DIR file with a listing of the contents
of that subdirectory. You can use the Parent Directory button on the DIR.DIR file’s
toolbar button, or you can press Shift+Ctrl+X, to get a listing of the contents of a file’s
parent directory.

KEDIT for Windows can work with the long filenames supported by all current ver-
sions of Windows. The display of long filenames in DIR.DIR files is affected by the
SET DIRFORMAT command, whose first two operands control the amount of space
set aside in DIR.DIR files for file names and for file extensions. (The third operand of
SET DIRFORMAT controls whether KEDIT uses 2 or 4 digits for the year in the date
field of DIR.DIR files.) By default, KEDIT sets aside 30 columns in DIR.DIR files for
filenames and 10 columns for file extensions. This corresponds to the command

SET DIRFORMAT 30 10

As a special case, you can specify 0 as the value for file extensions. This causes KEDIT
to display the name and extension together as a unit in the columns normally set aside
for the file name.

3.10 Printing

To print your file from within KEDIT, you can use the File Print dialog box. You can
print either your entire file, or a marked block within your file. File Print also lets you
determine the printer margins and printer font that KEDIT will use when printing your
file.

When you send syntax-colored text to a color printer, KEDIT will normally print it in
color.

Note that KEDIT’s printer font, controlled through the File Print dialog box, is separate
from KEDIT’s screen font, which is controlled through Options Screen Font. One rea-
son that KEDIT does not automatically use the same font on the screen and on the
printer is that some screen fonts are not available as printer fonts. Another reason is that
the font that looks best on your screen is not necessarily the font that looks best on your
printer, and the font size that works best on your monitor may be larger or smaller than
what you would like for your printer.

You can also print your file by using the Print File button on the toolbar. By default, the
Print File button brings up the File Print dialog box, so that you can choose whether to

48

Chapter 3. Using KEDIT for Windows

print the entire file or the currently marked block, can change your printer font, etc. You
can instead choose to have the Print File toolbar button print your file immediately,
without displaying the File Print dialog box; simply uncheck the box at the bottom of
the File Print dialog box that is labeled ““Print File Toolbar Button Shows This Dialog™.
The Print File button will then cause KEDIT to print the marked block within your file
if there is one, and to otherwise print your entire file.

Another way to print all or part of your file is to issue the PRINT command from the
command line. For example, to print 200 lines of your file, beginning with the current
line, you could issue the command

PRINT 200

Printer output is normally sent through your Windows printer drivers, and you choose
the particular printer to be used via the File Printer Setup dialog box. With the SET
PRINTER command you can instead specify that the your print output will go directly
to a printer port, such as LPT1: or LPT2:, and will bypass the normal Windows printer
handling. This is useful primarily if you have files that contain device-dependent
printer escape codes, which are not handled properly by the device-independent printer
handling used when the Windows printer drivers are used. Note that when you are
bypassing the Windows printer drivers, you cannot use the File Print dialog box to con-
trol the printer margins or fonts; default fonts and margins built into your printer are
used unless the data that you print includes device-dependent printer control codes that
change these defaults.

3.11 Word Processing Facilities

KEDIT is primarily a text editor and does not provide the full text formatting facilities
found in most word processing programs. For example, KEDIT uses only fixed-pitch
fonts and does not support proportional fonts, or the use of multiple fonts within a doc-
ument. KEDIT does, however, have a useful subset of the functions typically associ-
ated with “word processing”, sufficient for working with simple notes and memos,
and with e-mail. KEDIT has a wordwrap feature to assist text entry, and control keys
and commands to format and justify paragraphs within margins, center text between
margins, and left- and right-adjust text.

=
(]
w
X
o)
£
»
o=

3.11.1 Margins

To make use of KEDIT’s word processing capabilities, you should know how to set the
margins used by KEDIT. The left margin value determines where the leftmost column
of text will be placed by KEDIT and the right margin value determines where the
rightmost column of text will be placed. For example, if you set the left margin to 10
and the right margin to 70, KEDIT will know that you want text within paragraphs to be
placed between columns 10 and 70 of your file, with blanks in columns 1 to 9 and
beyond column 70. You use the paragraph indent value to tell KEDIT what column the
first line of a paragraph should start in, either as an absolute column number or as an
offset relative to the left margin.

Word Processing Facilities 49

Displaying
margins

To change the margin settings, you can issue the SET MARGINS command from the
KEDIT command line, or you can specify the margins via the Options SET Command
dialog box.

The three operands of the SET MARGINS command are the desired left margin, right
margin, and paragraph indent values. For example,

SET MARGINS 5 60 9

tells KEDIT that you want a left margin of 5, a right margin of 60, and that you want
new paragraphs to begin in column 9.

SET MARGINS 5 60 +4

would initially have the same effect, telling KEDIT that you want a left margin of 5, a
right margin of 60, and that you want new paragraphs to begin four columns to the right
of column 5, which is column 9.

Although the two examples above seem at first to be equivalent, a difference shows up
if you later change the margins. Suppose you issued the command

SET MARGINS 10 70

after originally specifying the paragraph indent as 9. From then on, the left margin will
be 10, the right margin will be 70, and new paragraphs will still begin in column 9.
However, if you originally specified the paragraph indent as +4, the left margin will be
10, the right margin will be 70, and new paragraphs will begin in column 14—four col-
umns to the right of the left margin.

The default margin setting is 1 72 +0, which means that the left margin is column 1, the
right margin is column 72, and new paragraphs start in the same column as the left
margin.

You are free to enter text within or outside of the current margin settings; the margin
settings have an effect only when you use the word processing features described in the
following sections. Simply changing the margin settings does not have any immediate
effect on the contents of your file.

You can use the SET BOUNDMARK command to create a visual reminder of the left
and right margin settings. KEDIT will draw vertical lines in the document window just
before the left margin column and just after the right margin column if you issue the
command

SET BOUNDMARK MARGINS

Note that additional SET BOUNDMARK options, which can be specified instead of or
in addition to the MARGINS operand, control whether lines are drawn for the ZONE,
TRUNC and VERIFY columns, for tab columns, and for the window margin area.

50

Chapter 3. Using KEDIT for Windows

3.11.2 Wordwrap

The wordwrap feature is off by default. You can enable it by putting WORDWRAP ON
into effect via Options SET Command.

Wordwrapping allows you to enter text into your file without concern for text going
beyond the right margin. When you enter text with WORDWRAP OFF, you have to be
aware as you enter text what column the cursor is in. When you are about to enter a
word that won’t fit within your margins, you must instead add a new line and start the
next word at the left margin column of the new line.

With WORDWRAP ON, you can simply enter the text that you want and not worry
about your margins. When you attempt to enter a word that goes beyond the right mar-
gin, KEDIT adds a new line for you, moves the part of the word you’ve already typed to
the left margin column of the new line, and places the cursor on the new line in position
for the next character to be typed. This is all automatic and happens fast enough for you
to continue typing without missing a beat. You can enter a full paragraph at a time with-
out having to press any special keys to start new lines and without having to look at the
screen to worry about how close you’re getting to the right margin.

3.11.3 Starting a New Paragraph

Shift+Ctrl+P is one of six word processing operations assigned to keys. All six are
invoked by pressing the Shift and Ctrl keys in combination with an alphabetic
character.

Shift+Ctrl+P is used to begin a new paragraph. It causes KEDIT to add a blank line to
your file (to separate the old paragraph from the new one), and then to add a second
blank line with the cursor positioned in the paragraph indent column, ready for you to
enter the first line of the new paragraph.

Note that Shift+Ctrl+F, the paragraph formatting operation described below, normally
assumes that all paragraphs are separated from each other by at least one blank line.
Shift+Ctrl+P inserts this blank line for you.

=
(]
w
X
o)
£
»
o=

3.11.4 Adjusting Text

Several Shift+Ctrl key combinations are useful for adjusting text.

Shift+Ctrl+C centers a line of text. When you press Shift+Ctrl+C, the text is centered
between the left and right margins. For example, if the left margin is 1 and the right
margin is 67 and the text on the line consists of the word “Hello”, Shift+Ctrl+C will
place the “Hello” in columns 32 through 36 of the line, exactly halfway between the
left and right margins. You can also use the CENTER command to center text.

Shift+Ctrl+R right-adjusts the text in a line. The rightmost nonblank character of the
text is placed in the right margin column. Again assuming left and right margin settings
of 1 and 67 and text consisting of “Hello”, Shift+Ctrl+R will move the “Hello” to

Word Processing Facilities 51

columns 63 through 67. You can also use the RIGHTADJUST command to right-adjust
text.

Shift+Ctrl+L left-adjusts the text in a line. The leftmost nonblank character of text is
placed in the left margin column. In our example, the word “Hello” will be placed in
columns 1 through 5. You can also use the LEFTADJUST command to left-adjust text.

Shift+Ctrl+A adjusts text on the cursor line to wherever the cursor is located. The
leftmost nonblank character of the text is placed in the same column as the cursor. In
our example, if the cursor was in column 18 and you press Shift+Ctrl+A, the word
“Hello” will be placed in columns 18 through 22.

3.11.5 Formatting Text

How FLOW
works

You can format a paragraph by pressing Shift+Ctrl+F, which issues the FLOW com-
mand. This causes KEDIT to rearrange text within a paragraph so that it fits as neatly as
possible within the current margin settings.

The first word of the paragraph is placed starting at the paragraph indent column of the
first line of the paragraph. Then as many words as will fit on the line without going
beyond the right margin are also placed on the line. Then the second line of the para-
graph is built up, starting from the left margin column and continuing as long as the text
doesn’t overflow the right margin column. This process is repeated until KEDIT has
placed the entire paragraph properly within the current margins.

During the formatting process, words at the end of one line might move to the begin-
ning of the next line, or words from the beginning of one line might fit before the right
margin of the previous line. Shift+Ctrl+F does not affect the content of the words in a
paragraph, or their order. It simply re-divides the text into lines that fit within the cur-
rent margin settings.

Pressing Shift+Ctrl+F to format a paragraph causes the paragraph to look as if you had
just entered it with WORDWRAP ON. You can use this function to “neaten up” para-
graphs that you entered with WORDWRAP OFF or paragraphs that you entered with
WORDWRAP ON but which you have changed because, for example, you inserted or
deleted some words. If you have used the SET MARGINS command to change your
margin settings, you can also use Shift+Ctrl+F to reformat existing paragraphs within
your new margins.

As far as KEDIT is concerned, a paragraph is any group of nonblank lines of text.
KEDIT assumes that you have separated paragraphs from each other with blank lines.
(When entering text, using Shift+Ctrl+P to start new paragraphs will cause the blank
line to be automatically inserted.)

If you press Shift+Ctrl+F with the cursor on a blank line, KEDIT assumes that you
want to format a paragraph starting at the next nonblank line. Otherwise, the paragraph
in which the cursor is located is formatted. After formatting a paragraph, KEDIT
moves to the blank line following the newly-formatted paragraph. Simply pressing
Shift+Ctrl+F will then cause the next paragraph to be formatted. An easy way to format
a group of paragraphs is to press Shift+Ctrl+F repeatedly.

52

Chapter 3. Using KEDIT for Windows

Justifying text

You might not want to format all of your text. You may have tables, lists, or headings
that should not be reformatted to look like paragraphs. This need not be a problem,
since Shift+Ctrl+F formats only a paragraph at a time, not your entire document. You
can use Shift+Ctrl+F selectively, formatting text that should be formatted and moving
past text that shouldn’t.

An additional KEDIT formatting function is enabled if you issue the command
SET FORMAT JUSTIFY

After you issue this command, Shift+Ctrl+F will justify all paragraphs that it formats.
This means that KEDIT will sprinkle enough extra blanks between words in the para-
graph to make each line in the paragraph end exactly at the right margin. Text will be
evenly lined up in the right margin column and will not have the “ragged right” format
that you get with FORMAT NOJUSTIFY, the default, in effect. Text justification does
not take place when you enter text, regardless of the settings of FORMAT or
WORDWRAP. Justification only occurs when you format a paragraph with
Shift+Ctrl+F or the FLOW command.

SET FORMAT has other operands that allow you to control how KEDIT determines
paragraph boundaries and how many spaces are put at the end of a sentence when para-
graphs are reformatted.

3.12 Syntax Coloring

When you use KEDIT to edit a computer program, it is often useful to make different
types of text within the program, such as keywords, quoted strings, and comments
stand out by displaying them in different colors. This makes it easier, for example, to
tell which text is part of a comment and which text is part of the program, and to tell
whether a string is properly quoted. This capability is available in KEDIT, and is
referred to as the syntax coloring facility.

In addition to showing the text in color on your display, KEDIT will print syntax-col-
ored text in color when you print to a color printer with PRINTER WINDOWS and
PRINTCOLORING ON in effect.

Built into KEDIT are parsers that process the following languages: C and C++, REXX
and KEXX, HTML, Java, COBOL, FORTRAN, BASIC, Pascal, C#, and dBase. Syn-
tax coloring is applied by default to the following extensions:

Extension Parser Description
.BAS BASIC BASIC language
.C C C/C++ language
.CBL COBOL COBOL language
.COB COBOL COBOL language
.COBOL COBOL COBOL language

Syntax Coloring

53

=
(]
w
X
o)
£
»
o=

Nesting

Extension Parser Description

.CPP C C/C++ language

.CS CSHARP C# language

.CXX C C/C++ language

.DLG RESOURCE Windows Resource file

.FOR FORTRAN FORTRAN language
.FORTRAN FORTRAN FORTRAN language

.FRM BASIC Used with Visual BASIC
.F90 FORTRAN FORTRAN language

.F FORTRAN FORTRAN language

H C C/C++ language

.HPP C C/C++ language

HXX C C/C++ language

HTM HTML HyperText Markup Language
HTML HTML HyperText Markup Language
NI INIT INI file

JAV JAVA Java language

JAVA JAVA Java language

KEX REXX REXX/KEXX language
KLD KLD KEDIT Language Definition file
KML REXX REXX/KEXX language
.DPR PASCAL Delphi Project file

.DPK PASCAL Delphi Package file

.DPR PASCAL Delphi Project file

.PRG XBASE dBase or similar language
.RC RESOURCE Windows Resource file
.REX REXX REXX/KEXX language

One unique aspect of the syntax coloring facility is its ability to handle nested parenthe-
ses and similar items. For example, in a statement like

x=(b+ (c* (d+ 2)))

there are three levels of parentheses, and each level is displayed in a different color.
This makes it easier to understand the logic of an expression, and easier to see if the
parentheses are not properly matched.

54

Chapter 3. Using KEDIT for Windows

Accuracy

Controlling
syntax
coloring

In C and C++ programs, syntax coloring also uses different colors for nested braces and
for nested preprocessor commands like #ifdef and #endif. Nested control structures in
languages like REXX are also highlighted. For example, in a REXX program like the
following:

doi=1 to 10
do j =1 to 10
say 1 + j
end
end

The outer DO—END pair would be displayed in a different color than the inner
DO—END pair.

A related command that can be very useful is the CMATCH command, which is
assigned by default to Shift+F3, You can use Shift+F3 to move the cursor between
matching items, like matching parentheses, and matching DO—END pairs.

It is important to understand that the parsers that handle syntax coloring are not as com-
plete as the parsers built into a typical compiler. Syntax coloring operates very quickly,
processing text in a fairly simple-minded way, without building symbol tables, process-
ing header files, or checking for errors in your text. The goal is to be as efficient as pos-
sible, handling normal situations correctly, but accepting that in some unusual cases,
especially in files that contain syntax errors, text may be colored incorrectly.

KEDIT’s syntax coloring facility is user configurable. The details of each language are
specified in KEDIT Language Definition files that you can change by, for example,
adding your own keywords. You can also develop your own KEDIT Language Defini-
tion files to support additional languages. KEDIT Language Definition files are dis-
cussed in detail in Reference Manual Chapter 8, “KEDIT Language Definition Files”.

The following commands are used to control the syntax coloring facility:

e SET AUTOCOLOR tells KEDIT that files of a specified extension should auto-
matically be colored using the specified parser. For example

SET AUTOCOLOR .FOR FORTRAN

tells KEDIT to use the FORTRAN parser for all files with an extension of .FOR.

e SET COLORING turns coloring on or off for a particular file, and controls which
language-specific parser to use, or specifies that a default parser determined by
SET AUTOCOLOR should be used.

e SET PARSER lets you define your own language-specific parser. You give the
name of the parser you want to define and the name of a KEDIT Language Defini-
tion file (with an extension of .KLD) that contains rules describing how to parse
your language. For example

SET PARSER LANG MYLANG.KLD

Syntax Coloring

55

=
(]
w
X
o)
£
»
o=

tells KEDIT that, whenever the SET COLORING or SET AUTOCOLOR com-
mands are used to specify that a file should be colored using a parser called LANG,
the coloring should be done according to the rules in the file MYLANG.KLD.

e SETECOLOR controls the colors that the syntax coloring facility uses to highlight
keywords, numbers, comments, etc. on your display.

e SET PRINTCOLORING determines whether KEDIT uses color or black and
white when sending syntax-colored text to a color printer.

e SET PCOLOR controls the colors used to print syntax-colored text on a color
printer when PRINTCOLORING ON is in effect.

3.13 The Undo Facility

The basics

This section discusses KEDIT’s undo facility. The commands involved are:

e UNDOQO, available through the Edit Undo menu item, the Undo toolbar button, and
the Ctrl+Z key combination, which will undo the most recent change to a file.

e REDO, available through the Edit Redo menu item, the Redo toolbar button, and
the Ctrl+Y key combination, which will redo a change after an undo.

e SET UNDOING, which controls the amount of undo information saved by
KEDIT.

KEDIT is a powerful text editor that makes it easy to change a file in many different
ways. Sometimes you will make a change and then decide that it was a mistake. You
might delete some text and then have second thoughts about it, reword a paragraph and
then not be happy with the results, or issue a CHANGE command that affects more text
than you expected.

Because of this, KEDIT has an undo facility that lets you reverse the effects of most
changes to your file. KEDIT keeps an internal log of all changes that you make, and by
using this information, KEDIT is able to restore lines that were changed, add back lines
that were deleted, and delete lines that were added.

To undo the effect of a change, you can simply click on the Undo toolbar button or press
Ctrl+Z, both of which issue the UNDO command. To undo several changes, click the
Undo button or press Ctrl+Z repeatedly.

If you undo too many changes, you can use the Redo toolbar button or press Ctrl+Y,
repeatedly if necessary, to redo changes, reversing the effect of previous UNDO com-
mands. REDO is only available from the time that you use the UNDO command to the
time that you make a further change to your file.

In some cases you can undo hundreds of changes to your file, each possibly affecting
many lines of your file. But the undo facility needs to keep an in-memory log of your
changes, and the size of this internal log is affected by the value of the SET UNDOING

56

Chapter 3. Using KEDIT for Windows

option. So while you can undo most changes to your file, especially small changes, you
should understand that memory limitations do sometimes come into play.

Undo levels While KEDIT tracks changes to your file in its internal log, it groups the changes into
“undo levels™, which can be undone or redone as a unit. For example, if you issue a
CHANGE command that affects 10 lines in your file, the 10 changed lines form one
undo level, and clicking on the Undo button on the toolbar or pressing Ctrl+Z will undo
the changes to all 10 lines. When you run a macro, all changes made while the macro is
executing also form a single undo level.

Undo only keeps track of changes to your file on a line-at-a-time basis. If, for example,
you add a line to your file, move the cursor to the new line, and type in a line of new
text, you cannot individually undo the entry of each character that you typed. All edit-
ing changes made to a single line are normally grouped by KEDIT into a single undo
level, and can only be undone as a unit.

Status line Information about the undo facility is displayed on the status line at the bottom of the
frame window. In the third box within the status line, KEDIT displays ““Alt="" followed
by three numbers. The first two numbers indicate the number of changes to your file
since the last autosave, and since the last save. The third number indicates the number
of undo levels available for the UNDO command. Additionally, after you have issued
one or more UNDO commands, the third number is followed by an asterisk for as long
as it is possible to use the REDO command. For example,

Alt=2,10;5

would indicate that 2 changes had been made since the last autosave, 10 changes since
the last save, and that 5 levels of changes could be undone by the UNDO command.

=

Alt=2,10;4%* o

L

would indicate that 4 levels of changes were available to the UNDO command, and that X

it was possible to REDO the effect of one or more previous UNDO commands. g’

»

>
What you can In the course of an editing session, you are likely to issue many KEDIT commands.
undo Some of these commands, like the CHANGE command or the DELETE command,

affect the contents of your file. Other commands, such as the LOCATE command or the
SET ZONE command, affect your position within a file or affect some aspect of how
KEDIT will process your file, but do not make any change to the contents of the file. It
is important to understand that the undo facility does not deal with the effects of all
KEDIT commands, but only with commands like CHANGE and DELETE that affect
the contents of your file. Undo keeps track of lines that have been added, deleted, or
changed. It also keeps track of data closely tied to individual lines, such as the selection
levels used with the ALL command, the tag bits set with the TAG command, and the
line names used with the SET POINT command. Undo does not keep track of the con-
tents of the command line or prefix area, or of changes in the focus line location, the
cursor position, the screen layout, or the values of SET options.

For example, assume that you issue the following commands from the command line:

The Undo Facility 57

SET UNDOING

Notes

DELETE 3

SET ZONE 10 20

SET COLOR FILEAREA GREEN
ADD 5

UNDO

UNDO

The first UNDO command will delete from your file the 5 lines inserted by the ADD
command. The second UNDO command will add back to your file the 3 lines removed
by the DELETE command. Since the SET COLOR command did not change the con-
tents of your file, it is not handled by undo, and despite the UNDO commands, the file
area ends up displayed in green. Similarly, even though the DELETE command that
precedes it is undone, the SET ZONE command is not, and ZONE 10 20 remains in
effect.

The SET UNDOING command controls, on a per-file basis, whether the undo facility
is on or off, the maximum number of undo levels that KEDIT will attempt to keep, and
the maximum amount of memory that will be used to hold undo information.

By default, KEDIT keeps a maximum of 512K of undo information in memory for each
file that you are editing, and tries to save 200 undo levels per file. These default values
are adequate for most purposes. You can, however, use the SET UNDOING command
to specify higher or lower values. For example, if you want to save up to 300 levels of
changes and allow up to a 2048K of memory for a file’s undo log, you would use the
following command:

SET UNDOING ON 300 2048

QUERY UNDOING gives you the value of UNDOING for the current file: whether the
undo facility is turned on, the maximum number of undo levels that can be kept, and the
maximum amount of memory that the undo log can occupy.

QUERY UNDO can also be useful. It gives additional information about the status of
the undo facility for the current file. The first is the number of undo levels available for
the UNDO command (this is the same as the third number after “Alt="" on the status
line). Next is the number of undo levels available for the REDO command (this will be
nonzero when the third number after “Alt=""is followed by an asterisk). Third is the
amount of memory (in kilobytes) currently being used for the current file’s undo log.

e Saving the undo information does not noticeably slow down most KEDIT opera-
tions. The main overhead is in the memory used to hold the undo log. Commands
or macros that change large portions of your data can naturally generate large
amounts of undo information. However, this does not cause problems for normal
editing operations. If the limits controlled by SET UNDOING are reached, it will
automatically throw away undo information as necessary to free up memory for
normal command processing.

e While you are editing a file with KEDIT, you are actually working with an
in-memory copy of the file. The version of the file on disk is updated only when
you issue a FILE or SAVE command. The UNDO command only affects the

58

Chapter 3. Using KEDIT for Windows

in-memory copy of your file, and does not affect the version of the file on disk. An
example:

CHANGE /Y/Z/ ALL *
SAVE
UNDO

The CHANGE command changes all “Y”’s in the in-memory copy of your into
“Z”’s. The SAVE command writes this version of the file to disk. The UNDO com-
mand changes the “Z”’s back into “Y’s in the in-memory copy of the file, but has
no effect on the disk version of the file, which still has only “Z”’s.

Undo keeps separate track of each file that you are editing. When you issue the
UNDO command, KEDIT will only undo changes to the current file. For example,
if you move 10 lines from file A to file B, the undo facility sees this as the deletion
of 10 lines from file A and the addition of 10 lines to file B. If, after the move, you
make file A the current file and then issue the UNDO command, KEDIT will re-
store the 10 deleted lines to file A, but file B will be unaffected. Similarly, if you
make file B the current file and issue the UNDO command, KEDIT will delete the
10 lines from file B without affecting file A.

If you issue the UNDO command repeatedly, it will work backwards, restoring the
contents of your file to what they were at earlier and earlier points in time. If you
undo too many changes, you can use the REDO command to move forward, re-
storing the contents to what they were at later and later points in time. But note that
UNDO and REDO cannot be used selectively. If you make 10 changes to your file,
you can UNDO the tenth and then the ninth and then the eighth, etc. You cannot,
however, UNDO only the eighth change, or UNDO back to the first change and
then REDO all but the fifth change.

When you issue the UNDO command, it is not always easy to see exactly what
lines have been affected. KEDIT does try to restore the current line and cursor po-
sition in effect when the change was made, but some of the lines affected might be
off the screen, and there could have been small changes to many lines. To give you
some help, the UNDO and REDO commands display counts of the number of lines
affected. But these counts are not always exact. If, for example, you run a macro
that changes only one line, but makes 10 separate changes to it, UNDO will tell
you that 10 lines have been affected.

The Undo Facility

59

=
(]
w
X
o)
£
»
o=

Chapter 4. Keyboard and Mouse

CUA and
Classic
Interfaces

This chapter describes KEDIT’s default keyboard assignments and mouse actions. It
primarily covers keystrokes and mouse actions used within KEDIT document windows
and does not focus on accessing menus and toolbars, which are covered in a separate
chapter.

KEDIT supports two sets of keyboard and mouse conventions, controlled through the
Options Interface dialog box or by the SET INTERFACE command. INTERFACE
CUA, the default setting, provides conventions compatible with other Windows appli-
cations, while INTERFACE CLASSIC makes KEDIT for Windows work like earlier
text mode versions of KEDIT.

Since keyboard and mouse usage differs significantly depending on whether
INTERFACE CUA or INTERFACE CLASSIC is in effect, the two cases are discussed
separately. KEDIT’s CUA interface is described first, followed by KEDIT’s CLASSIC
interface, and this is followed by a summary of the differences between the two.

4.1 Using the CUA Interface

With the default of INTERFACE CUA in effect, KEDIT for Windows supports many
of the mouse and keyboard conventions of other Windows applications. These con-
ventions were originally based on IBM’s Common User Access (CUA) guidelines, but
the version adopted in KEDIT comes mainly from Microsoft’s guidelines as of the time
that the main design work was done on KEDIT for Windows in the mid-1990s. Note
that you can use the Options Interface dialog box to adjust some details of KEDIT’s
keyboard and mouse behavior when INTERFACE CUA is in effect.

4.1.1 Moving the Cursor

This section covers positioning the cursor within a file while INTERFACE CUA is in
effect.

Using the The following table lists keyboard methods of repositioning the cursor:
Keyboard
To move the cursor Press
Left one character Cursor Left
Right one character Cursor Right
Up one line Cursor Up
Down one line Cursor Down
To the beginning of the line Home or F7
60 Chapter 4. Keyboard and Mouse

To move the cursor

Press

To the end of the line End

One page backward Page Up

One page forward Page Down

To the next word on a line Ctrl+Cursor Right
To the previous word on a line Ctrl+Cursor Left
To the beginning of the file Ctrl+Home

To the end of the file Ctrl+End

To the upper left of the window

Ctrl+Page Up

To the bottom right of the window

Ctrl+Page Down

To the beginning of the next line

Ctrl+Enter

To the next Tab column Tab (in Overtype Mode) or F4
To the previous Tab column Shift+Tab

To the command line F12 or Numeric Pad Plus

To the current line Shift+F2

Using the
Mouse

To position the cursor with the mouse:

1. Ifnecessary, use the scrollbars to reach the part of the file where you want to posi-
tion the cursor.

2. Move the mouse pointer to the desired cursor location and click mouse button 1.

4.1.2 Entering and Editing Text

This section describes keyboard methods for inserting, replacing, and deleting individ-
ual characters and lines of text, and for undoing and redoing changes that you make to
your file while INTERFACE CUA is in effect.

Inserting characters in a line of text

1. The status line should have INS as the Insert/Overtype indicator. If the indicator
shows OVR, press the Insert key to toggle from Overtype Mode to Insert Mode.
(By default, the cursor is thicker when you are in Insert Mode and thinner when
you are in Overtype Mode.)

2. Position the cursor where you want to insert text and begin to type. Characters that
you type will be inserted into the file, shifting existing characters to the right.

Using the CUA Interface 61

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Overtyping characters in a line of text

1. The status line should have OVR as the Insert/Overtype indicator. If the indicator
shows INS, press the Insert key to toggle Insert Mode to Overtype Mode.

2. Position the cursor where you want to overtype text and begin to type.

Typing replaces selection

1. Select text by dragging with mouse button 1 or using Shift+Cursor keys.

2. If you are currently in Overtype Mode, press the Insert key to switch from
Overtype Mode to Insert Mode. Typing-replaces-selection, in KEDIT and in other
Windows applications, works out ““right”” only when you are in Insert Mode.

3. Type the replacement text, which will replace the selected text.

Inserting and manipulating lines of text

To

Press

Add a new line at the cursor position

Enter (with cursor in file area)

Add a new line below the focus line

F2

Duplicate a line

F8 or Alt+Equal Sign

Split a line Alt+S

Join a line Alt+]

If beyond end of line, join lines

Otherwise, split line Fi

Left-adjust a line to left margin column Shift+Ctrl+L or Ctrl+L
Right-adjust a line to right margin column Shift+Ctrl+R or Ctrl+R
Center a line within margin columns Shift+Ctrl+C

Adjust a line to cursor position Shift+Ctrl+A

Format text of paragraph within margins Shift+Ctrl+F

Begin a new paragraph by adding two lines, Shift+Ctrl+P

moving to paragraph indent column of second

Deleting text

To Press

Delete the character at the cursor position Delete

Delete the character to the left of the cursor Backspace
Delete the word at the cursor position Shift+Ctrl+W
Delete the line at the cursor position Alt+D

62

Chapter 4. Keyboard and Mouse

To Press

Delete from the cursor position to the end of the line Ctrl+Delete

Backspace or Delete

Delete selection .
(when text is selected)

Backspace or Delete
(immediately after

Delete persistent block marking block) or

Alt+G

Cut selection or persistent block to the clipboard Ctrl+X or Shift+Delete
Undoing and redoing changes

To Press

Undo the last change to the file Ctrl+Z or Alt+Backspace

Redo (reverse the effect of an undo) Ctrl+Y or Ctrl+Backspace

Undo recent typing within a line Escape

Recover the last changed or deleted line Alt+R

4.1.3 Selecting Text

Using the
Keyboard

With INTERFACE CUA in effect, KEDIT supports three types of ““selections’ (which
are sometimes referred to as non-persistent blocks, to distinguish them from the persis-
tent blocks that KEDIT also supports): stream selections, line selections, and box
selections.

Stream selections involve all text from some starting character through some ending
character and, as in most other Windows applications, are marked by dragging with
mouse button 1 or pressing Shift+Cursor key. Line selections involve all text in a con-
secutive group of lines. Box selections involve a rectangular section of text within your
file, for example the text in columns 10 through 20 of lines 50 through 80 of your file.

KEDIT’s selections work much like selections in other Windows applications, in that
they are unmarked as soon as you reposition the cursor and they support
typing-replaces-selection. Within a file, you can mark line, box, or stream selections.
You can also mark command line selections; these are always stream selections.

The following table lists keyboard methods of selecting text. In all cases, if text is
already selected, the existing selection is extended from its anchor point (that is, the
original starting point) of the selection. If text is not already selected, a new stream
selection is begun, extending from the cursor position.

Using the CUA Interface 63

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the
Mouse

To Extend a Selection Press

Left one character Shift+Cursor Left
Right one character Shift+Cursor Right
Up one line Shift+Cursor Up
Down one line Shift+Cursor Down
To the beginning of the line Shift+Home

To the end of the line Shift+End

One page backward Shift+Page Up

One page forward Shift+Page Down

To the next word on a line

Shift+Ctrl+Cursor Right

To the previous word on a line

Shift+Ctrl+Cursor Left

To the beginning of the file Shift+Ctrl+Home

To the end of the file Shift+Ctrl+End

To the upper left of the window Shift+Ctrl+Page Up
To the bottom right of the window Shift+Ctrl+Page Down

To select the entire file

Press Ctrl+A or Ctrl+Numeric Pad 5 key to mark the entire file as a line selection.

To unmark a selection
To unmark a selection with the keyboard, press any cursor-movement key.

To delete a selection
Press the Delete key or the Backspace key.

By default, the mouse marks selections when INTERFACE CUA is in effect. However,
you can use the Options Interface dialog box or the SET MARKSTYLE command to
specify that the mouse should mark persistent blocks rather than selections.

All text selection with the mouse involves button 1. Button 2 does not select text, but
instead displays a pop-up menu of useful actions taken from the Edit menu.

Using the mouse to select text with the default Options Interface settings in effect:

To Do This

Select text (stream selection)

Drag with mouse button 1

Select a word (stream selection)

Double-click button 1

Select one word at a time (stream
selection)

Double-click and drag with mouse
button 1

64

Chapter 4. Keyboard and Mouse

To Do This

Drag with Ctrl+mouse button 1, or drag
Mark a line selection with mouse button 1 in the window
margin area or in the prefix area

Mark a box selection Drag with Alt+mouse button 1

Click Ctrl+button 1 in the window margin

Mark the entire file as a line selection .
area or in the prefix area

Extend selection to the mouse pointer | Click Shift+button 1

Unmark a selection Click button 1

Click button 2 and choose Delete from

Delete a selection
the pop-up menu

The “window margin area’ used for marking line selections is an area a few pixels
wide at the left edge of the document window. When the mouse pointer is over the win-
dow margin area, it changes to an arrow pointing to the upper right. The window mar-
gin area lets you mark lines without having to simultaneously press the Ctrl key, which
you must do when you drag with button 1 in the file area to mark lines. You can use the
SET WINMARGIN command to control whether this feature is enabled and how many
pixels wide the window margin will be.

4.1.4 Marking Persistent Blocks

Using the
Keyboard

With INTERFACE CUA in effect, you can use Windows-style selections (that is,
non-persistent blocks), but KEDIT also supports persistent line, box, and stream
blocks. Unlike selections, persistent blocks remain marked, regardless of any typing or
cursor movement, until you specifically unmark them.

A persistent line block, the most frequently used type of persistent block, is a set of con-
secutive lines of text. A persistent box block (sometimes referred to as a ““column
block™) is a rectangular area of text in your file. For example, the text in columns 10
through 20 of lines 50 through 80 of your file might make up a box block. A persistent
stream block is a stream of consecutive characters that can span one or more lines. A
persistent stream block would typically be a phrase, sentence, or group of sentences
that you would like to work with as a unit.

To mark a persistent line block

1. Move the cursor to one end of the group of lines involved.
2. Press Alt+L.

3. Move the cursor to the other end of the group of lines.

4. Press Alt+L again.

Using the CUA Interface 65

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the
Mouse

To mark a persistent box block

1. Move the cursor to one corner of the box.

2. Press Alt+B.

3. Move the cursor to the other corner of the box.

4. Press Alt+B again.

To mark a persistent stream block

1. Move the cursor to one end of the stream of characters.

2. Press Alt+Z.

3. Move the cursor to the other end of the stream of characters.
4. Press Alt+Z again.

To unmark a persistent block
e Press Alt+U.

To delete a persistent block
e Press Alt+G

To convert a selection to a persistent block
e Press Ctrl+M

By default, the mouse marks selections when INTERFACE CUA is in effect and does
not directly mark persistent blocks. However, you can mark a persistent block by first
marking a selection with the mouse and then clicking mouse button 2 and choosing
Make Persistent from the resulting pop-up menu.

You can also use the Options Interface dialog box or the SET MARKSTYLE command
to specify that the mouse should mark persistent blocks rather than selections.

Assuming that the default Options Interface settings are in effect and that the mouse
does not directly mark persistent blocks:

To Use

Use the mouse to mark a
selection

Mark a persistent block Click mouse button 2

Choose Make Persistent from the
pop-up menu

Extend a persistent block to the mouse pointer | Click Shift+button 1

66

Chapter 4. Keyboard and Mouse

To Use

Click Alt+button 1 or
Unmark a persistent block Click button 2 and choose
Unmark from the pop-up menu

Click button 2 and choose Delete
from the pop-up menu

Delete a persistent block

4.1.5 Moving and Copying Text

With INTERFACE CUA in effect, there are two ways to move or copy blocks or selec-
tions from one location to another: through the clipboard and through drag-and-drop
editing. A third method, that works only with persistent blocks, is also discussed.

Clipboard The clipboard method lets you move text within a file, between files, and even between
Method different applications. It also works with text on the KEDIT command line.

1. Use the mouse or keyboard to select the text that you plan to move or copy.

2. Foramove operation, cut the text to the clipboard by using the Edit Cut menu item,
the Cut to Clipboard toolbar button, or Ctrl-+X.

For a copy operation, copy the text to the clipboard by using the Edit Copy menu
item, the Copy to Clipboard toolbar button, or Ctrl+C.

3. Position the cursor at the desired new location of the text.

4. Paste the text from the clipboard to its new location by using the Edit Paste menu
item, the Paste from Clipboard toolbar button, or Ctrl+V.

Drag and Drop The drag-and-drop method works only for moving text within a single file, and does
Method not work between files or with text on the command line.

1. Use the mouse or keyboard to select the text that you plan to move or copy.

2. For amove operation, position the mouse pointer inside the selected text and, with
mouse button 1 down, drag the mouse pointer to the desired new location of the
text.

For a copy operation, position the mouse pointer inside the selected text, press the
Ctrl key and, with the Ctrl key still down, press mouse button 1 and drag the mouse
pointer to the desired new location of the text.

3. Release mouse button 1. The text will be moved or copied to the mouse pointer lo-
cation.

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the CUA Interface 67

Once you have begun a drag-and-drop operation, you can cancel it by moving the
mouse pointer back inside the selected text and then releasing the mouse button, or by
pressing the Escape key before releasing the mouse button.

Persistent The clipboard and drag-and-drop methods used to move or copy selections will also
Blocks work with persistent blocks. In addition, you can use the following method to move or
copy a persistent block within a file or between files:

1. Use the mouse or keyboard to mark the block involved.
2. Position the cursor at the desired new location of the text.

3. To move the text to the new location, use the Move Block button on the bottom
toolbar, or press Alt+M. (The Move Block button leaves the block marked, while
Alt+M unmarks it.)

To copy the text to the new location, use the Copy Block button on the bottom
toolbar or press Alt+C or Alt+K. (The Copy Block button and Alt+K leave the
copied block marked, while Alt+C unmarks it.)

4.1.6 Other Block Operations

In addition to moving and copying blocks, KEDIT provides other useful block opera-
tions, most of which are accessible with either the keyboard or the mouse. This section
describes how to perform these operations when you are using the CUA interface.

Using the The following table lists keyboard methods of accessing block operations:
Keyboard

To Press

Delete or Backspace (immediately after

Delete a block marking block), or Alt+G

Uppercase a block Shift+F5

Lowercase a block Shift+F6

Shift a block left Shift+F7

Shift a block right Shift+F8

Fill a block Ctrl+I

Overlay text at cursor position .

with block contents Shift+Cur+O

Unmark a block Alt+U

68 Chapter 4. Keyboard and Mouse

Using the Most block operations done with the mouse involve accessing the menu or toolbar:
Mouse

To Use

Delete a block Delete Block button on bottom toolbar, or click mouse
button 2 and choose Delete from the pop-up menu
Actions Uppercase menu item

Uppercase a block Actions Lowercase menu item

or
Uppercase Block button on bottom toolbar
Lowercase Block button on bottom toolbar

Lowercase a block

Shift a block left Shift Block Left button on bottom toolbar
Shift a block right Shift Block Right button on bottom toolbar
Left-adjust a block Leftadjust Block button on bottom toolbar
Right-adjust a block Rightadjust Block button on bottom toolbar

. Actions Fill menu item, or Fill Block button on bottom
Fill a block

toolbar

Overlay text at cursor
position with block Overlay Block button on bottom toolbar

contents

4.1.7 Menus, Files, and Windows

This section covers methods for accessing menus, moving between files and between
windows, etc., while using the CUA interface.

Using the Keyboard methods:

Keyboard
To Press
Cycle to the next file in the ring Shift+F4
Cycle to next document window Ctrl+F6 or Ctrl+Tab
Cycle to previous document window Shift+Ctrl+F6 or Shift+Ctrl+Tab
Cycle to next Windows application Alt+Tab
Maximize document window Ctrl+F10
Restore document window Ctrl+F5 §
Close document window Ctrl+F4 Eo
Maximize frame window Alt+F10 °
Restore frame window Alt+F5 §
Close KEDIT Alt+F4 o
Close current file File Close menu item <

Using the CUA Interface 69

To Press

Close current file if it is unmodified F3

Enter menu mode Alt, F10, or Shift+F11

Leave menu mode Escape

Access frame window’s system menu Alt+Spacebar

Access document window’s system menu Al.t Minus or Alt+Numeric Pad
Minus

Activate Windows Task Manager Ctrl+Escape

Access File menu Alt+F

Access Edit menu AIt+E

Access Actions menu Alt+A

Access Options menu Alt+O

Access Window menu Alt+W

Access Help menu Alt+H

Use shortcut for File New Ctrl+N

Use shortcut for File Open Ctrl+O

Use shortcut for File Print Ctrl+P

Use shortcut for File Save Ctrl+S

Use shortcut for Edit Select All Ctrl+A

Use shortcut for Edit Make Persistent Cul+M

Use shortcut for Edit Find Ctrl+F

Use shortcut for Edit Replace Ctrl+H

Use shortcut for Edit Go To Cul+G

Use shortcut for Actions Bookmark Ctrl+B

70

Chapter 4. Keyboard and Mouse

Using the
Mouse

In addition to the items in the following table, the standard Windows conventions for

accessing menus and for moving and resizing windows are all available:

To

Use

Cycle to next/previous file in the
ring

Next File or Previous File button on the
toolbar

Move between document
windows

Click in a different document window, or use
the Window menu

Close KEDIT

Double-click on frame window system menu

Close document window

Double-click on document window system
menu

Close current file

File Close menu item

Open new view of current file

Window New menu item

Maximize/restore frame window

Double-click on frame window title bar

Maximize document window

Double-click on document window title bar

Restore document window

Click on restore icon at the right of maximized

document window’s menu bar

4.1.8 Command Line and Prefix Area

Command line

This section lists keyboard methods of accessing KEDIT’s command line and prefix

area while using the CUA interface.

Working with the command line:

To Press
Move to the command line from the file area F12 or Numeric Pad
(also executes any pending prefix commands) Plus

Cursor Up or Cursor
Down

Shift+F12

Enter, with the cursor
on the command line

Ctrl+Cursor Up or F6

Ctrl+Cursor Down

Move to the file area from the command line

Toggle between the file area and the command line

Execute commands on the command line

Cycle backward through previously issued commands

Cycle forward through previously issued commands

Repeat last command issued from the command line F9
Repeat last LOCATE command Shift+F1

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the CUA Interface 71

Prefix area

When PREFIX ON is in effect, you can use the following to work with the prefix area:

To Press

Move to the command line and execute pending prefix F12 or Numeric
commands (which may reposition cursor) Pad Plus

Tab forward between file area and prefix areca Tab

Tab backward between file area and prefix area Shift+Tab

Toggle between a line’s prefix and file area, executing glrtl;l\(l)lrlmeric Pad
pending prefix commands Shift+Ctrl+Enter

4.1.9 Miscellaneous

The following actions, relating to the CUA interface, do not fit neatly into any of the
other categories:

To Press

Interrupt execution of a long-running command or Hold down Ctrl+Break
macro or Alt+Ctrl+Shift
Activate Help system F1

Scroll to make the focus line become the current line F5

Begin editing file named at cursor position of AlLEX

non-DIR.DIR file

Begin editing a file listed on the focus line of a
DIR.DIR file

Alt+X or double-click
with mouse button 1

List the files in a directory listed on the focus line of a
DIR.DIR file

Alt+X or double-click
with mouse button 1

List the files in the parent directory of a file listed on
the focus line of a DIR.DIR file

Shift+Ctrl+X or Parent
Directory toolbar button

Set Bookmark! on the focus line

Alt+1 or Set
Bookmark1 button on
bottom toolbar

Set Bookmark?2 on the focus line Alt+2

Set Bookmark3 on the focus line Alt+3
Alt+4 or Go to

Go to Bookmark1 Bookmark1 button on
bottom toolbar

Go to Bookmark?2 Alt+5

Go to Bookmark3 Alt+6

72

Chapter 4.

Keyboard and Mouse

To Press

Toggle be.tween viewing the entire file and viewing Alt+Numeric Pad Plus

selected lines

Search forward for the Quick Search string Alt+F1

Search backward for the Quick Search string Alt+F2

Go to Quick Search toolbar item Alt+F3

Locate matching brace Shift+F3

Scroll half-window to the left Shift+F9

Scroll half-window to the right Shift+F10
Application key on

Display mouse button 2 pop-up menu Windows-specific
keyboards

4.2 Summary of CUA Interface

This section summarizes the keyboard assignments and mouse actions used within a
document window when INTERFACE CUA is in effect, as it is by default.

Cursor area

Keyboard assignments for cursor and numeric pad keys:

Key

Action

Cursor Up

Cursor up one line

Cursor Down

Cursor down one line

Cursor Left

Cursor left one character

Cursor Right

Cursor right one character

Home

Cursor to beginning of line
(adjustable via Options Interface dialog box)

End

Cursor to end of line

Page Up

Backward one page in the file

Page Down

Forward one page in the file

Insert

Toggle Insert/Overtype Mode

Delete

Delete character at cursor position or delete
selection
(adjustable via Options Interface dialog box)

Ctrl+Cursor Up

Cycle forward in command line history

Ctrl+Cursor Down

Cycle backward in command line history

Summary of CUA Interface

73

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Key

Action

Ctrl+Cursor Left Cursor to previous word on a line
Ctrl+Cursor Right Cursor to next word on a line
Ctrl+Home Cursor to beginning of file
Ctrl+End Cursor to end of file

Ctrl+Page Up

Cursor to upper left of window

Ctrl+Page Down

Cursor to bottom right of window

Ctrl+Insert

Copy text to clipboard

Ctrl+Delete

Delete text from the cursor position to the end of
the line

Ctrl+Numeric Pad 5

Mark entire file as line selection

Shift+Cursor Up Extend selection up one line
Shift+Cursor Down Extend selection down one line
Shift+Cursor Left Extend selection one character left
Shift+Cursor Right Extend selection one character right
Shift+tHome Extend selection to start of line
Shift+End Extend selection to end of line
Shift+Page Up Extend selection one window backward
Shift+Page Down Extend selection one window forward
Shift+Insert Paste text from clipboard

Shift+Delete Cut text to clipboard

Shift+Ctrl+Cursor Left

Extend selection to previous word on a line

Shift+Ctrl+Cursor Right

Extend selection to next word on a line

Shift+Ctrl+Home Extend selection to beginning of file
Shift+Ctrl+End Extend selection to end of file
Shift+Ctrl+Page Up Extend selection to upper left of window
Shift+Ctrl+Page Down Extend selection to lower right of window

Numeric Pad Plus

Cursor to command line

Alt+Numeric Pad Plus

Toggle between viewing entire file and viewing
selected lines

Alt+Numeric Pad Minus

Access document window’s system menu

Numeric Pad Enter

On command line: execute command
In file area: Insert new line
(adjustable via Options Interface dialog box)

74

Chapter 4. Keyboard and Mouse

Key Action

Toggle between file area and prefix area,

Ctrl+Numeric Pad Enter . .
executing any pending prefix commands

Press and hold to interrupt long-running command

Ctrl+Break
or macro
Enter special characters:
N o
Alt+Numeric Pad digits Alt+nnn for OEM code (which is then converted to
ANSI)
Alt+0nnn to avoid code conversion
Typewriter Keyboard assignments for keys in the typewriter area:
area
Key Action

On command line: execute command
Enter In file area: Insert new line
(adjustable via Options Interface dialog box)

Ctrl+Enter Move to start of next line

Toggle between file area and prefix area,

Shift+Ctrl+Enter . .
executing any pending prefix commands

In Insert Mode: Insert spaces until next Tab column
Tab In Overtype Mode: Move cursor to next Tab column
If PREFIX ON: Tab forward to file area or prefix area

If PREFIX OFF: Move cursor to previous Tab column

ift+
Shift+Tab If PREFIX ON: Tab backward to file area or prefix area
Ctrl+Tab Cycle to next document window
Shift+Ctrl+Tab Cycle to previous document window
Alt+Tab Cycle to next Windows application
Backspace Delete character to left of cursor or delete selection
P (adjustable via Options Interface dialog box)
Ctrl+Backspace Redo last undo operation
Alt+Backspace Undo a change to the file
In Menu Mode: leave menu mode
Escape . . . Q
Otherwise: Undo recent typing on a line g
Ctrl+Escape Invoke Windows Task Manager Eo
Alt+Spacebar Access frame window’s system menu §
©
Alt Activate Menu Mode _8
(adjustable via Options Interface dialog box) 5
X

Summary of CUA Interface 75

Key Action

Al ShifhCirl macro (ks insome cases where Cit Breek docs no0
Ctrl+A Shortcut for Edit Select All

Ctrl+B Shortcut for Actions Bookmark
Ctrl+C Copy text to clipboard

Ctrl+F Shortcut for Edit Find

Ctrl+G Shortcut for Edit Go To

Ctrl+H Shortcut for Edit Replace

Ctrl+I Fill block with a specified character
Ctrl+L Left-adjust text of focus line to left margin column
Ctrl+M Shortcut for Edit Make Persistent
Ctrl+N Shortcut for File New

Ctrl+O Shortcut for File Open

Ctrl+P Shortcut for File Print

Ctrl+R Right-adjust text of focus line to right margin column
Ctrl+S Shortcut for File Save

Ctrl+V Paste text from clipboard

Ctrl+X Cut text to clipboard

Ctrl+Y Redo last undo operation

Ctrl+Z Undo a change to the file

Alt+A Open the Actions menu

Alt+B Mark box block

Alt+C Copy block

Alt+D Delete focus line

Alt+E Open the Edit menu

Alt+F Open the File menu

Alt+G Delete block

Alt+H Open the Help menu

Alt+] Join two lines

Alt+K Copy block and leave block marked
Alt+L Mark line block

Alt+M Move block

Alt+O Open the Options menu

76

Chapter 4. Keyboard and Mouse

Key Action
Alt+R Recover a changed or deleted line
Alt+S Split a line
Alt+U Unmark block
Alt+W Open the Window menu
ALEEX dESLtcgfynlail;nﬁii at cursor position or in DIR.DIR
Alt+Z Mark stream block
Alt+1 Set Bookmark1 at focus line
Alt+2 Set Bookmark?2 at focus line
Alt+3 Set Bookmark3 at focus line
Alt+4 Go to Bookmark|
Alt+5 Go to Bookmark?2
Alt+6 Go to Bookmark3
Alt+Minus Access document window’s system menu
Alt+Equal Sign Duplicate focus line
Shift+Ctrl+A Adjust text to cursor position
Shift+Ctrl+C Center focus line within margins
Shift+Ctrl+F Format text in paragraph within margins
Shift+Ctrl+L Left-adjust text of focus line to left margin column
Shift+Ctrl+O Overlay text with contents of block
Shift+Ctrl+P Begin a new paragraph
Shift+Ctrl+R Right-adjust text of focus line to right margin column
Shift+Ctrl+W Delete word
Shift+Ctrl+X Display parent directory of file in DIR.DIR listing
Application key on
Windows-specific Display mouse button 2 pop-up menu
keyboards
Function keys Keyboard assignments for function keys: §
o
Key Action %
F1 Access Help system §
F2 Add new line below focus line -g
F3 QUIT current file §

Summary of CUA Interface 77

Key

Action

F4 Cursor to next Tab column

F5 Focus line becomes current line

Fo6 Cycle backward in command line history

F7 Cursor to beginning of line

F8 Duplicate focus line

F9 Reissue las‘F command executed from current file’s
command line

F10 Enter Menu Mode

F11 Split/join line at cursor position
Cursor to command line

F12 If PREFIX ON: Cursor to command line and execute
pending prefix commands

Shift+F1 Reissue last LOCATE command

Shift+F2 Cursor to current line

Shift+F3 Find matching brace

Shift+F4 Cycle to next file in the ring

Shift+F5 Uppercase block

Shift+F6 Lowercase block

Shift+F7 Shift block one character to left

Shift+F8 Shift block one character to right

Shift+F9 Scroll half-window to the left

Shift+F10 Scroll half-window to the right

Shift+F11 Enter Menu Mode

Shift+F12 Toggle cursor between command line and file area

Ctrl+F1 Undo last change to file

Ctrl+F2 Redo last undo operation

Ctrl+F4 Close document window

Ctrl+F5 Restore maximized document window to normal size

Ctrl+F6 Cycle to next document window

Ctrl+F10 Maximize document window

Alt+F1 Search forward for Quick Search string

Alt+F2 Search backward for Quick Search string

Alt+F3 Move to Quick Search toolbar item

Alt+F4 Close KEDIT

78

Chapter 4. Keyboard and Mouse

Key Action

Alt+F5 Restore maximized frame window to normal size
Alt+F10 Maximize frame window

Shift+Ctrl+F6 Cycle to previous document window

Mouse Actions

Here is a summary of mouse actions available by default within a document window.

You can use Options Interface or the SET MARKSTYLE command to control whether
the mouse marks selections (which is the default behavior) or persistent blocks. In
addition, the normal Windows conventions for accessing menus, moving and resizing

windows, etc. all apply:

Mouse Operation

Action

Click button 1

Reposition the cursor and unmark any selection

Click Alt+button 1

Unmark a persistent block

Click Shift+button 1

Extend a block to the mouse pointer position

Double-click button 1

Select a word (stream selection)

Drag with button 1

Select characters (stream selection)

Drag with Ctrl+button 1
Drag in margin area with
button 1

Drag in prefix area with
button 1

Mark a line selection

Click Ctrl+button 1 in
margin area or prefix area

Mark entire file as line selection

Drag with Alt+button 1

Mark a box selection

Position mouse pointer
within selection or persistent
block and drag with button

1

Drag-and-drop block move

Position mouse pointer
within selection or persistent
block and drag with
Ctrl+button 1

Drag-and-drop block copy

Double-click button 1 on
entry in DIR.DIR file

Edit the file or list the directory

Click button 2

Display pop-up menu with Cut, Copy, Paste,
Delete, Unmark, and Make Persistent items from
Edit menu

Summary of CUA Interface

79

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

4.3 Using the Classic Interface

With INTERFACE CLASSIC in effect, KEDIT’s keyboard and mouse behavior is very
close to that of the text mode KEDIT, even where this means that Windows conven-
tions are not adhered to. For example, in most Windows programs, Alt+W will access
the Window menu and the Home key will move the cursor to the beginning of a line. In
KEDIT for Windows with INTERFACE CLASSIC, Alt+W deletes a word and the
Home key moves the cursor to the command line.

If you are moving from the text mode version of KEDIT to the Windows version, and
are accustomed to the text mode key assignments, you may want to use INTERFACE
CLASSIC. As you use more and more Windows applications and you get used to the
Windows conventions, you may eventually want to switch to INTERFACE CUA. If
you are a new KEDIT user who is not already familiar with KEDIT’s text mode inter-
face, you will probably want to use INTERFACE CUA from the start.

All of the default keyboard assignments from text mode KEDIT are available with
INTERFACE CLASSIC. Additionally, where there is no conflict with these text mode
compatible keys, the default key assignments from the CUA interface are also avail-
able. For example, Ctrl+F10 has no default assignment in text mode KEDIT, but will
maximize a document window in KEDIT for Windows, with both INTERFACE CUA
and INTERFACE CLASSIC.

4.3.1 Moving the Cursor

This section covers positioning the cursor within a file while INTERFACE CLASSIC
is in effect.

Using the The following table lists keyboard methods of repositioning the cursor:
Keyboard
To move the cursor Press
Left one character Cursor Left
Right one character Cursor Right
Up one line Cursor Up
Down one line Cursor Down
To the beginning of the line F7
To the end of the line End
One page backward Page Up
One page forward Page Down
To the next word on a line Ctrl+Cursor Right
To the previous word on a line Ctrl+Cursor Left
To the beginning of the file Ctrl+Page Up
80 Chapter 4. Keyboard and Mouse

To move the cursor Press
To the end of the file Ctrl+Page Down
To the upper left of the window Ctrl+Home
To the beginning of the next line Enter or Numeric Pad Enter
To the next Tab column Tab or F4
To the previous Tab column Shift+Tab
To the command line Home
To the current line Shift+F2
Using the To position the cursor with the mouse:

Mouse
1. Ifnecessary, use the scrollbars to reach the part of the file where you want to posi-
tion the cursor.

2. Move the mouse pointer to the desired cursor location and click mouse button 1.

4.3.2 Entering and Editing Text

This section describes keyboard methods for inserting, replacing, and deleting individ-
ual characters and lines of text, and for undoing and redoing changes that you make to
your file while INTERFACE CLASSIC is in effect.

Inserting characters in a line of text

1. The status line should have INS as the Insert/Overtype indicator. If the indicator
shows OVR, press the Insert key to toggle from Overtype Mode to Insert Mode.
(By default, the cursor is thicker when you are in Insert Mode and thinner when
you are in Overtype Mode.)

2. Position the cursor where you want to insert text and begin to type. Characters that
you type will be inserted into the file, shifting existing characters to the right.

Overtyping characters in a line of text

1. The status line should have OVR as the Insert/Overtype indicator. If the indicator
shows INS, press the Insert key to toggle Insert Mode to Overtype Mode.

2. Position the cursor where you want to overtype text and begin to type.

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the Classic Interface 81

Inserting and manipulating lines of text

To Press

Add a new line F2

Duplicate a line F8 or Alt+Equal Sign

Split a line Alt+S

Join a line Alt+]

If beyor}d end .Of .line, join lines FI1

Otherwise, split line

Left-adjust a line to left margin column Ctrl+L

Right-adjust a line to right margin column Ctrl+R

Center a line within margin columns Ctrl+C

Adjust a line to cursor position Ctrl+A

Begin a new paragraph by adding two lines,

moving to paragraph indent column of second Crl+P

Format text of paragraph within margins Ctrl+F
Deleting text

To Press

Delete the character at the cursor position Delete

Delete the character to the left of the cursor Backspace

Delete the word at the cursor position Alt+W

Delete the line at the cursor position Alt+D

Delete from the cursor position to the end of the line Ctrl+End

Delete block Alt+G

Cut block to the clipboard Shift+Delete
Undoing and redoing changes

To Press

Undo the last change to the file Alt+Backspace or Ctrl+Z

Redo (reverse the effect of an undo) Ctrl+Backspace or Ctrl+Y

Undo recent typing within a line Escape

Recover the last changed or deleted line Alt+R

Chapter 4. Keyboard and Mouse

4.3.3 Marking Blocks

KEDIT supports three types of blocks: line blocks, box blocks, and stream blocks.
With INTERFACE CLASSIC, all blocks are persistent blocks and non-persistent
blocks are not available. (Non-persistent blocks are also referred to as ““selections”.
They are used instead of persistent blocks in many Windows applications and are avail-
able in KEDIT for Windows if INTERFACE CUA is in effect.) Persistent blocks
remain marked, regardless of any typing or cursor movement, until you specifically
unmark them.

Using the
Keyboard

Aline block, the most frequently used type of block, is a set of consecutive lines of text.
Abox block (sometimes referred to as a “column block™) is a rectangular area of text in
your file. For example, the text in columns 10 through 20 of lines 50 through 80 of your
file might make up a box block. A stream block is a stream of consecutive characters
that can span one or more lines. A stream block would typically be a phrase, sentence,
or group of sentences that you would like to work with as a unit.

To mark a line block

1.

Move the cursor to one end of the group of lines involved.
Press Alt+L.
Move the cursor to the other end of the group of lines.

Press Alt+L again.

To mark a box block

1.

2.

3.

4.

Move the cursor to one corner of the box.
Press Alt+B.
Move the cursor to the other corner of the box.

Press Alt+B again.

To mark a stream block

1.

2.

3.

4.

Move the cursor to one end of the stream of characters.

Press Alt+Z.

Move the cursor to the other end of the stream of characters.

Press Alt+Z again.

To unmark a block

Press Alt+U.

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the Classic Interface

83

Using the
Mouse

Marking blocks with the mouse:

To Use
Drag with button 2, or drag with
Mark a line block button 1 in the window margin area
or in the prefix area
Mark a box block Drag with both button 1 and button 2
Mark a stream block Drag with button 1
Extend a block to the mouse pointer Click Shift+button 1
Mark a word (as a stream block) Double-click button 1
. R . .
Mark the entire file (as a line block) Cth. Crl buttf)n I in the window
margin area or in the prefix arca
Unmark a marked block Click button 2

The “window margin area’ used for marking line blocks is an area a few pixels wide at
the left edge of the document window. When the mouse pointer is over the window
margin area, it changes to an arrow pointing to the upper right. You can use the SET
WINMARGIN command to control whether this feature is enabled and how many pix-
els wide the window margin will be.

4.3.4 Moving and Copying Text

Using the Classic interface, there are two ways to move or copy blocks from one loca-
tion to another: through the clipboard and through Move and Copy commands
accessed via the keyboard or toolbar.

Clipboard The clipboard method lets you move text within a file, between files, and even between
Method different applications.
1. Use the mouse or keyboard to mark the text that you plan to move or copy.
2. Foramove operation, cut the text to the clipboard by using the Edit Cut menu item,
the Cut to Clipboard toolbar button, or Shift+Delete.
For a copy operation, copy the text to the clipboard by using the Edit Copy menu
item, the Copy to Clipboard toolbar button, or Ctrl+Insert.
3. Position the cursor at the desired new location of the text.
4. Paste the text from the clipboard to its new location by using the Edit Paste menu
item, the Paste from Clipboard toolbar button, Shift+Insert.
MOVE and You can also use the MOVE and COPY commands, which are assigned to keys and to
COPY toolbar buttons, to move or copy a block of text:
Commands
1. Use the mouse or keyboard to mark the block involved.
84 Chapter 4. Keyboard and Mouse

2. Position the cursor at the desired new location of the text.

3. To move the text to the new location, use the Move Block button on the bottom
toolbar, or press Alt+M. The Move Block button leaves the block marked, while
Alt+M unmarks it.

To copy the text to the new location, use the Copy Block button on the bottom
toolbar or press Alt+C or Alt+K. The Copy Block button and Alt+K leave the cop-
ied block marked, while Alt+C unmarks it.

4.3.5 Other Block Operations

In addition to moving and copying blocks, KEDIT provides other useful block opera-
tions, most of which are accessible with either the keyboard or the mouse when using
the Classic interface..

Using the The following table lists keyboard methods of accessing block operations:
Keyboard

To Press

Delete a block Alt+G

Uppercase a block Shift+F5

Lowercase a block Shift+F6

Shift a block left Shift+F7

Shift a block right Shift+F8

Fill a block Alt+F or Ctrl+I

Overlay text at cursor position with block contents Alt+O or Shift+Ctrl+O

Unmark a block Alt+U
Using the Block operations done with the mouse all involve accessing the menu or toolbar:
Mouse

To Use

Delete a block Delete Block button on bottom toolbar

Actions Uppercase menu item
Actions Lowercase menu item

Uppercase a block
Lowercase a block or
Uppercase Block button on bottom toolbar o
Lowercase Block button on bottom toolbar 4
Shift a block left Shift Block Left button on bottom toolbar Eo
Shift a block right Shift Block Right button on bottom toolbar §
Left-adjust a block Leftadjust Block button on bottom toolbar 8
Right-adjust a block Rightadjust Block button on bottom toolbar 'g
()
X

Using the Classic Interface 85

To Use

Fill a block

Actions Fill menu item, or Fill Block button
on bottom toolbar

Overlay text at cursor position
with block contents

Overlay Block button on bottom toolbar

Unmark a block

Click button 2

4.3.6 Menus, Files, and Windows

This section covers methods for accessing menus, moving between files and between
windows, etc., while using the Classic interface.

Using the Keyboard methods:
Keyboard
To Press
Cycle to the next file in the ring Shift+F4
Cycle to next document window Ctrl+F6 or Ctrl+Tab
Cycle to previous document window Shift+Ctrl+F6 or Shift+Ctrl+Tab
Cycle to next Windows application Alt+Tab
Maximize document window Ctrl+F10
Restore document window Ctrl+F5
Close document window Ctrl+F4
Maximize frame window Alt+F10
Restore frame window Alt+F5
Close KEDIT Alt+F4
Close current file File Close menu item
Close current file if it is unmodified F3
Enter menu mode Shift+F11
Leave menu mode Escape
Access frame window’s system menu Alt+Spacebar
Access document window’s system menu AltrMinus or .
Alt+Numeric Pad Minus
Activate Windows Task Manager Ctrl+Escape
Access Edit menu AIt+E
Access Help menu Alt+H
Access other menus Use mouse or press Shift+F11 to
enter Menu Mode
86 Chapter 4. Keyboard and Mouse

To Press

Use shortcut for File New Ctrl+N

Use shortcut for File Open Ctrl+O

Use shortcut for File Save Ctrl+S

Use shortcut for Edit Replace Ctrl+H

Use shortcut for Edit Go To Ctrl+G

Use shortcut for Actions Bookmark Ctrl+B
Using the In addition to the items in the following table, the standard Windows conventions for
Mouse accessing menus and for moving and resizing windows are all available:

To Use

Cycle to next/previous file in the | Next File or Previous File button on the

ring toolbar

Move between document Click in a different document window, or use

windows the Window menu

Close KEDIT Double-click on frame window system menu

. Double-click on document window system
Close document window

menu
Close current file File Close menu item
Open new view of current file Window New menu item

Maximize/restore frame window | Double-click on frame window title bar

Maximize document window Double-click on document window title bar

Click on restore icon at the right of maximized

Restore document window . ,
document window’s menu bar

4.3.7 Command Line and Prefix Area

This section lists keyboard methods of accessing KEDIT’s command line and prefix
area while using the Classic interface.

Command line Working with the command line:

To Press

Move to the command line from the file area

. H
(also executes any pending prefix commands) ome

Cursor Up or Cursor

Move to the file area from the command line
Down

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Using the Classic Interface 87

Prefix area

To

Press

Toggle between the file area and the command line

F12

Execute commands on the command line

Enter, with the cursor
on the command line

Cycle backward through previously issued commands Ctrl+Cursor Up or F6
Cycle forward through previously issued commands Ctrl+Cursor Down
Repeat last command issued from the command line F9

Repeat last LOCATE command Shift+F1

When PREFIX ON is in effect, you can use the following to work with the prefix area:

To Press
Move to the command line and execute pending prefix
. .. Home
commands (which may reposition cursor)
Tab forward between file area and prefix area Tab
Tab backward between file area and prefix areca Shift+Tab
Toggle between a line’s prefix and file area, executing Ctrl+Enter or
pending prefix commands Numeric Pad Plus

4.3.8 Miscellaneous

The following actions, relating to the Classic interface, do not fit neatly into any of the

other categories:

To Press
Interrupt execution of a long-running command or Ctrl+Break or
macro Alt+Ctrl+Shift
Activate Help system Fl1

Scroll to make the focus line become the current line FS

Begin editing file named at cursor position of AltEX

non-DIR.DIR file

Begin editing a file listed on the focus line of a
DIR.DIR file

Alt+X or double-click
with mouse button 1

List the files in a directory listed on the focus line of a
DIR.DIR file

Alt+X or double-click
with mouse button 1

List the files in the parent directory of a file listed on
the focus line of a DIR.DIR file

Ctrl+X or Parent
Directory toolbar button

88

Chapter 4.

Keyboard and Mouse

To Press
Alt+1 or Set

Set Bookmark1 on the focus line Bookmark1 button on
bottom toolbar

Set Bookmark?2 on the focus line Alt+2

Set Bookmark3 on the focus line Alt+3
Alt+4 or Go to

Go to Bookmark1 Bookmark1 button on
bottom toolbar

Go to Bookmark?2 Alt+5

Go to Bookmark3 Alt+6

Toggle between viewing the entire file and viewing

. Alt+Numeric Pad Plus

selected lines

Search forward for the Quick Search string Alt+F1

Search backward for the Quick Search string Alt+F2

Go to Quick Search toolbar item Alt+F3

Locate matching brace Shift+F3

Scroll half-window to the left Shift+F9

Scroll half-window to the right Shift+F10
Application key on

Display pop-up menu of actions from Edit menu Windows-specific
keyboards

4.4 Summary of Classic Interface

This section summarizes the default keyboard assignments and mouse actions used
within a document window when INTERFACE CLASSIC is in effect.

Cursor area Keyboard assignments for cursor and numeric pad keys:

Key Action

Cursor Up Cursor up one line §

Cursor Down Cursor down one line Eo

Cursor Left Cursor left one character §

Cursor Right Cursor right one character §

Home Cursor to command line. =
(also executed any pending prefix commands) X

Summary of Classic Interface 89

Key Action

End Cursor to end of line

Page Up Backward one page in the file

Page Down Forward one page in the file

Insert Toggle Insert/Overtype Mode

Delete Delete character at cursor position
Ctrl+Cursor Up Cycle backward in command line history
Ctrl+Cursor Down Cycle forward in command line history
Ctrl+Cursor Left Cursor to previous word on a line
Ctrl+Cursor Right Cursor to next word on a line
Ctrl+Home Cursor to upper left of window
Ctrl+End Delete text through end of line
Ctrl+Page Up Cursor to beginning of file

Ctrl+Page Down Cursor to end of file

Ctrl+Insert Copy text to clipboard

Ctrl+Delete Delete text through end of line
Ctrl+Numeric Pad 5 Mark entire file as line block
Shift+Insert Paste text from clipboard

Shift+Delete Cut text to clipboard

Numeric Pad Plus

If PREFIX ON, toggle between prefix area and file
area, executing any pending prefix commands

Alt+Numeric Pad Plus

Toggle between viewing entire file and viewing
selected lines

Alt+Numeric Pad Minus

Access document window’s system menu

Numeric Pad Enter

On command line: execute command
In file area: cursor to beginning of next line

Ctrl+Numeric Pad Enter

Toggle between file area and prefix area,,
executing any pending prefix commands

Ctrl+Break

Press and hold to interrupt long-running command or
macro

Alt+Numeric Pad digits

Enter special characters:

Alt+nnn for OEM code (which is then converted to
ANSI)

Alt+0nnn to avoid code conversion

90

Chapter 4. Keyboard and Mouse

Typewriter Keyboard assignments for keys in the typewriter area:

area
Key Action
Enter On command line: execu.te c.ommand .
In file area: Move to beginning of next line
Ctrl+Enter Toggle between file area and prefix area,
Shift+Ctrl+Enter executing any pending prefix commands
Tab If PREFIX OFF: Move cursor to next Tab column
If PREFIX ON: Tab forward to file area or prefix area
Shift+Tab If PREFIX OFF: Move cursor to previous Tab column
If PREFIX ON: Tab backward to file area or prefix area
Ctrl+Tab Cycle to next document window
Shift+Ctrl+Tab Cycle to previous document window
Alt+Tab Cycle to next Windows application
Backspace Delete character to left of cursor
Ctrl+Backspace Redo last undo operation
Alt+Backspace Undo a change to the file
Escape In Mem_1 Mode: leave menu'mode '
Otherwise: Undo recent typing on a line
Ctrl+Escape Invoke Windows Task Manager
Alt+Spacebar Access frame window’s system menu
shinscul | e nd bk o runs v i o o
Ctrl+A Adjust text to cursor position
Ctrl+B Shortcut for Actions Bookmark
Ctrl+C Center focus line within margins
Ctrl+F Format text in paragraph within margins
Cul+G Shortcut for Edit Go To
Ctrl+H Shortcut for Edit Replace
Ctrl+1 Fill block with a specified character
Ctrl+L Left-adjust text of focus line to left margin column 3
Ctrl+N Shortcut for File New g
Ctrl+O Shortcut for File Open %
Ctrl+P Begin a new paragraph §
Ctrl+R Right-adjust text of focus line to right margin column 'g,
Ctrl+S Shortcut for File Save g

Summary of Classic Interface 91

Key Action

Ctrl+V Paste text from clipboard

Ctrl+X Display parent directory of file in DIR.DIR listing

Ctrl+Y Redo last undo operation

Ctrl+Z Undo a change to the file

Alt+A Add a line

Alt+B Mark box block

Alt+C Copy block

Alt+D Delete focus line

Alt+E Open the Edit menu

Alt+F Fill block with a specified character

Alt+G Delete block

Alt+H Access Help system

Alt+] Join two lines

Alt+K Copy block and leave block marked

Alt+L Mark line block

Alt+tM Move block

Alt+O Overlay text with contents of block

Alt+R Recover a changed or deleted line

Alt+S Split a line

Alt+U Unmark block

Alt+W Delete word

ALEEX Edi.t file named at cursor position or in DIR.DIR directory
listing

Alt+Z Mark stream block

Alt+1 Set Bookmark1 at focus line

Alt+2 Set Bookmark? at focus line

Alt+3 Set Bookmark3 at focus line

Alt+4 Go to Bookmark1

Alt+5 Go to Bookmark?2

Alt+6 Go to Bookmark3

Alt+Minus Access document window’s system menu

Alt+Equal Sign Duplicate focus line

Shift+Ctrl+A Adjust text to cursor position

92

Chapter 4. Keyboard and Mouse

Key Action
Shift+Ctrl+C Center focus line within margins
Shift+Ctrl+F Format text in paragraph within margins
Shift+Ctrl+L Left-adjust text of focus line to left margin column
Shift+Ctrl+O Overlay text with contents of block
Shift+Ctrl+P Begin a new paragraph
Shift+Ctrl+R Right-adjust text of focus line to right margin column
Shift+Ctrl+W Delete word
Shift+Ctrl+X Display parent directory of file in DIR.DIR listing
Application key on
Windows-specific | Display pop-up menu of actions from Edit menu
keyboards
Function keys Keyboard assignments for function keys:
Key Action
F1 Access Help system
F2 Add new line below focus line
F3 QUIT current file
F4 Cursor to next Tab column
F5 Focus line becomes current line
Fo6 Cycle backward in command line history
F7 Cursor to beginning of line
F8 Duplicate focus line
9 Reissue lasF command executed from current file’s
command line
F10 Cycle to next document window
Fl11 Split/join line at cursor position
F12 Toggle cursor between command line and file area
Shift+F1 Reissue last LOCATE command 8
Shift+F2 Cursor to current line 3
Shift+F3 Find matching brace g
Shift+F4 Cycle to next file in the ring g
Shift+F5 Uppercase block -§
Shift+F6 Lowercase block §

Summary of Classic Interface 93

Key Action

Shift+F7 Shift block one character to left

Shift+F8 Shift block one character to right

Shift+F9 Scroll half-window to the left

Shift+F10 Scroll half-window to the right

Shift+F11 Enter Menu Mode

Shift+F12 Toggle cursor between command line and file area
Ctrl+F1 Undo last change to file

Ctrl+F2 Redo last undo operation

Ctrl+F4 Close document window

Ctrl+F5 Restore maximized document window to normal size
Ctrl+F6 Cycle to next document window

Ctrl+F10 Maximize document window

Alt+F1 Search forward for Quick Search string

Alt+F2 Search backward for Quick Search string

Alt+F3 Move to Quick Search toolbar item

AlttF4 Close KEDIT

Alt+F5 Restore maximized frame window to normal size
Alt+F10 Maximize frame window

Shift+Ctrl+F6 Cycle to previous document window

Mouse Actions Here is a summary of mouse actions used within a document window. In addition, the
normal Windows conventions for accessing menus, moving and resizing windows, etc.

all apply:
Mouse Operation Action
Click button 1 Reposition the cursor
Click button 2 Reposition the cursor and unmark any marked
block
Click Shifttbutton 1 Extend a block to mouse pointer position
Drag with button 1 Mark a stream block
Drag with button 2 in file area
Drag with button 1 in window Mark a line block
margin area or prefix area
Drag with button 1+button 2 Mark a box block

94 Chapter 4. Keyboard and Mouse

Mouse Operation Action

Click Ctrl+button 1 in window
margin area or prefix area

Mark entire file as line block

Double-click button 1 Mark a word as a stream block

Double-click button 1 on entry
in DIR.DIR file

Edit the file or list the directory

4.5 Summary of Differences Between Classic and CUA Interfaces

4.5.1 Overview

Here is an overview of the differences between KEDIT for Windows’ behavior with
INTERFACE CUA in effect and with INTERFACE CLASSIC in effect, followed by a
more detailed comparison of the differences in keyboard and mouse behavior.

With INTERFACE CUA, you get the Windows-style behavior:

e Default behavior for most keys is based on CUA conventions. For example, the
Home key moves the cursor to the beginning of a line and Alt+W opens the Win-
dow menu.

e Windows-style selections, marked by dragging with mouse button 1 or using key-
strokes involving Shift+Cursor key, are available. Text that you type after marking
a selection replaces the selection, and moving the cursor away from the selection
unmarks the selection. In addition, persistent line, box, and stream blocks are
available.

e You can mark command line selections, useful for editing text on the command
line and for moving it to and from the clipboard.

e By default, KEDIT uses a vertical text cursor.

With INTERFACE CLASSIC, you get text mode-compatible behavior:

e Default behavior for most keys is very close to the behavior in text mode KEDIT.
For example, the Home key moves the cursor to the command line, and Alt+W de-
letes a word.

e Persistent line, box, and stream blocks are available, but Windows-style non-per-
sistent selections are not available.

e Command line selections are not available.

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

e Bydefault, KEDIT uses a horizontal text cursor, resembling the text mode cursor.

Summary of Differences Between Classic and CUA Interfaces 95

4.5.2

Keyboard Comparison

The following table lists all keys whose behavior differs between INTERFACE CLAS-
SIC and INTERFACE CUA, giving the name of the key, its behavior with INTER-

FACE CLASSIC, and its default behavior with INTERFACE CUA:

Key CLASSIC CUA
Home Cursgr to command line, process Cursor to beginning of line
pending prefix commands

Delete character or selection;

Delete Delete character Beyond end of line, join with
following line

Ctrl+Home Cursor to upper left of window Cursor to beginning of file

Ctrl+End Delete through end of line Cursor to end of file

Ctrl+Page Up Cursor to beginning of file Cursor to upper left of window

Ctrl+Page Down Cursor to end of file Cursor to bottom right of window

Shift+Cursor Up

Shift+Cursor Down

Shift+Cursor Left

Shift+Cursor Right

Shift+Home

Shift+End unused

ift+
Sﬁig +gzgz ggwn (Selections not available with Extend selection
& INTERFACE CLASSIC)

Shift+Ctrl+Cursor Left
Shift+Ctrl+Cursor Right
Shift+Ctrl+Home
Shift+Ctrl+End
Shift+Ctrl+Page Up
Shift+Ctrl+Page Down

Numeric Pad Plus

Toggle between file and prefix
areas

Cursor to command line

Enter
Numeric Pad Enter

In file area:
Move to beginning of next line

In file area: Insert new line

Toggle between file and prefix

Ctrl+Enter Cursor to beginning of next line
areas
Overtype Mode: Move to next tab
column
Tab Move to next Tab column “

Insert Mode: Insert spaces through
next Tab column

96

Chapter 4. Keyboard and Mouse

Key CLASSIC CUA
Delete character to left, or
Backspace Delete character to left of cursor ;Elfiitsitoclzlc;)lumn of line, join it with
preceding line
Ctrl+A Adjust text to cursor position Shortcut for Edit Select All
Ctrl+C Center line Copy text to clipboard
Ctrl+F Format paragraph Shortcut for Edit Find
Ctrl+P Begin a new paragraph Shortcut for File Print
Ctrl+X gﬁfl]a)}{}{) arent directory in Cut text to clipboard
Alt+A Add a line Open the Actions menu
Alt+F Fill block Open the Fill menu
Alt+H Access Help system Open the Help menu
Alt+O Overlay block Open the Options menu
Alt+W Delete word Open the Window menu
F10 Cycle to next document window | Enter Menu Mode
F12 Z::(%% leebaerte\zeen command line Cursor to command line
Remapped The following table lists the keys whose function changes between INTERFACE
keys CLASSIC and INTERFACE CUA, giving the name of the key involved, the function it

performs with INTERFACE CLASSIC, and the name of the key to which that function
has been moved under INTERFACE CUA.

CLASSIC Key Function Equivalent CUA key
Cursor to command line

Home (also executes pending prefix F12 or Numeric Pad Plus
commands)

Ctrl+Home Cursor to upper left of window Ctrl+Page Up

Ctrl+End Delete through end of line Ctrl+Delete

Ctrl+Page Up Cursor to beginning of file Ctrl+Home

Ctrl+Page Down Cursor to end of file Ctrl+End

Numeric Pad Plus or Toggle between file and prefix Ctrl+Numeric Pad Enter or

Ctrl+Enter areas Shift+Ctrl+Enter

Enter or In file area:

. .. . +
Numeric Pad Enter Move to beginning of next line Ctrl+Enter
Tab (in Insert Mode) Move to next Tab column F4

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Summary of Differences Between Classic and CUA Interfaces

97

CLASSIC Key Function Equivalent CUA key
Ctrl+A Adjust text to cursor position Shift+Ctrl+A
Ctrl+C Center line Shift+Ctrl+C
Ctrl+F Format paragraph Shift+Ctrl+F

Ctrl+P Begin a new paragraph Shift+Ctrl+P
Ctrl+X g}gﬂg}lf li)arent directory in Shift+Ctrl+X
Alt+A Add aline F2

Alt+F Fill block Ctrl+l

Alt+H Access Help system F1

Alt+O Overlay block Shift+Ctrl+O
Alt+W Delete word Shift+Ctrl+W

F10 Cycle to next document window Ctrl+Tab or Ctrl+F6
F12 E(l)egiz;)etween command line and Shift+F12

4.5.3 Mouse Comparison
Since selections are not available in INTERFACE CLASSIC, all blocks marked with
the mouse in INTERFACE CLASSIC are persistent blocks.
In INTERFACE CUA, all blocks marked with the mouse are selections, but you can
change this default behavior via the Options Interface dialog box. Also, you can con-
vert a selection to a persistent block by using the Edit Make Persistent menu item,
which is also available on the menu displayed when you click mouse button 2.
Activity CLASSIC CUA
Mark stream block Drag with button 1 Drag with button 1
Drag with button 2, or drag Drag with Ctrl+button 1, or drag
Mark line block with button 1 in window with button 1 in window margin or
margin or prefix area prefix area
Mark box block Drag with button1+button2 Drag with Alt+button 1
Mark word Double-click button 1 Double-click button 1
Extend block Click Shift+button 1 Click Shift+button 1
Unmark selection Selections unavailable Click button 1
. N .
Unmark persistent block Click button 2 Click Altbutton 1 or click button
2 and choose Unmark from menu
98 Chapter 4. Keyboard and Mouse

Activity CLASSIC CUA

. Position mouse pointer in
Drag-and-drop move Unavailable selection, drag with button 1
Drag-and-drop copy Unavailable Position mouse pointer in

selection, drag with Ctrl+button 1

Display pop-up menu

Application key on

Windows-specific keyboards Click button 2

4.6 Entering Special Characters

Alt
key+numeric
pad

ANSI character
set

OEM character
set

Windows provides a method for entering special characters not found on your key-
board, similar to the “Alt key+Numeric Pad”” method that is provided by DOS. This
Altkey-numeric pad method of entering text is built into Windows and is not specific to
KEDIT. For example, it can be used with the Write program included as part of Win-
dows. The details depend on whether you are working with files in the ANSI or OEM
character set, so these two cases are considered separately.

If you are using an ANSI font to work with text in the ANSI character set, you can enter
a special character by holding down the Alt key and entering the decimal value of the
OEM or ANSI code for the desired character via the digits on the numeric keypad. The
code should be in the range 1 to 255; you can’t use this method to enter null characters
with character code 0. If you enter the code with no leading zeros, Windows assumes
that you have entered the OEM code for the character involved. Windows translates
this to the equivalent ANSI code and then passes the character to KEDIT. To enter an
ANSI code directly, the code that you enter should be preceded by a leading zero.

To enter, for example, a formfeed character (character code 12 in both OEM and ANSI)
into your file, you can hold down the Alt key and press 1 and 2 on the numeric pad. You
would get the same result by holding down the Alt key and pressing 0, 1, and 2. Both
methods would pass character code 12 to KEDIT.

For an example of a character whose ANSI and OEM codes differ, consider the British
pound symbol, which is not found on the standard U.S. keyboard. With the code pages
used by most KEDIT users, its code in the OEM character set is 156 and its code in the
ANSI character set is 163. You could therefore enter the British pound symbol by hold-
ing down Alt and pressing 1, 5, and 6 on the numeric keypad or by holding down Alt
and pressing 0, 1, 6, and 3. Both methods would pass character code 163 to KEDIT.

If you are using an OEM font to work with text in the OEM character set, you can enter
a special character by holding down the Alt key and entering a 0 and then the decimal
value of the OEM code for the desired character via the digits on the numeric keypad.
The code should be in the range 1 to 255; you can’t use this method to enter null charac-
ters with character code 0. You must precede the character code involved with a leading
0, or else Windows will assume that you want the character translated from OEM to
ANSI, and you will end up with an incorrect result.

Entering Special Characters 99

(/]
(2]
=}
(®)
=
~
©
S
(1]
o
Ke)
>
(]
X

Character
code 0

To enter, for example, a formfeed character (character code 12) into your file, you can
hold down the Altkey and press 0, 1, and 2 on the numeric pad. To enter a British pound
symbol (OEM character code 156), you can hold down the Alt key and press 0, 1, 5,
and 6.

You cannot use the Alt key+Numeric Pad method to enter a null character into your file.
(The null character is the character whose code is 0. Note that this is not the same as the
character “0”’, whose character code is 48.) The easiest way to enter a null character is
to define a macro that enters a null character and assign this macro to a key. For exam-
ple, adding the following line to your profile will assign to Ctrl+F3 a macro that enters
the null character:

"define ctrl+f3 'text' d2c(0)"

100

Chapter 4. Keyboard and Mouse

Chapter 5. Menus and Toolbars

This chapter has information on each of KEDIT’s menu items and toolbar buttons.

5.1 File Menu

"
S
®
2
o
o
|
—
)
S
c
)
=

Use the File menu to open, close, save, and print files that you are editing.

Open... Ctrl+0
Close
Save Ctrl+S
Save As...
Print... Ctrl+P
Print Setup...
Directory...
Exit
5.1.1 New
Edits anew file. The new file will have as a temporary name the first available name of
the form UNTITLED.1, UNTITLED.2, etc. If you make changes to the file and then
save these changes to disk, KEDIT will prompt you for a permanent name for the file.
Shortcuts &
e Click on the New File button on the top toolbar.
e Press Ctrl+N.
See also Section 3.5, “Editing Multiple Files”

File Menu 101

5.1.2 Open...

File Hame: Directories:
I == chkeditw
ckeys kml + = e
dickens_doc = i
oty B |
isi0_tmp 1 samples
keditw_exe
keditw_hip
keditw_spm
kedwbeta.hlp 3
Lizt Files of Type: Drives:
I-'E"-“ Files [*.%] |£I I = c: diskc |£I

Begins editing an existing file or group of files.

Shortcuts “u

e Click on the Open File button on the top toolbar.

e Press Ctrl+O.
Dialog box The appearance and behavior of this dialog box vary depending on the version of Win-
options dows that you are using.

File Name

Type the name of the file that you want to edit, or select a file from the list box. The box
displays a list of files based on the types of files that you select in the List Files of Type
box.

You can use mouse button 2 or Ctrl+button 1 to select multiple files.

List Files of Type
Select the type of files that you want listed in the File Name list box.

All Files (*.*) All files in the selected directory are displayed.

Text Files (*.TXT) Files in the selected directory with a file exten-
sion of .TXT are displayed.

Development (*.C, *.CPP, * H) Files in the selected directory with file exten-
sion .C, .CPP, or .H are displayed.

102 Chapter 5. Menus and Toolbars

See also

5.1.3 Close

Shortcuts

See also

5.1.4 Save

Shortcuts

See also

KEDIT Macros (*.KEX, *. KML) Files in the selected directory with a file exten-
sion of .KEX (a KEDIT macro) or .KML (a
KEDIT macro library) are displayed.

You can use the SET OPENFILTER command to customize the list of file types that
you can choose from.

Directories

"
S
®
2
o
o
|
—
)
S
c
)
=

Select the directory containing the file that you want to open.

Drives
Select the drive containing the file that you want to open.

Open
Opents the file you have selected in File Name.

Update List

Updates the list of filenames shown in the File Name list based on any wildcard fileid
specifications you have entered into the File Name field.

SET FILEOPEN (Options SET Command), KEDIT (Command Line), DIR (Command
Line), Directory (File Menu), Section 3.5, “Editing Multiple Files”

Closes the current file. If you have made changes to the file but have not saved them to
disk, KEDIT will ask if you want to save the changes.

If the file has not been altered, you can press F3.

SAVE (Command Line), FILE (Command Line), QUIT (Command Line)

Saves the current file to disk using its current fileid. Ifthe current file isan UNTITLED
file, the Save As dialog box will be displayed so you can specify a permanent fileid.

e Click on the Save File button H on the top toolbar.

e Press Ctrl+S.

SAVE (Command Line), FILE (Command Line)

File Menu

103

5.1.5 Save As...

File Hame: Directories:
|| c:ikeditw
Lt [= e\ +
|| BE= keditw
£ samples

4]
+
Save File az Type: Drives:

[All Files (%) L] | = c: diske |5|

Saves and gives a new filename to the current file.

Dialog box The appearance and behavior of this dialog box vary depending on the version of Win-
options dows that you are using.
File Name

Type the new filename for the current file.

Save File as Type
This item is not used by the Save As dialog box.

Directories

Select the directory in which you want to save your file.

Drives

Select the drive to use for saving your file.

See also SAVE (Command Line), FILE (Command Line)

104 Chapter 5. Menus and Toolbars

5.1.6 Print...

Shortcuts

Dialog box
options

HF Laszerlet 4/4M on LPT1:

Block I—I
i Bloc Help

| Font.._. I | Margins. _. I

¥ Print File Toolbar Button Shows Thiz Dialog

Prints your entire file, or the currently-marked portion of your file.

e Click on the Print File button % on the top toolbar.

e Press Ctrl+P.

All

The entire file will be printed when you press the Print button.

Block

Enabled only if there is a marked block within the file; the marked area of the file will
be printed when you press the Print button.

Font...

Displays a dialog box that lets you select KEDIT’s printer font from a list of fixed-pitch
printer fonts installed on your system. The Font dialog box is only available when the
SET PRINTER option specifies that your printer output will be handled by Windows.

Components of the Font dialog box:

Font Select your desired printer font from a list of fixed-pitch
printer fonts installed on your system.

Font Style Select your desired font style from a list of font styles avail-
able for the current font.

Size Type in or select your desired printer font size.

File Menu

105

"
S
®
2
o
o
|
—
)
S
c
)
=

See also

Margins...

Displays a dialog box that lets you select the size of the margin area that KEDIT will
use when sending your file to the printer. The Margins dialog box is only available
when the SET PRINTER option specifies that your printer output will be handled by
Windows.

Components of the Margins dialog box:

Left Specify the size of the left margin.

Right Specify the size of the right margin.

Top Specify the size of the top margin.

Bottom Specify the size of the bottom margin.

Inches This radio button indicates that your margin areas are speci-

fied in inches.

Centimeters This radio button indicates that your margin areas are speci-
fied in centimeters.

KEDIT Default Resets your printer margins to the default values, which are
.25 inches for the left and right margins and .50 inches for
the top and bottom margins.

Setup

Opens the Print Setup dialog box. Print Setup is only available when the SET
PRINTER option specifies that your printer output will be handled by Windows.

Print File Toolbar Button Shows This Dialog

When this box is checked, as it is by default, clicking on the Print File button % on
the top toolbar causes the Print dialog box to be displayed. When this box is not
checked, the Print File toolbar button does not display the Print dialog box. Instead, it
immediately prints the marked block, if there is one, or else prints the entire file.

PRINT (Command Line), SET PRINTER (Options SET Command), Section 3.10,
“Printing”

106

Chapter 5. Menus and Toolbars

5.1.7 Print Setup...

(2]

S

= Print Setup g

3

o

I =

5

[currently HP Lazerdet Il on LPT1:] =1

c

() Specific Printer: Options. . g
|HP LaserJet Ill on LPT1: 2| Hew |

-Onentation Paper

ILetlelB1a"2x11 in |l|

e ® Portrait Size: *
(' Landscape Source: IUpper Tray |EI

Lets you select the printer and printer options that you want to use when printing from
within KEDIT. This dialog box is only available when the SET PRINTER option spec-
ifies that your printer output will be handled by Windows.

Dialog box The appearance and behavior of this dialog box vary depending on the version of Win-
options dows that you are using.

Printer

Default Printer Use this radio button to route printer output to your default

Windows printer.

Specific Printer Use this radio button to route printer output to a printer that
you select from a list of available Windows printers.

Orientation

Portrait Text is printed from left to right across the narrower dimen-
sion of the page so that the output page is, like a portrait
painting, taller than it is wide.

Landscape Text is printed from left to right across the wider dimension
of the page so that the output page is, like a landscape paint-
ing, wider than it is tall.

Paper

Size Indicates the paper size to be used on a printer that supports
multiple paper sizes.

Source Indicates the paper source to be used on a printer that sup-

ports multiple paper sources.

File Menu 107

See also

Options...

Displays a dialog box that lets you specify additional printer options. The Option dia-
log box is different for each printer driver and is provided by the printer manufacturer.

SET PRINTER (Options SET Command)

5.1.8 Directory...

Dialog box
options

—
e keditw B

= e\ +

v

3 zamples
¥+

Drives:

= o diske Iil
(® Set Current Directory
' Show DIR.DIR File
(! Set Current Directory And Show DIR.DIR

This dialog box lets you select a directory, and then make that directory the current
directory and/or create a DIR.DIR file listing the contents of that directory.

Directory

Select the directory that is of interest to you. That is, select the directory that should
become the current directory or whose contents you want to display in a DIR.DIR file.

Drives

Select the drive containing the directory that is of interest to you.

Set Current Directory

When this radio button is selected, pressing the OK button makes the drive specified in
the Directory field become the current directory.

108

Chapter 5. Menus and Toolbars

Notes

See also

5.1.9 Exit

Shortcuts

Show DIR.DIR file

When this radio button is selected, pressing the OK button creates a DIR.DIR file list-
ing the contents of the drive specified in the Directory field.

Set Current Directory And Show DIR.DIR

When this radio button is selected, pressing the OK button makes the drive specified in
the Directory field become the current directory and also creates a DIR.DIR file listing
the contents of that directory.

The current directory is used within KEDIT for several purposes. For example, when
you use File New to begin editing an untitled file, the current directory is used as the
path specification for that file. When you use the DOS command to shell to an
MS-DOS command session, that session inherits KEDIT’s current directory. And
when you issue the KEDIT command and do not give a path specification for the file
you want to edit, KEDIT begins its search in the current directory. Note that changing
the current directory does not affect the default directory for the File Open dialog box,
which KEDIT keeps separate track of.

CHDIR (Command Line), DIR (Command Line)

Exits from KEDIT. Ifyou are editing any files that have unsaved changes, KEDIT will
ask if you want to save the changes, and then KEDIT will remove all files from the ring
and terminate the editing session.

e Press Alt+F4.
e Double-click on the frame window’s system menu icon.

e Ifthere are no open documents, press F3.

5.1.10 Recently Edited File List

See also

At the bottom of the File menu is a list of recently-edited files. If you select one of the
files in the list, KEDIT will begin editing that file. By default the list holds up to 9
recently-edited files, but you can increase this number to as high as 16 by using the
RECENTFILES option of Options SET Command.

SET RECENTFILES (Options SET Command), KEDIT (Command Line)

File Menu

109

"
S
®
2
o
o
|
—
)
S
c
)
=

5.2 Edit Menu

Use this menu for assorted editing operations, such as find and replace, undo and
redo, and clipboard cut, copy, and paste.

Edit

Undo Ctrl+Z2
Redo Ctrl+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Select All Ctrl+A
Delete
Unmark Alt+U
Make Persistent Ctrl+M
Find... Ctrl+F
Replace... Ctrl+H
Selective Editing...
Go To... Ctrl+G

5.2.1 Undo

Shortcuts

See also

5.2.2 Redo

Shortcuts

Undo one level of changes to the current file. This menu item can be used repeatedly to
undo multiple levels of changes.

e Click on the Undo button on the top toolbar.

e Press Ctrl+Z.

e Press Alt+Backspace.

Redo (Edit Menu), UNDO (Command Line), SET UNDOING (Options SET Com-
mand), Section 3.13, “The Undo Facility”

Redo a change to your file, reversing the effect of Edit Undo. If you have used Edit
Undo repeatedly to undo multiple changes, then you can use Edit Redo repeatedly to
redo those changes. Redo is only available if you have recently used Edit Undo and
have not made any intervening changes to your file.

el
e Click on the Redo button on the top toolbar.

Press Ctrl+Y.

Press Ctrl+Backspace.

110

Chapter 5. Menus and Toolbars

See also

5.2.3 Cut

Shortcuts

5.2.4 Copy

Shortcuts

5.2.5 Paste

Shortcuts

UNDO (Edit Menu), REDO (Command Line), SET UNDOING (Options SET Com-
mand), Section 3.13, “The Undo Facility”

Cuts text to the clipboard. The contents of the current block or selection are placed in
the clipboard, replacing any existing clipboard contents, and the block or selection is
deleted from your file. This menu item is unavailable if no text is currently selected.

dh

"
S
®

2
o
o

|

—
)
S
c
)

=

e Click on the Cut to Clipboard button on the top toolbar.

e Press Ctrl+X. (CUA interface only)
e Press Shift+Delete.

e Click mouse button 2 and then select Cut from the resulting pop-up menu. (CUA
interface only)

Copies the contents of the current block or selection to the clipboard, replacing any
existing clipboard contents. This menu item is unavailable if no text is currently
selected.

e Click on the Copy to Clipboard button on the top toolbar.

e Press Ctrl+C. (CUA interface only)
e Press Ctrl+Insert.

e Click mouse button 2 and then select Copy from the resulting pop-up menu. (CUA
interface only)

Copies the text that is in the clipboard into your file or to the command line, inserting it
at the cursor position. Multi-line clipboard text can only be pasted into your file, and
not to the command line.

Jic)

on the top toolbar.

e Click on the Paste from Clipboard button

e Press Ctrl+V.

Edit Menu

111

e Press Shift+Insert.

e Click mouse button 2 and then select Paste from the resulting pop-up menu. (CUA
interface only)

5.2.6 Select All

Marks the entire file. In INTERFACE CUA, a line selection is marked. In INTER-
FACE CLASSIC, a persistent line block is marked.

Shortcuts e Press Ctrl+A. (CUA interface only)
e Press Ctrl+5 on the numeric pad.

e Click with Ctrl+button 1 in the margin area or in the prefix area.

5.2.7 Delete

Deletes the currently-marked selection or persistent block without copying its contents
to the clipboard.

Shortcuts e Press the Delete or Backspace keys immediately after marking a selection or a per-
sistent block. (CUA interface only)

e Press Alt+G.

e Click mouse button 2 and then select Delete from the resulting pop-up menu.
(CUA interface only)

5.2.8 Unmark

Unmarks the currently-marked selection or persistent block. This menu item is primar-
ily useful for unmarking persistent blocks, since selections can be unmarked by simply
repositioning the cursor.

Shortcuts e Press Alt+U.

e Click mouse button 2 and then select Unmark from the resulting pop-up menu.
(CUA interface only)

112 Chapter 5. Menus and Toolbars

5.2.9 Make Persistent

Shortcuts

5.2.10 Find...

Shortcuts

Dialog box
options

Converts the currently-marked selection into a persistent block. This is only available
when INTERFACE CUA is in effect, since selections are not used with INTERFACE

CLASSIC.

e Press Ctrl+M.

e Click mouse button 2 and then select Make Persistent from the resulting pop-up

menu.

"
S
®
2
o
o
|
—
)
S
c
)
=

Find What:

Forward

[

[Match Case

[Find Whole Words Only
[T Regular Expression

(2]

Backward

Close

dul

Finds a particular word or character string in your file.

e Press Ctrl+F. (CUA interface only)

e Click on the Find Dialog Box button Q

e Torepeat the last search, click on the Find Next button

on the top toolbar.

Gy

o1

on the top toolbar. To

search backward, hold down the Shift key when you click on the Find Next button.

e Enter your search string in the Quick Find field on the top toolbar

I or select a recent search string from the list displayed by click-
ing the down arrow beside the edit field. Then, press Enter.

Find What

Specify the text to be searched for by doing one of the following:

e Type the text to be searched for into the edit field.

Edit Menu

113

e Select an item from the drop down list box with the text of your most recent search
strings. Click on the down arrow beside the entry field to view this list.

e Paste a search string from the clipboard. (Ctrl+V)

Match Case

When this box is checked, the search is case sensitive. For example, “ABC” is not
treated as matching ““abc’’. When this box is unchecked, the search is case insensitive.
“ABC” and ““abc” are then treated as matching strings.

Find Whole Words Only

Check this box when you want to find occurrences of your search string that are com-
plete words. For example, when this box is checked, a search for “birth’” would match
occurrences of the word ““birth” within your file, but would not match in “rebirth” or
“birthday”.

Regular Expressions
Check this box to allow regular expression notation in the search string. For informa-

tion on regular expressions, see Section 6.6, “Regular Expressions”, and Section 6.6.5,
“Regular Expression Summary”.

Forward

Use the Forward button to search forward in your file for the next occurrence of the
specified search string. The search ends at the bottom of the file unless SET WRAP ON
is in effect, in which case the search continues on from the top of the file so that the
entire file is searched.

Backward

Use the Backward button to search backward in your file for an occurrence of the speci-
fied search string. The search ends at the top of the file unless SET WRAP ON is in
effect, in which case the search continues on from the bottom of the file so that the
entire file is searched.

Close

When you have finished searching, use the Close button or press the Escape key to
close the dialog box.

Notes A number of KEDIT’s SET options affect the search done by the Find dialog box.
These options can be controlled by using the Options SET Command dialog box or by
issuing SET commands from the command line. Among the options involved are:
STAY option controls whether the position of the focus line remains the

same after an unsuccessful search or whether the top-of-file
or end-of-file line becomes the focus line.

114 Chapter 5. Menus and Toolbars

WRAP option controls whether the search ends when the top or bottom of
the file is reached, or instead wraps around so that the entire
file is searched.

VARBLANK option controls whether a blank in the search string will match
only a single blank in your file, or any sequence of one or
more blanks.

ZONE option limits searches to a certain column range. For example, you
can specify that searches should examine only columns 10
through 20 of each line in the file.

"
S
®

2
o
o

|

—
)
S
c
)

=

Command line Using this dialog box is roughly equivalent to using the command

equivalent
LOCATE /string/

See also LOCATE (Command Line), SET ZONE (Options SET Command), SET WRAP
(Options SET Command), SET STAY (Options SET Command), SET VARBLANK
(Dialog Box)

5.2.11 Replace...

Find What: -
| B
Replace With:
I E Replace All
[Match Caze

[Find Whole Words Only

[Regular Expression

[X Restrict to Selection

Finds and replaces specified character strings in your file.

Shortcuts Press Ctrl+H.
Dialog box Find What
options

Specify the text to be searched for by doing one of the following:

e Type the text to be searched for into the edit field.

Edit Menu 115

e Select an item from the drop down list box with the text of your most recent search
strings. Click on the down arrow beside the entry field to view this list.

e Paste the text from the clipboard. (Ctrl+V)

Replace With
Specify the new text that will replace the existing text by doing one of the following:

e Type the replacement text into the box.

e Select an item from the drop down list box with the text of your most recent re-
placement strings. Click on the down arrow beside the entry field to view this list.

e Paste the text from the clipboard. (Ctrl+V)

Match Case

When this box is checked, the search is case sensitive. For example, “ABC”’ is not
treated as matching ““abc’’. When this box is unchecked, the search is case insensitive.
“ABC” and “‘abc” are then treated as matching strings.

Find Whole Words Only

Check this box when you want to find occurrences of your search string that are com-
plete words. For example, when this box is checked, a search for “birth”” would match
occurrences of the word “birth” within your file, but would not match in “rebirth” or
“birthday”.

Regular Expressions

Check this box to allow regular expression notation in the search string. For informa-
tion on regular expressions, see Section 6.6, “Regular Expressions”, and Section 6.6.5,
“Regular Expression Summary”.

Restrict to Selection

When selected, this option causes the search string to be replaced only in the cur-
rently-marked selection or persistent block. Every occurrence in the selection or block
is replaced, so the Replace All button is available but the Replace button is grayed out.
This option is selected by default if the cursor is in a selection or block. This option is
grayed out if there is no current selection or block.

Find Next

The Find Next button searches forward through your file for the next occurrence of the
search string. The search ends at the bottom of the file unless SET WRAP ON is in
effect, in which case the search continues on from the top of the file so that the entire
file is searched.

116

Chapter 5. Menus and Toolbars

Notes

Command line
equivalent

See also

Replace

The Replace button replaces the highlighted occurrence of the search string with the
new text in the Replace With box.

Undo

When the Replace button is chosen and the old text is replaced with new text, the
Replace button changes to an Undo button. Use the Undo button to undo the effect of
the most recent Replace operation.

Replace All button

The Replace All button immediately changes the old text specified in the Find What
box to the new text specified in the Replace With box. All occurrences are changed
either in the entire file or in the currently-marked block, depending on whether Restrict
to Selection is checked.

Close

When you have finished replacing text, use the Close button or press the Escape key to
close the Replace dialog box.

A number of KEDIT’s SET options affect the search done by the Replace dialog box.
These options can be controlled by using the Options SET Command dialog box or by
issuing SET commands from the command line. Among the options involved are:

STAY option controls whether the position of the focus line remains the
same after an unsuccessful search or whether the
end-of-file line becomes the focus line.

WRAP option controls whether the search ends when the top or bottom of
the file is reached, or instead wraps around so that the entire
file is searched.

ZONE option limits searches to a certain column range. For example, you
can specify that searches should examine only columns 10
through 20 of each line in the file.

Using the Replace dialog box is roughly equivalent to using the command

CHANGE /stringl/string2/ target n

CHANGE (Command Line), SET ZONE (Options SET Command), SET WRAP
(Options SET Command), SET STAY (Options SET Command)

Edit Menu

117

"
S
®

2
o
o

|

—
)
S
c
)

=

5.2.12 Selective Editing...

Dialog box
options

= Selective Editing
Match What: | Matching Lines I

| 2] | AllLines |
[X Match Case

[Find Whole %ords Only |
[Regular Expression | Help I

Cancel I

Selects a subset of your file consisting of all lines matching a specified string. All other
lines of your file are temporarily excluded from display and are unaffected by most
KEDIT commands.

Match What
Enter the character string that is of interest to you by doing one of the following:
e Type the text into the edit field.

e Select an item from the drop down list box of recently-matched strings. Click on
the down arrow beside the entry field to view this list.

Match Case

When this box is checked, the search is case sensitive. For example, “ABC” is not
treated as matching ““abc’’. When this box is unchecked, the search is case insensitive.
“ABC” and “‘abc” are then treated as matching strings.

Find Whole Words Only

Check this box when you want to find occurrences of your search string that are com-
plete words. For example, when this box is checked, a search for “birth”” would match
occurrences of the word “birth” within your file, but would not match in “rebirth” or
“birthday”.

Regular Expressions

Check this box to allow regular expression notation in the search string. For informa-
tion on regular expressions, see Section 6.6, “Regular Expressions”, and Section 6.6.5,
“Regular Expression Summary”.

Matching Lines

Use this button to display only the lines that match the character string in the Match
What box.

118

Chapter 5. Menus and Toolbars

Notes

Command line
equivalent

Tips

See also

5.2.13 Go To...

Lines that do not contain the matched string are not displayed and are represented by
shadow lines if the default setting SET SHADOW ON is in effect.

All Lines

Use this button to leave selective editing mode and to begin displaying all lines in the
file.

You can limit the string search to certain columns using the ZONE option (Options SET
Command). For example, you can specify that the search only examine columns 10
through 20 of each line in the file.

Using the Matching Lines button of this dialog box to select the lines containing a par-
ticular string is roughly equivalent to using the command

ALL /string/

Using the All Lines button to leave selective editing mode is equivalent to using the
command

ALL

To toggle between seeing only the selected lines and seeing all of the lines in the file:

i

e Click on the Hide Excluded Lines button on the optional bottom toolbar to
edit only the subset of lines you have already selected using the Selective Editing
Dialog Box (or the ALL command).

O

e Click on the Show All Lines button on the optional bottom toolbar to edit all
of the lines in the file.

ALL (Command Line), Chapter 8, “Selective Line Editing and Highlighting”

Go To Line Humber: I 1] 4
Uze + and - to move relative to the | Cancel
current line. For example, +4 will move l
forward [and -4 backward] 4 lines.

| Help

Allows you to move elsewhere in your file by specifying either a specific line number
or an offset from your current location.

Edit Menu

119

"
S
®

2
o
o

|

—
)
S
c
)

=

Shortcuts Press Ctrl+G.

Dialog box Go To Line Number

options
Specify the line number of the new focus line. To move to a specific line number, sim-
ply enter that line number. To give an offset from your current location, precede the
number with a + or -. For example, 4 goes to line 4 of your file, +4 moves down four
lines in your file, and -4 moves up four lines in your file.

See also Bookmark (Actions Menu), LOCATE (Command Line)

5.3 Actions Menu

Use this menu to mark lines with bookmarks, sort lines, uppercase or lowercase

Actions . . .
a text, or fill a block with a specified character.

Bookmark... Ctrl+B
Fill...
Sort...

Uppercase Shift+F5
Lowercase Shift+F6

5.3.1 Bookmark...

= Bookmark
Hame: Go To I
I bookmark3
bookmarki
bookmark 2
line: 52

Associates a name, referred to as a bookmark, with the focus line or allows you to
return to a line that you have previously named.

Shortcuts e Press Ctrl+B.

120 Chapter 5. Menus and Toolbars

Dialog box
options

Command line
equivalent

See also

e Click on the Set Bookmark]1 button &l
the name Bookmark]1 to the focus line.

on the optional bottom toolbar to give

e Click on the Go to Bookmark1 button lFITl on the optional bottom toolbar to re-
turn to the line that you have previously given the name Bookmark]1.

Name

"
S
®
2
o
o
|
—
)
S
c
)
=

Specify a bookmark name by typing in a name or selecting it from the list of existing
names.

Go To
KEDIT moves to the line corresponding to the bookmark that you have selected.

You can also move to a specific bookmark by double-clicking on an item in the list of
currently-defined bookmarks.

Set
A bookmark will be set at the focus line, with the name specified in the Name field.

Clear

Removes a bookmark. If a line has previously been given the name specified in the
Name box, it is no longer associated with that name.

Using the Set button to define a bookmark is equivalent to using the command

SET POINT .name

Using the Go To button to move to a bookmark is equivalent to using the command

LOCATE .name

Using the Clear button to remove a bookmark is equivalent to using the command

SET POINT .name OFF

SET POINT (Command Line)

Actions Menu

121

5.3.2 Fill...

FEill Character: I_

1].4
Cancel

Help

Fills a block with multiple copies of a specified character. This menu item is grayed out
if no block is marked.

Fill Character

Specify the character to be used to fill the block.

Shortcuts Eﬁl
Click on the Fill Block button

on the optional bottom toolbar.

See also FILL (Command Line)

5.3.3 Sort...

= Sort

| @ Block ' Entire File ‘ st]

Start Col : End Col E
@® Ascending tart Column: End Column ’—Iﬂelp
(! Descending 5‘ | H‘

~Sont Field 2
@ Unused Start Column: End Column:
() Ascending = =
(! Decending I—H I—H
~Sort Field 3
@ Unused Start Column: End Column:

! Ascending - I = I
! Decending

Sorts all or part of your file.

122 Chapter 5. Menus and Toolbars

Dialog box
options

Notes

See also

Block

Choose this radio button to sort all lines within the currently-marked line or box block.
This button is grayed out if there is no line or box block.

Entire File
Choose this radio button to sort the entire file.

Sort Fields

KEDIT decides what order to put lines in by comparing characters in the columns spec-
ified by your sort fields. Each field is expressed as a pair of numbers giving the leftmost
and rightmost columns of the field. There can be up to 3 sort fields.

By default, KEDIT sorts on all columns of your file unless a box block is marked, in
which case KEDIT sorts on the columns contained within the box block.

Unused Indicates that the particular sort field is not being used in
this sort.

Start Column Specify the leftmost column of the sort field.

End Column Specify the rightmost column of the sort field.

Ascending The field will be sorted in ascending order.

Descending The field will be sorted in descending order.

Sorts are affected by the SET CASE and SET INTERNATIONAL options. If the sec-
ond operand of SET CASE specifies case insensitive text searches, text comparisons
done during the sort will also be case insensitive. SET INTERNATIONAL determines
whether KEDIT uses your Windows language drivers to sort text according to coun-
try-specific conventions.

SORT (Command Line), SET CASE (Options SET Command), SET INTERNA-
TIONAL (Options SET Command)

5.3.4 Uppercase

Shortcuts

Uppercases text within the currently-marked block. This menu item command is
grayed out if no block is marked.

e Press Shift+F5.

e Click on the Uppercase Block button on the optional bottom toolbar.

Actions Menu

123

(2
S
©
2
o
o
-
S~
()
=]
c
()
=

See also UPPERCASE (Command Line)

5.3.5 Lowercase

Lowercases text within the currently-marked block. This menu item command is
grayed out if no block is marked.

Shortcuts e Press Shift+Fo.
e Click on the Lowercase Block button k on the optional bottom toolbar.
See also LOWERCASE (Command Line)

5.4 Options Menu

Options Use this menu to select your screen font, and to work with KEDIT’s SET op-
Screen Font... tions.

Interface...

SET Command...
Status...
Sawve Settings...

124 Chapter 5. Menus and Toolbars

5.4.1 Screen Font...

Dialog box
options

Notes

See also

= Screen Font
Font: Font Style: Size:
I I Regular I 10

Courier Hegular -Eancel
T Courier Hew] 12 -
Fixedsys . 15
T IBMPCDOS
T M5 LineDraw
Sample
AaBbYvyiz

Uze thiz dialog box to select the screen font.
Usze File Pnnt Font to zelect the printer font.

Use this dialog box to control the font that KEDIT uses within your document win-
dows. Note that this dialog box does not affect the font used for printing files; the

printer font is controlled through

the File Print dialog box.

The appearance and behavior of this dialog box vary depending on the version of Win-

dows that you are using.

Font Select your desired font from a list of fixed-pitch screen
fonts installed on your system.

Font Style Select your desired font style from a list of font styles avail-
able for the currently selected font.

Size Type in or select your desired font size.

Note that KEDIT uses only fixed-pitch fonts within its document windows. If a font
that is properly installed on your system is not listed in the Screen Font dialog box,
either the font is not a fixed-pitch font, or the supplier of the font did not mark the font
as a fixed-pitch font. Another possibility is that you have used the Fonts item in the
Windows Control Panel to specify that Windows should use only TrueType fonts; in
this case, fixed-pitch fonts that are not TrueType fonts are not listed.

Section 3.6, “Fonts”

Options Menu

125

"
S
®

2
o
o

|

—
)
S
c
)

=

5.4.2 Interface...

rKeyboard and Mouse Conventions

d i OK
@ iUse Windows-Style CUA Interface [Recommended for Most Users): |_|

() Use KEDIT Text Mode-Compatible CLASSIC Interface

rAdjust CUA Keyboard Behavior
Enter Key in File Area:
@ Inserts a New Line
(") Moves to Stant of Mext Line rAdjust CUA Mouse Behavior
Home Key: Button 1 Marks:
(' Moves to Start of Line [Use F12 for Cmd Line, Prefix) ® Stream Selection
' Moves to Command Line, Handles Prefix Commands C Persistent Stream Block
Delete Key at End-of-Line: Ctrl+Button 1 Marks:
[% Joins Text from Following Line @ Line Selection
Backspace Key at Start-of-Line:) Persistent Line Block
X Joins Text to Preceding Line Alt+Button 1 Marks:
Alt Key All by Itself: @ Box Selection
[X Activates Menu Mode ! Persistent Box Block

KEDIT Defaults I

[Save Changed Settings for Use in Future KEDIT Sessions

Controls whether certain aspects of KEDIT for Windows’ user interface, primarily
involving keyboard and mouse usage, work according to the CUA (““Common User
Access”) conventions used by most other Windows applications, or whether they
instead work according to the conventions used in the text mode version of KEDIT.

Dialog box Keyboard and Mouse Conventions

options

Use Windows-Style CUA Interface (Recommended for Most Users)

When selected, you get the Windows-style keyboard and mouse behavior. The be-
havior of most keys is based on CUA conventions. Blocks marked with the mouse
or with CUA-compatible keys behave like selections in that any text that you type
after marking a block replaces the contents of the block and moving the cursor
away from the block unmarks the block. Some aspects of this behavior can be ad-
justed via the other items in this dialog box.

Use KEDIT Text Mode-Compatible CLASSIC Interface

When selected, you get text mode-compatible keyboard and mouse behavior. All
blocks in INTERFACE CLASSIC are persistent blocks: typing a character does
not replace the block’s contents, and cursor movement does not unmark the block.

Adjust CUA Keyboard Behavior
Only available when KEDIT’s Windows-style CUA interface has been selected.

126

Chapter 5. Menus and Toolbars

Allows you to adjust some of KEDIT’s keys to behave more like they did in text mode
KEDIT. These are the keys that users of text mode KEDIT sometimes find hard to get
used to when switching to the CUA interface.

Enter Key in File Area

Controls the behavior of the Enter key when the cursor is in the file area.

Inserts a New Line

(2
S
©
2
o
o
-
S~
()
=]
c
()
=

Enter inserts a new line following the character at the cursor position. This is the
standard CUA behavior.

Moves to Start of Next Line

Enter moves the cursor to the left margin column of the next line of the file area.
Home Key
Controls the behavior of the Home key.

Moves to Start of Line (Use F12 for Cmd Line, Prefix)

The Home key moves the cursor to the start of the line it is currently on. This is the
standard CUA behavior. (The F12 key will move the cursor to the command line
and if you have the prefix area turned on, F12 will also execute any pending prefix
area commands.)

Moves to Command Line, Handles Prefix Commands

The Home key moves the cursor to the command line and executes any pending
prefix commands.

Delete Key at End-of-Line
Controls the behavior of the Delete key when the cursor is at the end of a line.
Joins Text from Following Line

If this box is checked, pressing Delete with the cursor at the end of a line will join
the text from the next line to the cursor position. This is the standard CUA behav-
ior.

If this box is unchecked, the Delete key will do nothing if pressed when the cursor
is at the end of a line.

Backspace Key at Start-of-Line
Controls the behavior of the Backspace key when the cursor is at the start of a line.

Joins Text to Preceding Line

Options Menu 127

If this box is checked, pressing Backspace with the cursor at the start of a line will
join the text from the line the cursor is on to the end of the preceding line. This is
the standard CUA behavior.

If this box is unchecked, the Backspace key will do nothing if pressed when the
cursor is at the start of a line.

Alt Key All by Itself

Controls the behavior of the Alt key when it is pressed and released alone and not in
combination with any other key.

Activates Menu Mode

When this box is checked, pressing and releasing the Alt key activates the menu
bar at the top of the frame window. This is the standard CUA behavior.

When this box is unchecked, pressing and releasing the Alt key has no effect.
Adjust CUA Mouse Behavior
Only available when KEDIT’s Windows-style CUA interface has been selected.

Specifies whether, when you use the mouse to mark text, you mark selections or persis-
tent blocks.

In addition to Windows-style selections, KEDIT also supports persistent line, box, and
stream blocks. Unlike selections, persistent blocks remain marked, regardless of any
typing or cursor movement, until you specifically unmark them.

Button 1 Marks
Stream Selection

If selected, dragging in the file area with button 1 marks a stream selection.
This is the standard CUA behavior.

Persistent Stream Block

If selected, dragging in the file area with button 1 marks a persistent stream
block.

Ctrl+Button 1 Marks
Line Selection

If selected, dragging in the file area with Ctrl+button 1, or dragging with but-
ton 1 in the window margin or in the prefix area, marks a line selection. This is
the normal CUA behavior.

Persistent Line Block

128

Chapter 5. Menus and Toolbars

If selected, dragging in the file area with Ctrl+button 1, or dragging with but-
ton 1 in the window margin or in the prefix area, marks a persistent line block.

Alt+Button 1 Marks
Box Selection

If selected, dragging with Alt+button 1 in the file area marks a box selection.
This is the normal CUA behavior.

"
S
®

2
o
o

|

—
)
S
c
)

=

Persistent Box Block

If selected, dragging with Alt+button 1 in the file area marks a persistent box
block.

Save Changed Settings for Use in Future KEDIT Sessions

If this box is checked, the changes you have made to the Interface dialog box will be
saved to the Windows registry and will apply to future KEDIT sessions. If this box is
unchecked, your interface changes will only affect the current editing session.

KEDIT Defaults
Changes all of the options in the dialog box back to KEDIT’s built-in defaults.

See also Section 3.2, “CUA and Classic Interfaces”, Section 3.3, “Blocks and Selections”

Options Menu 129

5.4.3 SET Command...

= SET Command

Category: rSettings
I‘E\" |£I [” Uppercase All Text You Type In
Option: ¥ i5earch Operations Are Case Sensitive: Reset

beep [X Change Dperations Are Case Sensitive Save Setting

boundmark.

KEDIT Default

SET CASE controls how KEDIT handles uppercase and lowercase characters during text entry and during find and
replace operations.

Command: |SET CASE MIXED RESFECT RESPECT Level: |View Sawahle: | ves

!

Displays most of KEDIT’s SET options. The SET options let you tailor KEDIT to
match your preferences.

You can have KEDIT automatically start up each time with your preferred settings by
establishing a KEDIT profile called WINPROF.KEX or by using Options Save
Settings.

Dialog box Category
options
Select the category for the type of setting you are interested in. The category you select
determines which SET options are displayed in the Option list box.
All All KEDIT settings that are controllable via this dialog box.
Command Settings that affect how commands are processed, for example
whether an error causes a beep or if synonyms are processed.
File Processing Settings that control how files are read in and written out.
Initialization Settings that affect KEDIT initialization, for example whether Insert
Mode is initially on and whether the initial document window is
maximized.
Interface Settings related to the CUA and Classic interfaces.
Macro Settings that affect how macros are processed.
Miscellaneous Miscellaneous KEDIT settings.
130 Chapter 5. Menus and Toolbars

Target Settings that control how targets are handled, for example whether
searches must match the case of the search string or if the search
should be restricted to certain columns.

Text Display Settings that affect which lines of your file are displayed and how
they are displayed, for example whether syntax coloring is enabled,
which columns of each line are displayed, and whether the highlight-
ing facility is enabled.

Text Entry Settings that affect text entry and word processing facilities, such as
your margins and whether wordwrap is in effect.

Window Layout Settings that control your frame window and document window lay-
out, for example whether scroll bars are displayed, and whether a
scale line is displayed.

Option

Alist of the KEDIT settings belonging to the category selected in the Category list box
is displayed. The value of the option selected in this list box is displayed in the Settings
area.

Settings

Displays the value of the currently-selected Option, and lets you make changes to this
value. A short description of the current Option is shown near the bottom of the dialog
box. If you move the mouse pointer over any of the items in the dialog box, the descrip-
tion will change to information specific to that item. A detailed description of the cur-
rent Option is shown if the Help button is pressed.

When you change the value of an option, the change will take effect when you use the
OK button to close the dialog box, or when you use the Settings list box to select
another option. Note that if you want to change the values of several options, you do
not need to press the OK button and close the dialog box after setting each option; if
you select a new value for one option, that value is immediately put into effect if you
use the Settings list box to move to a different option.

Unless you press the Save Setting button, changes to most options affect only the cur-
rent editing session and do not automatically affect future KEDIT sessions.

Reset

Resets the current Option to the value it had when you initially began to display the
option.

Save Setting

Saves the value of the current setting in the Windows registry so that the new value will
be put into effect at the start of future editing sessions. The Savable box at the bottom
right of the dialog box indicates whether the current option can be saved for future ses-
sions, cannot be saved for future sessions, or is automatically saved for future sessions.

Options Menu

131

(2
S
©
2
o
o
-
S~
()
=]
c
()
=

See also

KEDIT Default
Resets the value of the current setting to the KEDIT’s built-in default.

Command

A read-only field at the bottom of the dialog box that displays the SET command, as it
would be issued from the KEDIT command line, that corresponds to the currently-dis-
played setting.

Level

A read-only field at the bottom of the dialog box that displays the “level” of the cur-
rently-displayed setting. Some SET options are at the Global level, affecting your
entire KEDIT session. Some options are at the File level, affecting only the current file.
Other options are at the View level, and can be different for each view you have of a file
that is displayed in multiple windows.

Savable

A read-only field at the bottom of the dialog box that indicates whether the current set-
ting can be saved in the Windows registry so that it will affect future sessions. ““Yes” is
displayed for most settings, indicating that you can use the Save Setting button to save
the value in the Windows registry and that the option is one of those saved when you
use Options Save Settings. “No” is displayed for settings that cannot be saved in the
Windows registry. ““Auto” is displayed for the few options that are automatically saved
in the Windows registry whenever you change their value.

Status (Options Menu), Save Settings (Options Menu), Chapter 9, “Tailoring KEDIT”

132

Chapter 5. Menus and Toolbars

5.4.4 Status...

Dialog box
options

Notes

‘arbichar oft {+
Ao on I

autoindent off =
autozave 10

autozcral half

backup keep

beep off

boundrnark, zone tunc
caze mised ignore respect
clock on r

[Tat=RaTali fatit}
- +

KEDIT Default Y alue: Lewel:
|arl:u:har off § 7 e

Saved Walue:
|arl:u:har off § 7

[List Mon-Default Settings Only

Displays the status of most KEDIT options, as well as KEDIT’s default setting for each
option and the value saved in the Windows registry. For those settings that can vary
from file to file or from view to view of a single file, the setting for the current file or the
current view of the file is given.

Current Settings

Select the setting that you are interested in from the list of current settings.

KEDIT Default Value
Displays KEDIT’s built-in default for the setting you selected in the Current Settings
list.

Saved Value
Displays the saved setting in the Windows registry for the setting you selected in the
Current Settings list.

List Non-Default Settings Only
When this box is checked, only the settings that are different from KEDIT’s built-in
defaults will be listed in the Current Settings list.

As you start up KEDIT for Windows, settings are changed from their KEDIT defaults
in this order:

Options Menu

133

"
S
®
2
o
o
|
—
)
S
c
)
=

e Any settings in the Windows registry are applied. These are values saved in previ-
ous editing sessions via Options Save Settings or via the Save Setting button of the

Options SET Command dialog box.

e Your KEDIT profile is processed and any SET commands that it contains take ef-

fect.

e During your KEDIT session, you can make additional changes to your settings by
using the Options SET Command dialog box, by issuing SET commands from the

command line, or by running macros that issue SET commands.

5.4.5 Save Settings...

b Mg
caze mixed respect respect
marginz 1 70 +0

Currently Saved Yalue:

Changes from Currently Saved Values:

Cancel

Lewvel:

|backup keep
FEDIT Default Value:

|backup aff

| File

Saves the current values of most KEDIT settings to the Windows registry so that they
can be put into effect at the start of future editing sessions.

Options Save Settings displays a list of all savable settings whose values differ from
their currently-saved values, so that you can be sure of exactly which values will be
saved for future sessions. You can then either go ahead with or cancel the save

operation.

Dialog box Changes from Currently Saved Settings
options

Displays a list of all settings whose values differ from those currently saved in the Win-

dows registry.

Currently Saved Value

Displays the currently-saved Windows registry value for a selected setting.

KEDIT Default Value

Displays KEDIT’s built-in default value for a selected setting.

134 Chapter 5. Menus and Toolbars

Save

Saves all of the values in the Changes from Currently Saved Values list box to the Win-
dows registry. These values will then be put into effect at the start of future KEDIT
sessions.

Level

Indicates the level which the option affects. Some SET options are at the Global level,
affecting your entire KEDIT session. Some options are at the File level, affecting only
the current file. Other options are at the View level, and can be different for each view
you have of a file that is displayed in multiple windows.

"
S
®

2
o
o

|

—
)
S
c
)

=

Notes e If the values of all of your settings match the values that are already saved in the
Windows registry, no changes need to be made to the registry, so KEDIT displays a
message box informing you about this and does not display the Save Settings
dialog box.

e You can also save individual settings from the Options SET Command dialog box
by pressing the Save Setting button.

e Not all of the option values are actually written to the Windows registry. To speed
things up, KEDIT only stores in the registry values that differ from KEDIT’s
built-in defaults.

See Also SET Command (Options Menu), Chapter 9, “Tailoring KEDIT”

5.5 Window Menu

Window
Use this menu to create, rearrange, and move between document windows.

Cascade

Tile Horizontally
Tile Vertically
Arrange...
Arrange Icons

+1 CAKEDITWASAMPLES\HERB.TXT

5.5.1 New Window

Creates a new document window displaying an additional view of the file in the current
window.

Window Menu 135

5.5.2 Cascade

Cascades your document windows within the frame window, with each window
slightly offset from the others.

5.5.3 Tile Horizontally

Arranges your document windows horizontally within the frame window.

5.5.4 Tile Vertically

5.5.5 Arrange..

Arranges your document windows vertically within the frame window.

= Arrange Windows
'w- d Ly 2
Windo | Done I

Horizontal I ‘ Wertical I | Cloze Window I

Arranges the document windows that you select by placing them either vertically or
horizontally within the frame window. Also lets you close selected document
windows.

Dialog box Windows

options
Displays a list of all the document windows so you can select which windows you
want to arrange on the screen.
Initially, all document windows are selected. You can use cursor up, cursor down,
or mouse button 1 to select an individual document window, and can use button 2
or Ctrl+button 1 to select additional windows.

136 Chapter 5. Menus and Toolbars

Horizontal
Arranges the selected windows horizontally.

Vertical
Arranges the selected windows vertically.

Close Window
Closes the selected document windows. If you close the last window viewing a file
and the default of SET OFPW ON is in effect, KEDIT will remove the file from the
ring after asking whether to write any unsaved changes to disk.

Done
Closes the dialog box.

5.5.6 Arrange Icons
Arranges any minimized document window icons at the bottom of the frame window.

5.5.7 Document Window List

At the bottom of the Window menu is a list of all your document windows. You can
select a window from this list to make it the active document window.

If there are more than nine document windows, only the first nine windows are listed,
and a More Windows... item displays a dialog box that lets you choose from a complete

list of all document windows.

5.6 Help Menu
KEDIT Help Fie i Use this menu to access KEDIT’s online Help information.

User's Guide
Reference Manual

KEDIT Web Site

About KEDIT for Windows...

5.6.1 KEDIT Help File
Access the KEDIT Help file, which has full documentation on KEDIT for Windows in
the standard Microsoft HTML Help format.

Shortcuts Press F1.

Help Menu 137

"
S
®
2
o
o
|
—
)
S
c
)
=

5.6.2 User’s Guide

Displays the printable KEDIT for Windows User's Guide. This is a PDF file, and to
view it you will need to have Adobe Acrobat or an equivalent program installed on
your computer. Note that, aside from some of the details from the Selective Editing and
Highlighting chapter of the User's Guide, the entire contents of the User's Guide is built
into the KEDIT Help file.

5.6.3 Reference Manual

Displays the printable KEDIT for Windows Reference Manual. This is a PDF file, and
to view it you will need to have Adobe Acrobat or an equivalent program installed on
your computer. Note that the entire contents of the User's Guide is built into the KEDIT
Help file.

5.6.4 KEDIT Web Site

Opens your Internet browser and displays the KEDIT home page from
http://www.kedit.com.

5.6.5 About KEDIT for Windows...
Displays KEDIT for Windows’ copyright and version information.

5.7 Top Toolbar
Dlz(al gl | o &lQl ssed ofc $[e

This toolbar appears by default for most files you edit. A different default toolbar is
displayed when you are editing DIR.DIR files.

5.7.1 New File

Shortcut for the File New menu item, used to edit a new file. The file will have as a
temporary name the first available name of the form UNTITLED.1, UNTITLED.2, etc.

If you make changes to the file and then save these changes to disk, KEDIT will prompt
you for a permanent name for the file.

(3

New File button

See also New (File Menu), Section 3.5, “Editing Multiple Files”

138 Chapter 5. Menus and Toolbars

5.7.2 Open File
Invokes the File Open dialog box, which allows you to begin editing additional files.

")

L

Open File button

See also Open (File Menu), Section 3.5, “Editing Multiple Files”

"
S
®

2
o
o

|

—
)
S
c
)
=

5.7.3 Save File

Shortcut for the File Save menu item, used to save the current file to disk.

H Save File button

See also Save (File Menu), SAVE (Command Line)

5.7.4 Print File

By default, this displays the File Print dialog box, which lets you print either your entire
file or a marked area within your file.

If you would prefer that the Print File button print your file immediately, and not dis-
play the File Print dialog box, uncheck the ““Print File Toolbar Button Shows This Dia-
log” checkbox within the File Print dialog box. The Print File button will then print the
marked block within your file if there is one, and otherwise will print your entire file.

% Print File button

See also Print (File Menu), PRINT (Command Line)

5.7.5 Quick Find

L 18 Provides a fast way to access most of the features of the Edit Find
dialog box.

To use this toolbar item:

e Enter a search string in the edit field or select a recent search string from the list displayed
by clicking the down arrow beside the edit field.

e Press Enter to search forward through the file for the string.
e Press Shift+Enter to search backward through the file for the string.

e Press Escape to leave Quick Find mode.

See also Find (Edit Menu), Find Next (Top Toolbar), LOCATE (Command Line)

Top Toolbar 139

5.7.6 Find Next

Searches forward or backward through the file for the next or previous occurrence of
the search string that is displayed in the Quick Find toolbar item.

T

a4 Find Next button

To search forward for the search string, click on the Find Next button. To search back-
ward, hold down the Shift key and click on the Find Next button.

See also Find (Edit Menu), Quick Find (Top Toolbar), LOCATE (Command Line)

5.7.7 Find Dialog Box
Activates the Edit Find dialog box.

q Find Dialog Box button

See also Find (Edit Menu)

5.7.8 Previous File

Makes the previous file in the ring of files you are editing become the current file.

+
Tt

Previous File button

5.7.9 Next File

Makes the next file in the ring of files you are editing become the current file.

+
+

e

+

Next File button

5.7.10 Undo
Shortcut for the Edit Undo menu item. Use it to undo one level of changes to the current
file. Undo can be used repeatedly to undo multiple levels of changes.
KT
Undo button
See also Redo (Top Toolbar), Undo (Edit Menu), Section 3.13, “The Undo Facility”

140 Chapter 5. Menus and Toolbars

5.7.11 Redo

Shortcut for the Edit Redo menu item. Use it to redo one level of changes to the current
file. Redo is only available if you have recently used the undo facility and have not
made any intervening changes to your file. If you have used Undo repeatedly to undo
multiple changes, you can use the Redo button repeatedly to redo those changes.

il

Redo button

"
S
®

2
o
o

|

—
)
S
c
)

=

See also Undo (Top Toolbar), Redo (Edit Menu), REDO (Command Line), Section 3.13, “The
Undo Facility”

5.7.12 Cut to Clipboard

Shortcut for Edit Cut menu item. The contents of the current block or selection is
placed in the clipboard, replacing any existing clipboard contents, and the block or
selection is deleted from your file.

&

Cut button

See also Cut (Edit Menu)

5.7.13 Copy to Clipboard

Shortcut for Edit Copy menu item. Copies the contents of the current block or selection
to the clipboard, replacing any existing clipboard contents.

Copy button

See also Copy (Edit Menu)

5.7.14 Paste from Clipboard

Shortcut for Edit Paste menu item. Copies the text that is in the clipboard into your file
or to the command line, inserting it at the cursor position. Multi-line clipboard text can
only be pasted into your file, and not to the command line.

Jic)

Paste button

See also Paste (Edit Menu)

Top Toolbar 141

5.8 Bottom Toolbar

alnfm] | 8] 8] kK| EE| & | =[]

This toolbar does not appear by default. To turn it on, use the TOOLBAR option within
the Options SET Command dialog box or issue SET TOOLBAR ON BOTH from the
command line.

5.8.1 Copy Block

Copies a persistent block to the cursor position. The block remains marked at its new
location.

Copy Block button

See also COPY (Command Line)

5.8.2 Move Block

Moves a persistent block to the cursor position. The block remains marked at its new
location.

Move Block button

See also MOVE (Command Line)

5.8.3 Overlay Block

Overlays the text at the cursor position with the contents of a persistent block. The
block remains marked at its new location.

®

Overlay Block button

See also OVERLAYBOX (Command Line)

5.8.4 Delete Block
Deletes a KEDIT block or selection.

L]

Delete Block button

See also DELETE (Command Line)

142 Chapter 5. Menus and Toolbars

5.8.5 Shift Block Left

Shifts the text in a block one character to the left.

| |
* | Shift Block Left button

See also SHIFT (Command Line)

"
S
®

2
o
o

|

—
)
S
c
)

=

5.8.6 Shift Block Right

Shifts the text in a block one character to the right.

| |
= 1 Shift Block Right button

See also SHIFT (Command Line)

5.8.7 Uppercase Block

Shortcut for the Actions Uppercase menu item. Uppercases the text in a KEDIT block
or selection.

K

Uppercase Block button

See also UPPERCASE (Command Line)

5.8.8 Lowercase Block

Shortcut for the Actions Lowercase menu item. Lowercases the text in a KEDIT block
or selection.

k

Lowercase Block button

See also LOWERCASE (Command Line)

5.8.9 Leftadjust Block
Left-adjusts the text in a block.

E Leftadjust Block button

If the block is a line block, the text is left-adjusted to the left margin column. The con-
tents of box blocks and one-line stream blocks are left-adjusted to the leftmost column
of the block and text outside the block is not affected. You cannot left-adjust a
multi-line stream block.

Bottom Toolbar 143

See also LEFTADJUST (Command Line)

5.8.10 Rightadjust Block

Right-adjusts the text in a block.

E Rightadjust Block button

If the block is a line block, the text is right-adjusted to the right margin column. The
contents of box blocks and one-line stream blocks are right-adjusted to the rightmost
column of the block and text outside the block is not affected. You cannot right-adjust a
multi-line stream block.

See also RIGHTADJUST (Command Line)

5.8.11 Fill Block

Prompts you to enter a fill character, and then fills the currently-marked block with
copies of that character.

ﬁ Fill Block button

If the fill character is a space character, the block will be blanked out.

See also FILL (Command Line)

5.8.12 Set Bookmark1

Names the focus line as Bookmarkl].

&] Set Bookmark1 button

You can later use the Go to Bookmark1 button on the bottom toolbar to return to this
line.

See also Bookmark (Actions Menu)

5.8.13 Go to Bookmark1

After using the Set Bookmark1 button to give a line the name Bookmark1, you can later
use the Go to Bookmark1 button to return to that line.

fflﬂ Go to Bookmark1 button

See also Bookmark (Actions Menu)

144 Chapter 5. Menus and Toolbars

5.8.14 Hide Excluded Lines

See also

Displays only the subset of the file that you have previously selected using the Edit
Selective Editing dialog box or the ALL command.

= Hide Excluded Lines button

You can use this button in conjunction with the Show All Lines button to toggle
between editing only the lines you previously selected with Edit Selective Editing or
the ALL command and editing all of the lines in the file.

Selective Editing (Edit Menu), ALL (Command Line), Chapter 8, “Selective Line
Editing and Highlighting”

5.8.15 Show All Lines

See also

Displays all lines of your file, even lines that have been excluded via the Edit Selective
Editing dialog box or the ALL command.

ey

Show All Lines button

You can use this button in conjunction with the Hide Excluded Lines button to toggle
between editing only the lines you previously selected with Edit Selective Editing or
the ALL command and editing all the lines in the file.

Selective Editing (Edit Menu), ALL (Command Line), Chapter 8, “Selective Line
Editing and Highlighting”

5.9 Top Toolbar for DIR.DIR File

IS EEET = glal =] oo o)

This toolbar appears by default when the active file is a DIR.DIR file. DIR.DIR files
contain directory listings and can be created through the File Directory dialog box and
by issuing the DIR command from the command line. Most items on the DIR.DIR
toolbar are the same as on the top toolbar that is used for files other than DIR.DIR files,
but the clipboard cut, copy, and paste buttons are replaced by buttons that help you sort
and manipulate directory listings.

Top Toolbar for DIR.DIR File 145

"
S
®

2
o
o

|

—
)
S
c
)

=

5.9.1 Sort by Name

Sorts a DIR.DIR file into alphabetical order according to the file name.

a.—
T —

Sort by Name button

See also Section 3.9, “The DIR.DIR File”, DIRSORT (Command Line)

5.9.2 Sort by Extension
Sorts a DIR.DIR file into alphabetical order according to the file extension.

—.d
—.Z

Sort by Extension button

See also Section 3.9, “The DIR.DIR File”, DIRSORT (Command Line)

5.9.3 Sort by Size

Sorts a DIR.DIR file according to the size of each file that is listed, with the largest files
listed first.

[y

See also Section 3.9, “The DIR.DIR File”, DIRSORT (Command Line)

Sort by Size button

5.9.4 Sort by Date

Sorts a DIR.DIR file according to the date and time that each file was last changed, with
the newest files listed first.

@ Sort by Date button

See also Section 3.9, “The DIR.DIR File”, DIRSORT (Command Line)

5.9.5 Parent Directory

Replaces the contents of the DIR.DIR file with a listing of the parent directory of the
file listed at the cursor position.

Parent Directory button

See also Section 3.9, “The DIR.DIR File”

146 Chapter 5. Menus and Toolbars

5.10 Top Toolbar for Empty Ring

Dzl w8

This toolbar appears by default when no files are being edited.

"
S
®
2
o
o
|
—
)
S
c
)
=

5.10.1 New File

Shortcut for the File New menu item, used to edit a new file. The file will have as a
temporary name the first available name of the form UNTITLED.1, UNTITLED.2, etc.
If you make changes to the file and then save these changes to disk, KEDIT will prompt
you for a permanent name for the file.

1

New File button

See also New (File Menu), Section 3.5, “Editing Multiple Files”

5.10.2 Open File

Invokes the File Open dialog box, which allows you to select an existing file to edit.

'}

=

Open File button

See also Open (File Menu), Section 3.5, “Editing Multiple Files”

5.10.3 Directory

Invokes the File Directory dialog box, which lets you change KEDIT’s current direc-
tory or obtain a DIR.DIR directory listing.

i

Directory button

See also Directory (File Menu)

5.10.4 Exit KEDIT

Terminates your KEDIT session.

El Exit KEDIT button

Top Toolbar for Empty Ring 147

Chapter 6. Targets

When using KEDIT’s command line and when writing KEDIT macros, you often need
to refer KEDIT to some location in your file. You might want KEDIT to do something
to the 127th line of the file, or to the line 82 lines below where you are now, or to the
next line containing the word “Washington”. To pick out locations in your file, you
give KEDIT a farget describing the line you want. This chapter discusses the different
kinds of targets used by KEDIT and how to work with them.

When you issue commands from KEDIT’s command line, the most common use of tar-
gets is to specify which line you want to be the current line, which is normally dis-
played in the middle of the screen and which has a box drawn around it when the cursor
is on the command line.

You can think of the current line as being pointed to by a current line pointer, which can
move up or down in your file to make different lines become the current line. By speci-
fying which line is to be the current line, you determine which portion of the file you
will see through the screen’s window into the file. The window will show you the cur-
rent line and the lines immediately above and immediately below it.

6.1 Types of Targets

6.1.1 Absolute Line Number Targets

A colon (““:””) followed immediately by a number is used to specify a target by its abso-
lute line number. For example, to move the current line pointer to line 16 of your file,
making that line the current line, you could enter

locate :16

from the command line. The LOCATE command tells KEDIT to locate a target and to
make the target line become the current line. LOCATE is performed so frequently that
KEDIT provides a shortcut: if you omit the word LOCATE and simply enter a target,
KEDIT assumes that you want to locate the target. So an equivalent way to make line
16 be the current line would simply be

:16

[T 2]

Semicolons (““;”) are also accepted with absolute line number targets. ““;16” is equiva-
lent to ““:16”".

148

Chapter 6. Targets

6.1.2 Relative Line Number Targets

You can also determine the current line by giving a relative line number. For example,
entering the command

locate 5

or the equivalent command

5

tells KEDIT to move the current line pointer down five lines. The line that is five lines
below the current line becomes the new current line. If line 20 of the file is the current
line when you enter the 5, line 25 will become the current line. ““:5”°, on the other
hand, would make line 5 become the current line. This is the difference between using
absolute and relative line numbers in a target. With absolute line number targets, you
give KEDIT the number of the line that you want to make the current line. With relative
line number targets, you give KEDIT a number that is added to the line number of the
current line, yielding the line number of the new current line.

You can also use negative numbers as relative line numbers. For example,
-5

would cause 5 to be subtracted from the current line number. So ifline 20 is the current
line, ““-5”” will make line 15 the new current line.

An asterisk (““*””) can be used as a special target meaning the end-of-file line. ““-*”isa
special target meaning the top-of-file line. (The target “:0” would also make the
top-of-file line become the current line.)

6.1.3 String Targets

String targets are a third form of target. You give KEDIT a string of characters that is
contained in the line that you want to become the new current line. KEDIT searches
through the file for you, starting one line below the current line and examining each
succeeding line, until it finds a line containing the desired string. This saves you the
trouble of looking for the string yourself and having to tell KEDIT what line it is in.

For example, assume you know that somewhere in your file is the string “Hello”. You
are not sure where it is, but you would like the line containing it to be the current line so
that you can make some changes in it. To locate it, you could enter the following on the
command line:

locate /Hello/

or, equivalently,

Types of Targets

149

String target
delimiters

/Hello/

This tells KEDIT to look through the file, examining in turn each line after the current
line, until it finds one containing the string ““Hello”. That line is then made the new
current line.

Note that KEDIT’s target highlighting facility, controlled by SET THIGHLIGHT,
highlights string targets that you find using LOCATE and CLOCATE commands. So,
in our example, the string “Hello” would now be highlighted. (If you do not like this
effect you can turn off target highlighting with SET THIGHLIGHT OFF.)

The slash (““/”*) characters around the string ““Hello” in our example are delimiters that
are not part of the string searched for. KEDIT uses the delimiters to determine exactly
what string of characters you want it to search for. The string you are looking for is
always surrounded by a pair of delimiter characters; these are normally slashes. For
example, the following two string targets

/a/
/a /

are different. The first string target tells KEDIT to look for the next line containing the
letter ““a”. The second, since a blank is also within its delimiters, tells KEDIT to look
for an “a” followed by a blank. To see the difference, notice that the letter ““a” is found
in the word “bank”, while “a” followed by a blank is not.

Although the slash character (*/*’) is normally used as the delimiter character, other
special characters can be used. Special characters are characters other than letters,
numbers, and blanks. A number of special characters need to be avoided, however,
because they have some special meaning to KEDIT: asterisk (““*””), colon (**:”*), semi-
colon (““;), caret (““*””), ampersand (“&’’), plus sign (““+””), period (**.””), minus sign
("), equal sign (“=""), and tilde (“*~”*). The final restriction on delimiters is that they

cannot occur in the string that they delimit. So

/a/b/

is not a valid string target, since the string ““a/b” contains the delimiter that was used,
/. To search for “a/b” you would have to use some other delimiter. A ““,”” would
work:

,a/b,

6.1.4 Word Targets

String targets normally look for any occurrence of the string that you specify. For
example

/age/

will locate the next occurrence of the string ““age” wherever it occurs, even if it is part
of another word. So, for example, ““age” would be found in a line that contained the
word “language”.

150

Chapter 6. Targets

Prefix and
suffix targets

Since it is sometimes useful to isolate just the occurrences of a particular word, as
opposed to all occurrences of a given string, KEDIT provides word targets. Word tar-
gets work just like normal string targets, except that they are specified by preceding the
string target with the word WORD (minimal truncation W). So, you can say

locate word /age/

to find a line containing the word ““age” but not a line containing the word ““language”’.

Note that when specifying targets for LOCATE that start with alphabetic characters,
such as the word target in the preceding example, you must include LOCATE (or the
minimal truncation L).

Similar to word targets are prefix and suffix targets. When you specify a PREFIX target
(minimal truncation P) KEDIT will look for occurrences of a string appearing at the
start of a word. So, for example,

locate prefix /age/

would find the word “age” and the word “ageless”, since both words start with the
string “age”, but it would not find the word ““language”.

When you specify a SUFFIX target (minimal truncation S) KEDIT will look for occur-
rences of a string appearing at the end of a word. So, for example,

locate suffix /age/

would find “age” and would find “language”, but would not find “ageless”.

6.1.5 More About String Targets

Backward
string search

Negative
string search

KEDIT normally starts at the line below the current line and searches forward in the file
for a string target. It is sometimes useful to have KEDIT search backward starting at
the line above the current line and looking in turn at each previous line. You tell
KEDIT you want a backward string search by putting a minus sign (“°-”’) before your
string target. For example,

-/Hello/

will cause KEDIT to search backward in the file for the string “Hello™.

-word /age/

will cause KEDIT to search backward in the file for the word ““age”.

It is also occasionally useful to look for the first line that does not contain a specified

string. This is known as a negative string search, and you request it by preceding your
string target with a tilde (““~”’) or a caret (“*”"). For example,

9

Types of Targets

151

Combining
string targets

Regular
expressions

~/Hello/

tells KEDIT to search for the first line below the current line that does not contain the
string “Hello™, and

~word /age/
tells KEDIT to search for the first line below the current line that does not contain the

word “age”.

You can use logical operators to combine string targets. The “and” operation is indi-
cated with an ampersand (“&”) and the “or”’ operation is indicated by a vertical bar
(‘|”). (The or operator is ASCII character 124, which appears on most U.S. keyboards
as a split vertical bar, located above the backslash key.) Some examples:

/a/ & /b/ & /c/
This tells KEDIT to look for the next line containing an “a” and a “b>” and a “c”.
/Washington/ | /Lincoln/

This tells KEDIT to look for the next line that contains either ‘“Washington” or
“Lincoln”.

/a/ | word /the/

This tells KEDIT to look for the next line that either contains the letter ““a’ or the word
“the”.

Regular expressions are a special kind of string target that let you match more general
string patterns than ordinary string targets. Regular expressions are more powerful but
also more complicated than standard string targets and are discussed separately in
Section 6.6, “Regular Expressions”.

Related SET Several SET command options affect how KEDIT carries out string searches. Be sure
options to read the full descriptions of the following SET command options in Reference
Manual Chapter 4, “The SET Command”.
SET ARBCHAR Controls whether “wildcard” characters are allowed in string tar-
gets.
SET CASE Controls how uppercase and lowercase letters in your search string
are handled.
SET HEX Lets you use special hexadecimal and decimal notation to specify
string targets.
SET STAY Controls the location of the current line after you search for a string
target that is not found.
SET VARBLANK Controls how KEDIT matches text that contains several blanks in a
TOW.
152 Chapter 6. Targets

SET WRAP Allows certain string target searches to wrap around to the top por-
tion of the file if the target is not found below the current line.

SET ZONE Controls which columns of your text KEDIT searches when looking
for string targets.

6.1.6 Named Line Targets

KEDIT also provides named line targets. You can give a line a name by using the
SET POINT command. This name does not become a part of your file, but is merely a
name tag that KEDIT associates with the line while you are editing the file.

set point .abc

tells KEDIT to give the current line the name tag ““.ABC”’. (All such name tags must
begin with a period (“.””).) Once you have named a line, and have then moved the cur-
rent line pointer to somewhere else in the file, you can return to the line by using a

named line target:
.ABC

This tells KEDIT to make the line that you named “.ABC” with some previous
SET POINT command become the new current line.

You can also use the Actions Bookmark dialog box to work with named lines.

6.1.7 Line Class Targets

BLANK targets

With line class targets you can look for a line based on some attribute of the line. The
classes of lines that you can specify are: lines that are blank, lines whose flag bits are set
to particular values, and lines that have a certain selection level.

Use the BLANK target (minimal truncation BLA) to look for a blank line. For example,

locate blank

will tell KEDIT to look for the next blank line in your file.

Note that when KEDIT is looking for a blank line it considers the line to be blank if it
contains no nonblank characters within the current zone setting. (So a line can have
nonblank characters outside the current zone and still be considered blank.)

locate -blank

tells KEDIT to look backward in your file for the first blank line occurring above the
current line.

locate ~blank

tells KEDIT to look for the next line in your file that is not blank.

Types of Targets

153

Flag bit targets

Selection level
targets

You can combine line class targets with string targets. So, for example, you can use the
command

locate /Fred/ | blank

to locate the next line that either contains the string “Fred” or is blank.

Other line class targets are based on the flag bits that can be associated with a line.
There are three flag bits that can be associated with a line: the new bit, which is set
when a line is added during the current KEDIT session; the change bit, which is set
when a line has been changed during the current KEDIT session; and the tag bit, which
is set when you have used the TAG command to tag a line.

The targets corresponding to the flag bits are the NEW target, the CHANGED target
(minimal truncation CHA), and the TAGGED target (minimal truncation TAG). Also

available is the ALTERED target (minimal truncation ALT), which finds lines that
have been either added or changed during the current KEDIT session. For example

locate altered

would look for the next line that is either new or changed.

For more information about flag bits, see the description of the SET LINEFLAG com-
mand in the Reference Manual, and the description of the KEDIT highlighting facility
in Chapter 8, “Selective Line Editing and Highlighting”.

Finally, you can also use line class targets to locate a line by its selection level. Selec-
tion levels are discussed in Chapter 8, “Selective Line Editing and Highlighting”. You
can specify

locate select n
where # is the selection level you are concerned with. For example,
locate select 5

will locate the next line that has a selection level of 5.

Also available is

locate select nm

where you look for a line whose selection level falls in the specified range between n
and m, for example

locate select 1 7

looks for the next line whose selection level is in the range from 1 to 7.

154

Chapter 6. Targets

6.1.8 Some Further Examples

You have now seen most types of KEDIT targets. (KEDIT’s group targets will be dis-
cussed in Section 6.3, “Group Targets”, and regular expression targets in Section 6.6,

“Regular Expressions”.)

Here are some further examples:

*

—-%
:18
5

/abc/

-~/abc/

-prefix /abc/

-2

. XYZ

/John/ & ~/Tom/

~tagged

/abc/ | altered

-select 3

~reg /a[0-9]b/

Make the end-of-file line become the current line.
Make the top-of-file become the current line.
Make line 18 become the current line.

The line that is five lines below the current line becomes the
current line.

The first line located below the current line which contains
the string ““abc” becomes the current line.

The first line above the current line that does not contain the
string ““abc’ becomes the current line.

The first line above the current line that contains a word be-
ginning with ““abc’ becomes the current line.

The line two lines above the current line becomes the cur-
rent line.

The line that was previously named “.XYZ” via the
SET POINT command becomes the current line.

The current line pointer moves to the first line below the
current line that contains “John” but does not contain
“Tomﬂﬂ.

The current line pointer moves to the first line below the
current line that does not have its tag bit set..

The current line pointer moves to the first line below the
current line that either contains the string ““abc” or has been
altered (added or changed) during the current KEDIT ses-
sion.

The current line pointer moves to the first line above the
current line that has a selection level of 3.

The current line pointer moves to the first line below the
current line that does not contain an "a" followed immedi-
ately by a digit followed immediately by a "b".

Types of Targets

155

6.2 Other Uses for Targets

You have seen how targets can be used to determine which line will be the current line.
You can also use targets as operands of many KEDIT commands. You use these targets
to tell KEDIT what area of the file the command is supposed to affect. In general,
KEDIT commands that take targets as operands will affect all lines from the current
line down to, but not including, the target line. (If the target is above the current line,
the command will affect all lines from the current line up to, but not including, the tar-
get line.) The portion of your file operated on by a command that handles target
operands is known as the target area.

The UPPERCASE command is one of the KEDIT commands that takes a target as an
operand. The UPPERCASE command is used to capitalize all letters in some part of
your file. You specify a target as the operand of the UPPERCASE command to tell
KEDIT which part of the file to uppercase.

uppercase 1
will uppercase one line, the current line.
uppercase /abc/

will uppercase lines, starting with the current line and continuing down to, but not
including, the next line containing the string “abc”.

uppercase :8

will uppercase lines, starting with the current line and continuing up or down to, but not
including, line 8.

uppercase .Xyz

will uppercase lines, starting with the current line and continuing up or down to, but not
including, the line named .XYZ (via the SET POINT command).

The general form of the UPPERCASE command is
uppercase target

where target is any KEDIT target. The UPPERCASE command will uppercase all
lines from the current line through the target line. It will not uppercase the target line
itself.

Another example of a command that uses targets as operands is the DELETE com-
mand. The DELETE command deletes all text in the target area.

delete 2
will delete the current line and the line below it, for a total of two lines.
delete *

will delete all lines from the current line through the last line of the file.

156

Chapter 6. Targets

6.3 Group Targets

When targets are used as the operand of a command like UPPERCASE or DELETE
(that is, a command that uses a target to determine the portion of your file that it will
operate on), a special kind of target known as a group target is available. There are
three group targets: ALL, BLOCK, and PARAGRAPH.

The ALL target causes the command to operate on all of your file. For example,
uppercase all

uses your entire file as the target area. KEDIT uppercases the text in all lines of your
file. Note the distinction between this command and

uppercase *

which causes KEDIT to uppercase the text from the current line down but does not
affect text in lines above the current line. Also note that the target ALL is different from
the ALL command.

Another type of group target is the BLOCK target, which uses the currently marked
line, box, or stream block as the target area. For example,

delete block
deletes all text in the currently marked block, while
print block

sends all text in the currently marked block to the printer. If there is no currently
marked block, you will get an error message if you attempt to use a BLOCK target.

IfINTERFACE CUA is in effect and you have marked a selection, as opposed to a per-
sistent block, in your file, the BLOCK target can still be used and it will operate on the
selection. The command involved would, however, need to be issued from a macro run
when the cursor is in the file area (for example, a macro assigned to a key). You cannot
issue a command from the command line that affects a selection, because moving the
cursor to the command line would unmark your selection.

The PARAGRAPH group target (minimal truncation PARA) causes the command to
operate on text in the current paragraph. Paragraphs normally have blank lines above
and below them, but with the SET FORMAT command, you can control how KEDIT
defines ““paragraphs”.

delete paragraph

tells KEDIT to delete all lines of the paragraph in which the current line is contained.

While some commands, like DELETE and PRINT, operate when any type of block is
defined, others have restrictions. For example, The FLOW command and the COM-
PRESS and EXPAND commands work only with line blocks.

Group Targets

157

6.4 Column Targets

Column
commands

Much as KEDIT keeps track of a current line with a current line pointer, KEDIT uses a
column pointer to keep track of a current column. The current column can range from
one column to the left of the left zone column to one column to the right of the right
zone column. Just as most KEDIT commands issued from the command line act with
respect to the current line, KEDIT has a set of column commands that act with respect
to the current column. And just as you use the LOCATE command to determine the cur-
rent line, you can use the CLOCATE command to determine the current column. (See
the next section for a discussion of the related focus line and focus column concepts.)

When SCALE ON is in effect, KEDIT puts a vertical bar (“|”’) at the column pointer
position on the scale line. You can also use the QUERY COLUMN command to deter-
mine the current column.

KEDIT’s column commands are CAPPEND, CDELETE, CFIRST, CINSERT,
CLAST, CLOCATE, CMATCH, COVERLAY, and CREPLACE.

KEDIT has column targets, which pick out a particular column, that are analogous to
the normal KEDIT targets that pick out a particular line. Column targets are valid only
as operands of the CDELETE and CLOCATE commands. The three types of column
target are:

[TP%L)

absolute column targets Give a colon (““:”) followed by the column number you are
interested in.

:10 refers to column 10
:38 refers to column 38

relative column targets Give a number (optionally preceded by a minus sign) to refer
to a column relative to the current column pointer.

8 refers to the column 8 columns to the right of the current column
pointer

-4 refers to the column 4 columns to the left of the current column
pointer

string column targets Give the string that you want to locate, enclosing it in delim-
iter characters. KEDIT searches for the string starting one column beyond (or, if
the target is preceded by a minus sign, one column before) the column pointer col-
umn of the current line. If STREAM OFF is in effect, KEDIT searches only the
current line. IFfSTREAM ON, the default, is in effect, KEDIT continues the search
in succeeding lines of your file.

158

Chapter 6. Targets

/abe/ refers to the column containing the ““a” of the first ““abc” to the right
of the column pointer

-/abe/ refers to the column containing the “a” of the first “abc” to the left
of the column pointer

6.5 The Focus Line

When you work with KEDIT, the cursor position usually determines the line of the file
on which your attention is focused. When you issue a command from the command
line, your attention is focused on the current line, which is normally displayed in the
middle of the document window, and which has a box drawn around it when the cursor
is on the command line. KEDIT commands issued from the command line act with
respect to the current line.

When the cursor is in the file area, your attention is normally focused on the line in
which the cursor is located. If you press a key while the cursor is in the file area, (for
example, if you press Alt+L to mark a line) then commands issued from the macro
assigned to the key will act with respect to the cursor line (that is, Alt+L will mark the
cursor line).

The line on which your attention is focused, the line that KEDIT commands act with
respect to, is called the focus line.

For example, if you issue the DUPLICATE command from the command line, or if the
cursor is on the command line and you press the F8 key, which issues the DUPLICATE
command, then the current line is duplicated. If the cursor is on a line of your file and
you press F8, then the line that the cursor is on is duplicated, regardless of whether that
line is the current line.

As another example, suppose you issue the command LOCATE :10. This command
tells KEDIT that you want to shift the focus of your attention to line 10 of your file. If
you issue this command from the command line KEDIT makes line 10 of your file
become the new current line. Since the current line is displayed in a fixed location in
the window, the only way for KEDIT to make a new line become the current line is to
scroll the window so that the new line is displayed at the current line location.

If you press a key that issues the LOCATE :10 command while the cursor is on a line of
your file, then you are again telling KEDIT that you want to shift your attention to line
10 of your file—that is, you want to make line 10 of your file the new focus line. When
the cursor is in the file area, KEDIT does not necessarily have to scroll the window to
make a different line become the focus line. If the new focus line is already being dis-
played in the window, KEDIT can simply move the cursor to that line. If the new focus
line is not already in the window, then KEDIT does need to scroll the window; KEDIT
makes the new focus line become the current line, and positions the cursor on that line.

The Focus Line

159

Focus column

In summary, KEDIT commands act with respect to the focus line. Ifthe cursor is on the
command line, the focus line is the current line. If the cursor is on a line of your file,
then the focus line is the line that the cursor is on.

Just as KEDIT uses the concepts of the current line and the focus line, KEDIT also uses
the concepts of the current column and the focus column. Section 6.4, “Column
Targets”, discusses KEDIT’s current column. KEDIT’s column commands
(CLOCATE, CDELETE, etc.) actually act relative to the focus column. The focus col-
umn is the same as the current column when the cursor is on the command line or in the
prefix area. When the cursor is in the file area, the focus column is the cursor column.

6.6 Regular Expressions

6.6.1 Overview

Regular
expressions
as targets

This section describes KEDIT’s regular expressions, which provide pattern matching
facilities that go far beyond the capabilities of ordinary string targets.

While regular expressions are more powerful than ordinary string targets, they are also
somewhat more complex to learn about and to work with. If you are just getting started
with KEDIT, and are not already familiar with regular expressions, you probably do not
need to know how to use regular expressions yet. Instead, you might want to learn
about regular expressions after you gain more experience with ordinary string targets
and with commands like SET ARBCHAR.

Regular expressions, which evolved in the UNIX world, provide a powerful method
for matching character patterns and have been incorporated into KEDIT as a special
type of string target. We will first take an informal look at how regular expressions are
used, and then give descriptions of each of the components of regular expressions.

If you have already worked with regular expressions in other applications, you may
notice some differences between KEDIT’s version of regular expressions and the ver-
sion that you are familiar with. The general concepts involved are the same in all ver-
sions of regular expressions, but the exact details of which operations are supported
and which special characters invoke those operations tend to vary.

Since regular expressions are a type of target, you can use them with any KEDIT com-
mands that use targets, such as the LOCATE, CLOCATE, and ALL commands. Like
other string targets, regular expressions used in KEDIT commands are enclosed in
delimiters, which are most often a pair of slashes. To let KEDIT know that you are
using a regular expression target, as opposed to some other type of target, you precede
the expression with REGEXP, or any truncation of REGEXP, such as R or REG. So

locate /ab+c/

uses a normal string target that matches the string “ab+c”’, while

160

Chapter 6. Targets

Regular
expressions
and the Edit
menu

Text specifiers
and operators

Escape
character

Wildcard
character

locate reg /ab+c/

uses a regular expression target that turns out to match strings consisting of an ““a”, one
or more “b”’s, and a ““c”’.

Regular expressions can also be used with KEDIT’s Edit Find, Edit Replace, and Edit
Selective Editing dialog boxes. These dialog boxes use a Regular Expression check
box to indicate the use of regular expressions, so you do not need to type in REGEXP,
and the strings that you enter into these dialog boxes are not enclosed in delimiters.
This discussion will use LOCATE commands to illustrate most of its points about regu-
lar expressions, but the principles discussed apply to other uses of regular expressions.

Regular expressions consist of fext specifiers and operators. Text specifiers are ele-
mentary values that KEDIT attempts to match against text in your file. Operators affect
the way that text specifiers are processed and are used to build more complex regular
expressions.

For example,

locate reg /abc/

uses a regular expression consisting only of the text specifiers “a”, “b”’, and “c¢”. This
regular expression matches the string “abc”. But the regular expression in

locate reg /ab+c/

uses the “+”” operator, which matches one or more occurrences of whatever immedi-
(13 2

ately precedes it. So this regular expression matches a string consisting of an ““a”’, one
or more “b”’s, and a ““c”’.

Suppose that you want to use a regular expression to match the string ““ab+c”’. You will
then need to specify the “+” character in the regular expression without having it inter-
preted as an operator. To make any of the characters that have special meanings within
regular expressions instead serve as literal characters that match themselves, you pre-
cede them with a backslash (““\”’). Backslash serves as the regular expression escape
character. So while the regular expression in the last example matches “a”, one or
more “b’’s, and a “c”’, this example matches ““ab+c’’:

locate reg /ab\+c/

In general, letters, numbers, and blanks can be used directly in regular expressions as
text specifiers, but most special characters have special meanings, and must be pre-
ceded by a backslash if they are to be used as text specifiers that match themselves.

Another character with a special meaning is the question mark (““?””), which is a text
specifier that matches any single character. That is, ““?”’ is the wildcard character for
regular expressions. For example,

locate reg /a?c/

will look for an “a” followed by any other character and then by a “c”, matching
strings like “a5c¢” or “axc”, but not “axyc”.

Regular Expressions 161

Character
classes

Predefined
expressions

Using
operators

Another type of text specifier is the character class. Suppose you want to find strings
containing the character “y” followed by a numeric digit. If KEDIT did not support reg-
ular expressions, you would need to use this lengthy combination of ordinary string
targets:

locate /yO0/I1/y1/1/y2/1/y3/1/y4/1/y5/1/y6/1/y7/1/y8/1/y%/

But you can instead use this much shorter regular expression to match any of “y0”,
“y17, ete.:

locate reg /y[0123456789]/

To specify a character class, you enclose a set of characters in square brackets (“[” and
“]”) to form a text specifier that matches any one of the characters in the class. This reg-
ular expression can be further shortened because you can specify a range of consecu-
tive characters within a character class by giving the first character in the range, a
minus sign (“-”"), and the last character. So another way to match the letter “y” fol-
lowed by a digit would be:

locate reg /y[0-91/

T3k 2]

You can use a tilde (“~”’) immediately after the left bracket that introduces a character
class to indicate that anything except the specified characters will be matched. For
example,

locate reg /y[~0-9]/

matches a “y” followed by anything other than a digit. This regular expression would
match “ya” or “y+”, but not “y0” or “y1”.

Some sequences, like [0-9] (which matches any single digit) and [a-zA-Z0-9] (which
matches any single alphanumeric character), are used frequently enough in regular
expressions that they are available in shorthand form. For example, ““:a” is a predefined
expression that can be used instead of [a-zA-Z0-9]. Predefined expressions consist of a
colon and a lowercase letter. ““:d” is the predefined expression used for [0-9], so one
more way to look for a “y” followed by a digit would be:

locate reg /y:d/

Suppose that you want to look for a string consisting of a ““y”’ followed by one or more
digits followed by a ““z”. The character class [0-9] can match only a single digit, and
not a group of digits. But by combining this character class with an operator, you can do
the job:

locate reg /y[0-9]+z/

This would match strings like “y12z” or “y343478z”. The regular expression uses
“+”, which is known as the minimal plus operator. “+°* operates on the immediately
preceding expression (in this case the character class “[0-9]”’, which matches any sin-
gle digit) and matches one or more occurrences of the expression (in this case it
matches one or more digits).

162

Chapter 6. Targets

CHANGE
command

Another frequently-used operator is ““*”’, the minimal closure operator, which matches
zero or more occurrences of an expression, as opposed to ““+”°, which matches one or
more occurrences of an expression. The preceding example will match “yl1z” or
“y12z”, but not “yz”, because no digits appear between the “y”” and the “z”” and

locate reg /y[0-9]*z/

will match “y1z” and “y12z”, but also “yz”.

In addition to their role as string targets, regular expressions can also be used with the
CHANGE and SCHANGE commands and with the Edit Replace dialog box. To indi-
cate that you are using a regular expression, you need to follow the name of the
CHANGE or SCHANGE commands with REGEXP, or a truncation like REG or R, or
use Edit Replace’s Regular Expression check box. You can then use a regular expres-
sion to specify the string that is to be changed. For example,

change reg /y[0-9]*z/xxx/all *

will replace all occurrences in your file of ““y”” followed by zero or more digits and then
by “z” with the string ““xxx”’.

6.6.2 Regular Expression Text Specifiers

Literal
characters

\
Escape
sequences

Here is a description of each of the text specifiers that can be used within KEDIT regu-
lar expressions.

Characters that have no special meaning as regular expression operators, etc. can be
used directly in regular expressions as text specifiers that match themselves. Most spe-
cial characters do have special meanings, and match themselves only if preceded by a
backslash, as discussed next. But letters, numbers, and blanks do not have special
meanings and can be used directly. For example,

locate reg /abc 123/

matches ““‘abc 123,

It is not possible to represent every individual character value as a simple character.
Many characters have special meaning in regular expressions or simply cannot be input
directly from the keyboard. When you want to include one of these characters in your
regular expression, it must be preceded by the regular expression escape character,
which is a backslash (“\”). For example,

locate reg /?/
matches any character, while
locate reg /\?/

matches the ““?”’ character.

Regular Expressions 163

\c
Cursor
positioning

2

Wildcard
character

[class]
Character
class

The characters with special meanings in regular expressions, all of which must be pre-
ceded by a backslash in at least some contexts if you want them to be taken literally, are
the backslash itself; left and right parentheses, brackets, and braces; question mark;
tilde; caret; dollar sign; asterisk; at sign; pound sign; split vertical bar; colon; amper-
sand; plus sign; and minus sign: \, ,), [, , {, }, 2.~ " $, *, @, #, |, :, &, +, and -.

Special characters that cannot be input directly from the keyboard can be expressed
with an escape sequence representing their hexadecimal or octal values:

\xnn or \Xnn - Hexadecimal value of character code
\nnn - Octal value of character code

For example, tab characters (hexadecimal value 09) can be located with
locate reg /\x09/

You can also locate tab characters with

locate reg /\t/

This is because some control codes have been given symbolic names. They are:

\b - Backspace

\f - Formfeed

\r - Carriage return
\n - Linefeed

\t - Tab

The escape sequence ““\c”’ is a special escape sequence that determines the cursor posi-
tion after a successful regular expression search done via the Edit Find dialog. This can
be useful when you want the cursor to be positioned at a particular spot in a character
pattern, rather than in its normal location at the start of the pattern. For example, if you
use the Edit Find dialog box to search for the regular expression “qwe\crty”’, the cursor
will be positioned after the search at the ““r” in the string “qwerty”, and not at the “q”’.
The “\c”” escape sequence also affects CLOCATE commands, where it determines the

column pointer location put into effect after a successful search.

The wildcard character, a question mark (“?”’), matches any single character. For
example,

locate reg /t?p/

matches “t”, followed by any other character, followed by “p”’.

Character classes allow you to specify a set of characters, any one of which will be
matched. The set of characters is enclosed in square brackets. For example,

locate reg /[abc]l/

€ 9

matches the strings “a”, “b”, or “c”. Note that character classes match only a single
character, and not multi-character strings. To match multiple occurrences of characters
in a character class, you need to combine the character class with an operator. For

164

Chapter 6. Targets

[~class]
Character
Unclass

A

Beginning of
Line

example, to match one or more occurrences of characters from the character class
[abc], you could use

locate reg /[abcl#/

EEENT3

which matches “a”, “b”, and “c”, and also “abc”, “cba”, “abcabc”, “bbbaaacccec”, etc.

A range of values can be represented in a character class by joining the first and last
value in the range with a minus sign. For example, the class [0-9] matches any numeric
digit. Ranges and simpler enumerations can be combined in a single class specifica-
tion. For example, the class [a-zA-Z246] matches any letter and matches the digits 2, 4,
and 6.

Character unclass is a notational convenience that is useful when a class is complex
enough that it is easier to list the characters that do not belong than to list the characters
that do. You specify the characters that should not be matched, preceding the list with a
tilde and enclosing it in square brackets. The character unclass will match any character
not specified. For example,

locate reg /[~abcl/

matches any character except “a”, “b”, and “c”.

The caret character (“””) matches the beginning of a line. For example,

locate reg /“Mary/
matches “Mary” in the string
Mary had a little lamb

since Mary appears at the beginning of the line; however, this command does not match
“Mary” in the string

everywhere that Mary went

where “Mary” is not at the start of the line. If blanks optionally precede your pattern at
the beginning of the line, you should include them in your regular expression. For
example, you could use this command to look for a line whose first nonblank text is
GGMary” :

locate reg /* *Mary/

The expression matches the start of a line, then uses the minimal closure operator to
match zero or more blanks, and then matches “Mary”.

Strictly speaking, the caret does not actually match the beginning of a line, but instead
matches the beginning of the zone. Since the left zone is usually set to column 1, the
beginning of the zone and the beginning of the line are normally the same thing. But if,
for example, ZONE 6 20 is in effect,

locate reg /~fgh/

would succeed on the line

Regular Expressions 165

$
End of Line

abcdefgh

while the following command would not:

locate reg /“abc/

Note that the caret character does double duty in regular expressions. If it is used at the
start of a regular expression, it matches the beginning of the line. If it is used elsewhere

in a regular expression, it is interpreted as the power operator, which is discussed
below.

The dollar sign (“$”) matches the end of an individual line. For example,
locate reg /lamb$/

matches “lamb’ when it appears at the end of this line:

Mary had a little lamb

but not when it appears in the middle of this line:

the lamb was sure to go

6.6.3 Regular Expression Operators

Processing
order

Regular expression operators and some related topics are discussed here. Operators are
used in combination with the text specifiers discussed above to build more powerful
regular expressions.

Regular expressions are scanned from left to right. Text specifiers not followed by an
operator are used to match some text in your file. When an operator is encountered, it
usually applies to the text specifier that immediately precedes it. Consider these
examples:

locate reg /abc/

This regular expression consists of three text specifiers: the characters “a”, “b”, and
““c”. This expression will match the string ““abc™.

locate reg /abc#/

[T S L]

In this example, the regular expression begins with the character ““a” and the character
“b”. Then comes the maximal plus operator “#”°, applied to the character “c”’; this
will match the longest possible string consisting of “c’’s. So the entire expression will
match strings like ““abc” and ““abccee”™. Note that it will not match strings like
“abcabc™, because the maximal plus operator applies only to the text specifier that

immediately precedes it.

166

Chapter 6. Targets

Grouping

X*
Minimal
Closure

X+
Minimal Plus

X@
Maximal
Closure

X#
Maximal Plus

XAn
Power
Operator

What if you want an operator to apply to something more than a single text specifier?
You can use parentheses to group together portions of a regular expression and have
them treated as a unit. So the command

locate reg /(abc)#/

applies the maximal plus operator to the entire sequence “abc’’, and will match “abc”,

9 ¢

“abcabc”, “abcabcabce”, etc.

To match repeated occurrences of a single pattern, you use the closure and plus opera-
tors. Minimal closure matches zero or more occurrences of the pattern it is applied to,
but only as many as absolutely necessary. For example,

locate reg /ab*/

only matches “a” in the string “abbbbc”, but

locate reg /ab*c/

matches the entire string because it must match “bbbb” in order to match both the “a”
and the “c”.

Minimal plus is similar to minimal closure except that it must always match at least one
occurrence of an expression. For example,

locate reg /ab+/

matches “ab” in the string “abbbbc”

Maximal closure matches zero or more occurrences of an expression, but unlike mini-

mal closure it matches as many occurrences of the expression as possible instead of as
few as possible. For example,

locate reg /ab@R/
matches “abbbb” in the string “abbbbc” and matches “a’ in the string “ac”.
Maximal plus is similar to maximal closure, matching as many occurrences of an

expression as possible, except that it must always match at least one occurrence of the
preceding expression. So

locate reg /ab#/

matches ““abbbb” in the string “abbbbc”, but does not match anything in the string

113 ER]

ac

The power operator matches exactly n occurrences of X, where # is a number in the
range 1 to 255. For example,

locate reg /ab*4/

matches the string “abbbb” in the string “abbbbc”

Regular Expressions 167

~X
Not Operator

(X1]X2]...|Xn)
Alternation

{X}
Tagged
Expressions

The not operator doesn’t really match anything. Instead, it checks to see if the immedi-
ately following item matches, and fails if it does. For example,

locate reg /book~s/

matches the string “book” whenever it is not immediately followed by an “s”. So
“book” would be matched in “bookcase”, but not in “bookshelf™.

locate reg /n~[0-9]73/

This example looks for occurrences of the letter ““n’” that are not immediately followed
by three digits. So it would match “n” in the strings “n12x’* and ““nabc”, but not in the
strings “nl123” or “n5678.

Alternation lets you match any one of a series of expressions. Alternation takes a
sequence of expressions, enclosed in parentheses and separated by split vertical bars
(character code 124), and processes each of the expressions in turn until one of them
matches or they all fail.

For example,
locate reg /I saw (him|her) leave/

matches both ‘I saw him leave" and ““I saw her leave".

Note that while the entire alternation is enclosed in parentheses, individual expressions
in the alternation do not need to be included in parentheses. That is, the alternation in
the preceding example does not need to be given as “((him)|(her))”, although that
would also be acceptable.

locate reg /a(b+|c+)d/
This looks for strings like ““abd”, ““abbbbd”’, ““acd”, and “accd”.

Tags provide a way to “remember” the text that is matched by a portion of a regular
expression. You can refer to this text later in the same regular expression. To use a tag,
place braces around the portion of the regular expression whose matching text you
want to remember. You can then refer to the matched text by using &1 later in the regu-
lar expression. For example, this command will look for a string of three identical let-
ters (“aaa”, “bbb”, etc.):

locate reg /{[a-zA-Z]}&l&l/

The character class [a-zA-Z] will match any letter, and since this character class is
enclosed in braces, the letter that is matched can be referred to via &1, and the expres-
sion uses &1 twice to specify that whatever letter is originally matched should appear
two more times.

You can tag multiple portions of the expression by using multiple pairs of braces, and
then use &1 to refer to the text corresponding to the first pair, &2 for the text corre-
sponding to the second pair, etc., through &9. For example, to look for a group of one
or more letters followed by a pair of identical digits followed by the original group of
letters (““abcS5abe”, “x99x™, etc.), you could use

168

Chapter 6. Targets

locate reg /{[a-zA-Z]+}{[0-9]}&2&1/

The most common use of tags is in connection with the CHANGE and SCHANGE
commands and with the Edit Replace dialog box, which let you use &1, &2, etc. not
only in the first string (which is a regular expression specifying the string to be
changed) but also in the second string (which specifies the replacement string). Note
that, unlike the string to be changed, the replacement string is not a regular expression
and none of the special characters used within regular expressions have any special
meaning, except for the use of &n that is discussed here.

For example, suppose you want to change strings consisting of ““y”” followed by one or
more digits followed by “z” into strings with “a” followed by the same set of digits
followed by “b”. “y123z” would change to “al23b”, “y55552z” would change to

“a55552b”, etc. You could use this command to make the changes:
change reg /y{[0-9]+}z/a&lb/ all *

You can use &0 to refer to the entire string that is matched by a regular expression. For
example, this command would put parentheses around all strings of one or more com-
mas in a file:

change reg /,#/(&0)/all *

“&n” (an ampersand followed by a digit) in the replacement string of a change opera-
tion involving regular expressions has a special usage as a way of referring to tagged
expressions. An ampersand followed by any other character has no special meaning
and is taken literally. The only exception is “&&”, an ampersand followed by another
ampersand, which is taken as a single ampersand, so that you can use something like
“&& 17 in a replacement string as a way specifying the string “&1” without signalling
a tagged expression. For example,

change reg /a{?}c/&ls&x&sl/

would change “abc” to “b&x&1”.

letter Several predefined expressions are provided for your convenience. They are refer-
Predefined enced by a single lowercase letter preceded by a colon (“:”*) For example, to search for
Expressions a letter followed by a digit, you could use

locate reg /[a-zA-Z][0-9]/
or you could use predefined expressions:

locate reg /:c:d/

Regular Expressions 169

Here is a list of the predefined expressions:

Name | Definition Description

a [a-zA-Z0-9] Alphanumeric character

) White space

b ([Ex207#) (a group of blanks and tabs)

iC [a-zA-Z] Alphabetic character

d [0-9] Digit

‘h (((0x)D[0-9a-fA-F1#) Hexadecimal numbers

Bl ([a-zA-Z \$][a-zA-Z0-9 \$]@) C-language identifiers

) Numbers

" ([0-9)@.[0-9T)I(10-91#)) (possibly including a decimal point)
. " ~|| " 1 ~’ ll QuOted String

4 (-"@"-1@) (in single quotes or double quotes)
W ([a-zA-Z]#) String of alphabetic characters

) Integers

“ ([0-91%) (one or more digits)

6.6.4 Usage Notes

All of KEDIT’s regular expression processing takes place on a line-at-a-time ba-
sis. This means that regular expressions cannot match text that extends from the
end of one line onto the following line.

Regular expression processing is affected by SET CASE. For example, when you
tell KEDIT to respect case differences, the command

locate reg /al[yz]/

will match only “ay” and ““az”, but when you tell KEDIT to ignore case differ-
ences, these additional strings will be matched: “aY”, “aZ”, “Ay”, “Az”,
“AY”,and “AZ”.

Regular expression processing is affected by SET ZONE. Regular expression
searches take place only with the current ZONE columns. If the left zone is set to
some column greater than 1, a caret (“*”’) at the start of the expression, which nor-
mally matches the beginning of the line, will match the left zone column.

Regular expression processing is not affected by SET VARBLANK, SET HEX, or
SET ARBCHAR. That is, during regular expression processing, KEDIT acts as if
VARBLANK OFF, ARBCHAR OFF, and HEX OFF were in effect. Of course,
regular expressions provide their own mechanisms for matching multiple blanks,
matching wildcard characters, and specifying hexadecimal character codes.

170

Chapter 6. Targets

When processing regular expressions, KEDIT considers the last nonblank charac-
ter of a line to be the end of the line unless TRAILING ON is in effect, in which
case trailing blanks are also considered to be part of the line. Since regular expres-
sion searches look only within the current zone columns, there will be no match for
“$” (end-of-line) in lines that end before the left zone column or that extend be-
yond the right zone column.

There is no implied linefeed or carriage return at the end of each line. Linefeed and
carriage return characters can be used within a regular expression, but will only
match linefeed or carriage return characters that occur within a line. Use “$” to
match the end of the line.

Because of the complex pattern matching that goes on, regular expression process-
ing can be slower than normal target processing. The performance issues are usu-
ally not significant, but it is possible to construct regular expressions that force
large amounts of backtracking within the pattern matcher and take a very long time
to process.

Regular Expressions

171

6.6.5 Regular Expression Summary

Here is a summary of the components of regular expressions:

Item Meaning

? Wildcard character — matches any single character

A Matches the beginning of a line

$ Matches the end of a line

[class] Definition of a character class — matches any character in class
Definition of a character unclass — matches characters not in

[~class]
class

) Parenthetical expressions — groups expressions together for
other operations

X+ Minimal closure — matches shortest possible string of zero or
more occurrences of X

X+ Minimal plus — matches shortest possible string of one or more
occurrences of X

X@ Maximal closure — matches longest possible string of zero or
more occurrences of X

X4 Maximal plus — matches longest possible string of one or more
occurrences of X

X™n Power function — matches exactly n occurrences of X

~X Not function — succeeds only if X isn’t matched

(X1[X2]..) Alternation — matches X1 or, if X1 doesn’t match, matches X2,
etc.

letter Predefined expression

\x Escape sequence

\c Set cursor position/current column after Edit Find or CLOCATE

(X} Tagged expression — when X is matched the value is saved for
later reference

&n Reference to value of nth tagged expression

172

Chapter 6. Targets

Chapter 7.

The Prefix Area

7.1 Prefix Commands

KEDIT’s prefix area is an optional feature that allows you to enter special prefix com-
mands that can add, move, copy, shift, exclude, show and delete lines of text. IBM’s
XEDIT text editor makes use of a prefix area, and the prefix area is included in KEDIT
largely for compatibility with XEDIT. Almost everything that can be done with the
prefix area can also be done, often in a more flexible manner, using key assignments
discussed in Chapter 4, “Keyboard and Mouse”, and summarized later in this chapter.

The prefix area is turned off by default. To turn the prefix area on, issue the command

SET PREFIX ON

With the prefix area enabled, your screen will look something like this:

File Edit Actions Options Window Help

EFEEIE R EE I EEIREE

* % ¥ Top of File * = =

The first day of Christmas
The =econd day of Chri=stmas
The third day of Christmas
The fourth day of Christmas
The fifth day of Christmas
The =izth day of Christmas
The =ewventh day of Christmas
The eighth day of Chri=stmas
The ninth day of Christmas
* % * End of File * = %

====y | 3
- -
[Line=2 [ColT [AR000 | Siee-3 |Files= | Windows=1 |INS |Ri/w [1200PM
The prefix area normally appears as five equal signs (“====="), but if you issue the

command

SET NUMBER ON

then line numbers will appear instead of equal signs. (The width of the prefix area can be
changed with the SET PREFIXWIDTH command if you need to edit large files with more than
the 99999 lines whose line numbers will fit within five characters.)The equal signs and line num-
bers are not part of your text and are not written to disk when your file is saved.

The prefix area is usually placed to the left of your text, but you can have it displayed to the right
of your text by issuing the command

SET PREFIX ON RIGHT

Prefix Commands

173

Prefix Area

The prefix area is there so that you can enter prefix commands. For example, to use the
prefix area to add a line after the fourth line in the window, you would put an “A” in the
prefix area of that line and then press the F12 key (if you are using INTERFACE CUA)
or the Home key (if you are using INTERFACE CLASSIC) to have the command car-
ried out.

The basic prefix commands are:

A Adds a blank line to your file.
Indicates a line that is to be Copied.
Deletes a line from your file.

=l —-Ne!

Indicates the line following which text will be moved or copied. (Used
in conjunction with “C” or “M”.)

Inserts a blank line into your file—same as “A”.
Lowercases a line.
Indicates a line that is to be Moved.

-z = -

Indicates the line Preceding which text will be moved or copied. (Used
in conjunction with “C” or “M”.)

9]

Shows excluded lines represented by a shadow line. The S prefix com-
mand is valid only if issued from the prefix area of a shadow line. See

Chapter 8, “Selective Line Editing and Highlighting”, for discussion of
shadow lines, excluded lines, and related topics.

U Uppercases a line.

X eXcludes a line.

/ Indicates a line that is to become the new current line.
" Indicates a line that is to be duplicated.

< Indicates a line that is to be shifted left 1 column. Text from the left
zone column through the truncation column will be shifted.

> Indicates a line that is to be shifted right 1 column. Text from the left
zone column through the truncation column will be shifted.

SCALE Indicates that the scale line is to be displayed in this line. (Similar to the

SET SCALE command.)

TABL Indicates that the tab line is to be displayed in this line. (Similar to the
SET TABLINE command.)

.name Gives a line a name. (Similar to the SET POINT command.)

You can move the cursor into and out of the prefix area by using the cursor left and cur-
sor right keys. When the cursor is in the prefix area, characters that you enter are inter-
preted not as text to be placed in your file, but as prefix commands to be executed.
Prefix commands are not actually executed until you press the F12 key (or, with
INTERFACE CLASSIC, the Home key). You can enter prefix commands into the pre-
fix areas of several lines before pressing the key; all of the prefix commands will then
be executed. The prefix commands are handled in sequential order, moving from the
top of the file to the bottom of the file.

174

Chapter 7. The Prefix Area

Invalid prefix commands do not cause an error message. Instead, they are redisplayed
in the prefix area, preceded by a question mark (“?””). You can fix the invalid command
by retyping it. You can also use the RESET PREFIX command, entered from the com-

mand line, which removes any commands from the prefix area.

As an example, assume that you enter the following prefix commands:

File Edit Actions Options Window Help

CASAMP.TXT

*®
The
The
The
The
The
The
The
The
The

® *

*# Top of File * = =
first day of Christmas
szecond day of Christmas
third day of Christmas
fourth day of Christmnas
fifth day of Christmas
=zixth day of Christmas
zeventh day of Christmnas
eighth day of Chri=stmas
ninth day of Christmas
* End of File * = =

CEEE] RCEEIEEEE5E

-

[LUne=F [Co=2 | ARD00 | Siee=d |Files=] | ‘wWindows=1 |INS [RAW [1201PM

After pressing the F12 key (or, with INTERFACE CLASSIC, the Home key), you
would see this:

File Edit

Actions Options Window Help

~ [«

* *

The
|

The
The
The
The
The
The
The
The

® *

BIES

CASAMP.TXT

of File * = =
day of Christmas

* Top
first

third
fifth
=ixth

day of Christmas
day of Christmas
day of Christmas

zecond day of Christmas
seventh day of Christmas
seventh day of Christmas
eighth day of Christmas
ninth day of Christmas

* End of File * = =

EEBEE

| Line=2 |

Co=1 | AR=111 | Size=10 | Files=1 |

“Windows=1

IS |RAw | 12:02 PM

What has happened is:

e The A command caused a blank line to be added.

Prefix Commands

175

Prefix Area

e The Z command, which is invalid, was redisplayed with a question mark.

e The D command caused the specified line to be deleted.

e The line to be moved (M) was moved following (F) the specified line.

e The " command caused a line to be duplicated.

Many prefix commands can be preceded or followed by some number . For example,
3a

and

A3

are equivalent; both cause three lines to be added to your file. The prefix commands
that allow this are:

nAor An Add n lines.

nCorCn Copy n lines.

nD or Dn Delete n lines.

nl or In Insert n lines.

nLorLn Lowercase n lines.

nS or Sn Show first n excluded lines represented by a shadow line.

S-n Show last n lines represented by a shadow line.

nUor Un Uppercase n lines.

nX or Xn eXclude n lines.

n" or"n Duplicate a line » times.

n<or<n Shift a line n columns to the left.

n>or >n Shift a line n columns to the right.

Some prefix commands provide another way for you to indicate that they are to affect a
group of lines. You do this by placing the name of the prefix command twice (for exam-
ple, to copy a group of contiguous lines, use “CC”) in the prefix areas of the first and
last lines involved. If, for example, you want to copy 15 lines, you could either put
“15C” in the prefix area of the first line to be copied, or you could put “CC” in the pre-

fix area of the first and the last lines to be copied, and avoid having to count the lines.
The prefix commands that work this way are:

CC Placed in the prefix area of the first and last lines to be Copied.

DD Placed in the prefix area of the first and last lines to be Deleted.

LL Placed in the prefix area of the first and last lines to be Lowercased.

MM Placed in the prefix area of the first and last lines to be Moved.

uu Placed in the prefix area of the first and last lines to be Uppercased.

XX Placed in the prefix area of the first and last lines to be eXcluded.

<< Placed in the prefix area of the first and last lines to be shifted left one
column.

176

Chapter 7. The Prefix Area

>> Placed in the prefix area of the first and last lines to be shifted right one
column.

" Placed in the prefix area of the first and last lines to be duplicated.
n<<or <<n Indicates that a group of lines is to be shifted » columns to the left.
n>>or >>n Indicates that a group of lines is to be shifted # columns to the right.
n'""or ""n Indicates that a group of lines is to be duplicated » times.

For some actions, two or more prefix commands are required. For example, if you
enter “CC” in the prefix area of a line, you must also enter “CC” in the prefix area of
another line to fully indicate the group of lines to be copied, and either an “F” or “P” to
indicate where the copied lines will be placed. If you press the F12 key (or, with
INTERFACE CLASSIC, the Home key) to execute the commands in the prefix area
and some actions cannot be carried out because some of the required pieces are missing
(for example, a “CC” without a matching “CC”), KEDIT executes all of the prefix
commands that it can. Prefix commands that can’t be completed are left in the prefix
area, with a message on the status line (temporarily replacing the alteration count)
reminding you that prefix commands are still pending.

It is not necessarily an error, and is in fact often useful, to leave prefix commands pend-
ing. You might, for example, use MM and MM to indicate a group of lines to be moved,
then move the cursor to the command line and issue some LOCATE commands to get
to the location that the group of lines will be moved to.

7.2 Prefix Area Keyboard Considerations

Several keys act differently when PREFIX ON (or PREFIX NULLS) is in effect rather
than PREFIX OFF. The keys act differently to allow you to conveniently move the cur-
sor into and out of the prefix area and execute prefix commands. Keys involved with
the prefix area include:

Cursor Right (—) With PREFIX OFF, the Cursor Right key moves the cursor one
character to the right, possibly causing horizontal scrolling if you attempt to move
beyond the right edge of the window. It never moves the cursor to a different line.

Prefix Area

With PREFIX ON, the Cursor Right key moves the cursor one character to the
right. The cursor might cross the boundary between the file area and the prefix
area and might wrap to the next line.

Cursor Left (<) With PREFIX OFF, the Cursor Left key moves the cursor one char-
acter to the left, possibly causing automatic horizontal scrolling but never moving
the cursor to a different line.

With PREFIX ON, Cursor Left moves the cursor one character to the left, possibly
crossing the boundary between the file area and the prefix area and possibly wrap-
ping to the previous line, without causing any horizontal scrolling.

Tab (—{) With PREFIX OFF, the Tab key moves the cursor to the next tab position.

Prefix Area Keyboard Considerations 177

With PREFIX ON, the Tab key instead moves the cursor to the beginning of the
next field: if the cursor is in the prefix area, it moves to the beginning of the line of
text; if the cursor is in the file area, it moves forward to the beginning of the next
prefix area, without causing any horizontal scrolling.

You can still move to the next tab position with PREFIX ON. To do so, use func-
tion key F4.

Shift+Tab (k) With PREFIX OFF, Shift+Tab moves the cursor backwards one tab
position.

With PREFIX ON, Shift+Tab moves the cursor backwards one field, where each
line of the file or the prefix area is considered one field.

F12 or Home With PREFIX OFF the F12 key (or, with INTERFACE CLASSIC, the
Home key) simply moves the cursor to the command line.

With PREFIX ON, the cursor moves to the command line and then any pending
prefix commands are executed. After the prefix commands have been executed,
the cursor might be repositioned to the file area. For example, after executing the
prefix command “A” to add a line, the cursor is positioned at the beginning of the
newly added line.

Shift+Ctrl+Enter or Ctrl+Numeric Pad Enter Use these key combinations to tog-
gle the cursor between a line’s prefix area and file area. Additionally, any pending
prefix commands are executed. With INTERFACE CLASSIC two additional
keys, Ctrl+Enter and the ““+”’ key on the numeric pad, perform the same function.

With PREFIX ON, several keys (Cursor Left, Cursor Right, Tab, and Shift+Tab) act
quite a bit like their equivalents on an IBM 3270 terminal, the terminal most often used
with XEDIT. However, you lose some of the benefits of KEDIT’s normal definitions
for these keys, which let the cursor keys cause automatic horizontal scrolling, and have
the Tab and Shift+Tab keys move to tab columns within your data. If you don’t like the
way any KEDIT key is defined, you can change its definition. This is fully discussed in
Chapter 10, “Using Macros”. The following definitions, added to your profile, would
change the Cursor Left, Cursor Right, Tab, and Shift+Tab keys to bypass their pre-
fix-related actions and allow tabbing and horizontal scrolling.

"define curl 'cursor left'"
"define curr 'cursor right'"
"define tab 'sos tab'"
"define s+tab 'sos tabb'"

178

Chapter 7. The Prefix Area

7.3 Prefix Command Equivalents

By default, the prefix area is turned off and other KEDIT facilities handle the functions
of the prefix area. Here is a list of common sequences of prefix commands with their
PREFIX OFF equivalents:

Prefix KEDIT .
Commands Equivalent Explanation of KEDIT Keys
c Alt+L Mark a block of 1 line with Alt+L. Then copy
£ Alt+C the line with Alt+C.
cc Alt+L Mark the block to be copied by pressing Alt+L
cc Alt+L when the cursor is on the first and then the last
£ Alt+C line of the block.
Copy the block under the line the cursor is on
by pressing Alt+C.
mm Alt+L Mark the block to be moved by pressing Alt+L
mm Alt+L when the cursor is on the first and then the last
£ Alt+M line of the block.
Move the block under the line the cursor is on
by pressing Alt+M.
" F8 Duplicate the cursor line.
AlerL Mark the block to be duplicated with Alt+L.
" Alt+L Press Alt+C to duplicate the block 3
Alt+C upi : g
<
e AltiL Mark the block to bi duplicated w1th”Alt+L. b
. AltL Issue the command “DUP n BLOCK” to o
DUP n BLOCK duplicate the block n times.
/ F5 Make the cursor line become the current line.
a F2 Add a blank line below the cursor line.
na ADD n Use the command “ADD »n”
d Alt+D Delete the cursor line.
dd Alt+L Mark block to be deleted with Alt+L.
dd Alt+L Press Alt+G to delete the block.
Alt+G
x No direct equivalent
s No direct equivalent

Prefix Command Equivalents 179

Chapter 8. Selective Line Editing and Highlighting

There is often a subset of your file that is of special interest to you. This subset could be
made up of lines that are not right next to each other, but instead are in different parts of
your file. For example, suppose you’re writing a program that uses a variable named
count. If you run your program and find that this variable is not being set correctly, you
might want to concentrate on the lines in your file that use the variable count.

KEDIT provides two facilities that help you focus on a subset of your file. The first
facility is the selective line editing facility, most commonly used with the ALL com-
mand and with the Edit Selective Editing dialog box. The selective line editing facility
lets you pick out a subset of your file to view and work with on your screen, excluding
the rest of your file from the display. KEDIT s selective line editing facility is discussed
in the following section.

The second facility is the highlighting facility, which shows all of the lines of your file
on the screen, but highlights the subset of lines that are of interest to you. You most
often access the highlighting facility by using the SET HIGHLIGHTING command
and the TAG command. KEDIT’s highlighting facility is discussed in section
Section 8.3, “Highlighting Facility”.

8.1 Selective Line Editing

8.1.1 General Discussion

To see how selective line editing works, let’s go through some examples. The file we’ll
be using in these examples is called HERB.TXT. This file, which contains a list of
forty-one garden herbs, is normally installed in your \KEDITW\SAMPLES directory
by the KEDIT for Windows Setup program so that you can work through the examples
if you’d like. If you do work through these examples on your PC, don’t save any
changes that you make to HERB.TXT. That way, the sample file will stay unchanged,
so you can work through the examples again later on if you want to.

Suppose you have an ornamental herb garden. There are several things you’d want to
know about each herb in your garden. You’d want to keep track of the plant type of
each herb—whether it is an annual (which must be replanted each year), a biennial
(which flowers in its second year), or a perennial (which stays alive for many years).
You might also want to know the height of each herb, and perhaps the color of each
one’s flowers. Each entry in HERB.TXT contains this kind of information: the com-
mon name of the herb, its plant type (annual, biennial or perennial), the herb’s height in
inches, and the color of its flowers. The entries are arranged in alphabetical order.

When you first edit HERB.TXT, it looks like this:

180

Chapter 8. Selective Line Editing and Highlighting

g __ BB

Eile Edit Actions DOptions Window Help

LI_I_II I 3 N Y g e o Pl P P Y)

CAKEDITYASAMPLES\HERB.TXT -

[J=]*

* ¥ * Top of File * = *=

ANGELICA biennial 48-84" white

ANISE annual 12-24" white

BASIL annual 24" white

BERGAHOT perennial 38" pink, purple, red, white

BORAGE annual 3e" white, blue

BURNET perennial i12-18" white, rose

CAMOMILE perennial 12" white

CARAIJAlY biennial 24-3p" white

=== +
el | 2
| Line=0 | Co=1 | AK=0.00 | Size=#1 | Files=1 | ‘Windows=1 OVR [RAw [11:32 AM

Screen 8.1: Sample file HERB.TXT

Suppose gou want to look at only the herbs that are perennials. To do this you issue the
comman

all /perennial/

KEDIT then displays on the screen only the lines that contain the string “perennial”’,
with the first line that is displayed becoming the new current line:

= -I-

Eile Edit Actions DOptions Window Help

LI_I_II I 3 N Y g e o Pl P Y)

CAKEDITYASAMPLES\HERB.TXT -

[»]+

L]

* x * Top of File = = =

3 lineis) not displayed

BERGAHOT perennial 36 pink, purple, red, white
1 line(=) not di=played o))
BURNET perennial 12-18" white, rose c
CAMOMILE perennial 12" white]
1 linei{s) not displayed .a
CATHIF perennial 24-3g" purple w
1 line(=) not di=played
CHIVES perennial 18" lavender ()
CICELY perennial 24-36" white Z
====3 | + 'l‘.-,'
1-! | + @
| Line=4 | Co=1 | Al=00:1 | Size=#1 | Files=1 | ‘Windows=1 OVR [RAw [11:32 AM %

Screen 8.2: After issuing ‘all /perennial/’
Notice that in addition to displaying the lines containing the string “perennial”, the
screen displays lines that indicate where lines of the file are being excluded; these indi-
cator lines are called shadow lines.

Selective Line Editing 181

Edit Menu

Toolbar

To toggle between viewing the subset of the file that you specified with the ALL com-
mand and viewing all lines of the file, use the Alt+Plus (that is, press Alt and the “+”
key on the numeric pad). If you are viewing the subset of your file and you press
Alt+Plus, KEDIT will display the entire file. If you then press Alt+Plus your display
will return to the file’s subset.

To completely reset your display and return to displaying all the lines of the file, just
use the ALL command with no operands:

all

Alternately, you can also use the Edit Selective Editing dialog box, type “perennial”,
and click on the Matching Lines button to view a subset of your file. You can then use
the Edit Selective Editing dialog box’s All Lines button to view the entire file again.

Once you have selected a subset of your file to work with (via command line or menu),
you can use the Hide Excluded Lines and Show All Lines buttons on the default bottom
toolbar to toggle your display between the full file and the subset you have selected.

8.1.2 The MORE and LESS Commands

KEDIT also provides commands called MORE and LESS to help you refine the selec-
tion of lines you made using the ALL command.

After you use the ALL command or the Edit Selective Editing dialog box to select a
subset of lines in your file you can use the MORE command to add lines to that subset.
For example, if in the above discussion you used

all /perennial/

you might then decide that you actually want to work with lines describing herbs that
are either perennial or have white flowers. You could then use

more /white/

to add all the herbs with white flowers to the display. Similarly, the LESS command can
be used to remove lines from the selected display. For example, if you used

all /perennial/

and then decided that you were not interested in perennial herbs with yellow flowers,
you could use

less /yellow/

to remove perennials with yellow flowers from the display.

182

Chapter 8. Selective Line Editing and Highlighting

8.1.3 Editing Files that have Excluded Lines

When only a subset of the lines of your file are displayed, you can still edit the text just
as you normally would. You can move the cursor in the file area, type over displayed
text, etc. You can also perform block operations on your file.

Suppose again that you are interested in only the lines in HERB.TXT that contain the
string ““perennial”’. Use the command “ALL /perennial/” so that your screen looks
like Screen 8.2. If you then issue the command

delete

then the current line, which is the entry containing the string “BERGAMOT”, is
deleted from your file. What is then displayed on the screen is this:

g __ o BB

File Edit Actions Options Window Help

LI_I_I- I Y

CAKEDITWASAMPLESYHERB. TXT |~
i
L
*# ® * Top of File * * =
4 lineis) not displayed
EURNET perennial l2-18" white, rose
CAMOMILE perennial 12" white
1 line(=) not di=played
CATHIFP perennial 24-36" purple
1 llne(s) not displayed
CHIVES perennial 18 lavender
CICELY perennial 24-3g" white
COSTHARY perennial 24-38" vellow
| 2 line(=) not di=played
====3 +
- -+

[Lne5 [Co=l | A=1d2 | Size=d0 [Files=1 | ‘windows=1 [OWR [FAw [11.338M

Screen 8.3: Afer issuing ‘delete’

Notice that the line containing BERGAMOT is gone and that the pair of shadow lines
on either side of it have become a single shadow line.

Note that a question comes up about what happens when you issue a command like
DELETE 3—Which three lines are deleted? Does the DELETE command affect only
the lines that are displayed, or are excluded lines affected as well? KEDIT gives you
control over this.

Normally, after you issue the ALL command a SET option called SCOPE is automati-
cally set to DISPLAY. This means that only lines that are displayed are operated on by
most KEDIT commands. (The most important exceptions to this are File Save and
related menu items and commands like FILE and SAVE. KEDIT will always save your
entire file, including excluded lines.) So, in this case, the command

o
€
=
S
w
o
2
wid
0
-
o
(7]

Selective Line Editing 183

delete 3

will delete the current line and the next two displayed lines. For example, if your
screen looks like Screen 8.3 and you issue the command DELETE 3, the resulting dis-
play will look like this:

File Edit Actions Options Window Help
11
LI_IJ =2 I I 2 N Y 5 7 Bl E= A Y)
CAKEDITWASAMPLESY\HERB. TKT v~
|2
* ¥ * Top of File = = =
6 line(=) not di=played
CHIVES perennial 1a" lavender
CICELY perennial 24-3g" white
COSTHARY perennial 24-3g" vellow
2 llne(s) not displayed
FENHEL perennial &0 vellow
FEVERFEW perennial 24-38" white
GARLIC CHIVES perennial 12" white
HYSSOP perennial 12-18" bluse. pink. white
LAVENDlER perennial l2-3g" lavender
====3 +
«!! »
| Line=7 | Cal=1 | Alt=2.2:3 | Size=37 | Files=1 | Windows=1 OVR | R |11:34 A

Screen 8.4: After issuing ‘delete 3’

Here, three displayed lines have been deleted: the line containing BURNET, the line
containing CAMOMILE, and the line containing CATNIP. The line containing
CHIVES becomes the new current line.

Notice that the shadow line above the current line indicates that there are now six
excluded lines at the beginning of the file. These excluded lines include the four that
had been above BURNET, the one above CATNIP, and the one above CHIVES. Since
the displayed lines that separated these excluded lines have been deleted, all of these
excluded lines are now adjacent to each other and so their position is indicated by a sin-
gle shadow line.

Now suppose that you want KEDIT commands to operate on all lines of your file, not
just the lines that are displayed. In this case, after you issue the ALL command you will
need to issue the command

set scope all
Entering the KEDIT command
delete 5

will then delete the current line and the next four lines below it, whether or not those
lines are displayed. For example, if you have SCOPE ALL in effect and start out with
the screen in Screen 8.4, after you issue the command DELETE 5 the screen will look
like this:

184

Chapter 8. Selective Line Editing and Highlighting

Notes

Examples

g __ BB

Eile Edit Actions DOptions Window Help

EFE HER EBE B EEE

= CAKEDITYASAMPLES\HERB.TXT -

[»]*

L]

* x * Top of File *= = =

& linei=s) not displayed
Bn"

FENHEL perennial vellow

FEVERFEW perennial 24-38" white

GARLIC CHIVES perennial 12" white

HYSSOP perennial 12-18" bluse. pink. white

LAVENDER perennial l2-3g" lavender

LOVAGE perennial Je—-60" green

LEMON BATH perennial 12-24" white

LEMON VEREENA perennial 7 vellov—gresn

HARJORléH perennial 12" purple

====3 +
1-! | +
| Line=? | Co=1 | Al=334 | Size=32 | Files=1 | ‘Windows=1 OVR [RAw [11:35 4M

Screen 8.5: After issuing ‘scope all’ then ‘delete 5’

Here, the lines containing CHIVES, CICELY and COSTMARY have been deleted,
along with the two excluded lines indicated by the shadow line below COSTMARY.
The line containing FENNEL becomes the new current line.

e You need to be careful when SCOPE ALL is in effect, since lines that are not dis-
played can inadvertently be changed or deleted—perhaps without your realizing it.
For this reason SCOPE DISPLAY is the default setting, and is also automatically put
into effect whenever you use the ALL command to select a subset of your file.

e When SCOPE ALL is in effect and a (previously) excluded line becomes the new
current line, that line will be displayed. If you then move the current line pointer, the
line that was forced into the display will again be excluded from the display.

For the rest of this section we’ll assume that you have not set SCOPE to ALL, but rather
have the default, SCOPE DISPLAY. If you are working through these examples on
your PC, you should now issue the command

set scope display

to reset SCOPE to its default setting.

Let’s look at a couple of situations where using the ALL command would be useful.
Suppose you now want to delete all of the entries for perennials in HERB.TXT.
(Remember that only lines with “perennial” in them are currently displayed.) You can
then issue the command

delete *

to delete all the displayed lines, from the current line down.

Selective Line Editing 185

o
€
=
S
w
o
2
wid
0
-
o
(7]

Notice that in our example the screen then looks like this:

g __ BB

Eile Edit Actions DOptions Window Help

LI_I_II I 3 N Y g e o Pl P P Y)

CAKEDITYASAMPLES\HERB.TXT -

[»]*

* x * Top of File *= = =

10 line(s) not displayed

* % * Fnd of File = * =

==y | 3

[Line=t1 [Col=l | AR=#45 | Size=10 |Files=1 | ‘windows=1 |OWR [FAW [11.356M

Screen 8.6: After issuing ‘delete *’ (with ‘scope display’)

The screen now indicates that the whole file is excluded, because the lines containing
“perennial” have all been deleted and the rest of the lines are excluded from the display.

To redisplay the excluded lines, you issue the ALL command with no operands:
all

The screen will then look something like this:

= -1~

File Edit Actions Options Window Help

||I][]0 (5523 (S]] (3 []E)

C: '-,KEDIT\’V'-,SAMF‘LES\HEHB THT v |~
BASIL annual white 1+
BORAGE annual 3 6 " white, blue I
CARAWAY biennial 24-38" white
CHERVIL annual 1a" white
OFAL BASIL annual 24" lavender
PARSLEY biennial 10-158" vellow
SESAME annual 1a" lavender
SUMMER SAVORY annual 12-18" pink

* ® * Fnd of File * * =

===y | +

[Line=t1 [Col=l | Al=#45 | Size=10 |Files=1 | ‘windows=1 |OWR [FAW [11.368M

Screen 8.7: After issuing ‘all’ with no operands

186 Chapter 8. Selective Line Editing and Highlighting

As another example, suppose that you want to make a file containing all the entries for
annuals still contained in HERB.TXT. You can have KEDIT display only the entries
for annuals by issuing the command

all /annual/

If you start out with the screen shown in Screen 8.7, the resulting screen will look like

this:
Eile Edit Actiuns Options Window Help
CAKEDITWASAMPLESYHERB. TXT v~
i
* x * Top of File = = =
1 lineis) not displayed
ANISE annual 12-24" white
BASIL annual 24" white
BORAGE annual 3e" white, blue
1 llne(s) not displayed
CHERYIL annual 18 white
QOFAL BASIL annual 24" lavender
1 line(=) not di=played
SESAME annual 1a" lavender
SUHHERl SAVORY annual 12-18" pink
—===3 +
el | 2
| Line=2 | Co=1 | Al=445 | Size=10 | Files=1 | ‘windows=1 OVR [RAw [11:37 &M

Screen 8.8: After issuing ‘all /annual/’

Then you can issue the command
put * annual.txt

to PUT all the displayed lines, from the current line down to the last line of the file, in
the file ANNUAL.TXT. If you edit this new file, it will look like this:

o
€
=
S
w
o
2
wid
0
-
o
(7]

Selective Line Editing 187

g __ BB

File Edit Actions DOptions Window Help

LI_I_II I 3 N Y g e o Pl P P Y)

CAKEDITYASAMPLE SYANNUAL. TXT -

[J=]*

* ¥ * Top of File * = *=

ANISE annual 12-24" white

BASIL annual 24" white

BORAGE annual 3e" white, blus

CHERYIL annual 1a" white

QOFAL BASIL annual 24" lavender

SESAME annual ig" lavender

SIMMER SAVORY annual 12-18" pink

* % % Fnd of File = * =

====3 +
[+
| Line=0 | Co=1 | AK=0.00 | Size=7 | Files=1 | ‘Windows=1 OVR [RAw [11:45 4

Screen 8.9: ANNUAL.TXT
The new file contains only the lines that were displayed in HERB.TXT.

If you are working through the examples on your PC, exit from KEDIT now without
saving ANNUAL.TXT and without saving the version of HERB.TXT that the above
examples have modified.

8.1.4 SET SHADOW

For many purposes, it’s useful to see shadow lines to know how many lines are
excluded from the display. For other purposes, you’d like to avoid the shadow lines
and pretend that the excluded lines are not there. You can control whether or not
shadow lines are displayed with SET SHADOW. The default is SHADOW ON.

If you are working through the examples on your PC, first edit the file HERB.TXT and
then issue the command

all /perennial/
to display only the lines in the file that contain the string

“perennial”. The screen then looks like this:

188 Chapter 8. Selective Line Editing and Highlighting

File Edit Actions

Options

Window Help

g __ BB

* x * Top of File *= = =

3 lineis) not
I

dizgplayed

LI_I_II I 3 N Y g e o Pl P P Y)

CAKEDITYASAMPLES\HERB.TXT

[»]*

[]

BERGAHOT perennial pink, purple, red, white
1 line(=) not di=played

BURNHET perennial 12-18" white, rose

CAMOMILE perennial 12" white
1 linei{s) not displayed

CATHIF perennial 24-3g" purple
1 line(=) not displayed

CHIVES perennial " lavender

CICELY perennial 24-36" white

==== *

-

| Line=4 | Co=1 | Al=00:1 | Size=#1 | Files=1 | ‘Windows=1 NS [RAw [11:47 AM

Screen 8.10: SHADOW ON is in effect

If you don’t want to see the shadow lines, you can SET SHADOW OFF. Issuing the

command

set shadow off

results in a display like this:

File Edit Actions

Options

KEDIT
Window Help

B A

|||- BIE R EE

EEE

AKEDITYASAMPLES\HERB. TXT -
;
* ® * Top of File * * =
BERGAHOT perennial 36" pink, purple, red, white
BUENET perennial 12-18" white, rose
CAMOMTILE perennial 12" white
CATHIFP perennial 24-38" purple
CHIVES perennial 1a" lavender
CICELY perennial 24-36" white
COSTHARY perennial 24-3g" vellow
FEHNEL perennial s0" vellow
FEVERFEW perennial 24-38" white
==== +
-
| Line=4 | Col=1 | Al=0,0:1 | Size=41 |Files=‘| | WWindows=1 INS (R | 11:48 Ak

o
€
=
S
w
o
2
wid
0
-
o
(7]

Screen 8.11: After issuing ‘shadow off”

Selective Line Editing

189

Excluded lines
and the prefix
area

Note that the setting for SHADOW does not affect your ability to edit the displayed
text. Also, SET SHADOW does not affect whether or not excluded lines are affected
by KEDIT commands; this is controlled by SET SCOPE.

To keep track of excluded lines without displaying shadow lines, you can use the
SET PREFIX and SET NUMBER commands. Issuing the commands

set prefix on
and
set number on

gives you a display like this:

= KEDIT -~
File Edit Actions Options Window Help

EEEE] (2] [1,]84] S EIEIEE

= CAKEDITYWASAMPLES\HERB. TXT v~

i

00000 # * * Top of File * ® %

00004 BERGAMOT perennial 3R pink, purple, red. white
0000e BURHET perennial 12-18" vhite, rose

oooo? CAMOMITE perennial 1z white

qooos CATHIPR perennial 24-38" purple

oon1l CHIVES perennial 18" lavender

ooolz CICELY perennial 24-38" white

00013 COSTHARY perennial 24-36" vellow

000le FEHWHEL perennial 1 vellow

ooa1z? IFEVERFEH perennial 24-38" white

sz »
- »

| Line=# | Co=1 | AR=0.0: | Size=#1 | Files=1 | ‘Windows=1 INS |Raw | 11:48 &M

Screen 8.12: With SHADOW OFF, PREFIX ON, and NUMBER ON

Notice that the line numbers in the prefix area take into account excluded lines. So, for
example, the prefix area shows that the line containing BERGAMOT is line 4. Even
though this line is the first displayed line, it is still the fourth line of the file.

To redisplay all the lines of the file, issue the ALL command with no operands:
all

Your screen then looks like this:

190

Chapter 8. Selective Line Editing and Highlighting

= KEDIT v~
File Edit Actions Options WWindow Help
NFEIEEN0E
KEDITVWASAMPLES\HERB.TXT v~
;
00000 = % *# Top of File * * =
00001 ANGELICA biennial 48-84" white
0oooZ ANISE annual 12-24" white
00003 BASIL annusl 24" white
00004 BERGAMOT perennial 36" pink, purple, red, white
00005 BORAGE annual Ie" white, blue
00006 BURHET perennial 12-18" white, ro=e
ooooy CAMOMILE perennial 12" white
00008 CARAWAY biennial 24-38" white
00009 CATHIP perennial 24-36" purple
00010 CHERVIL annual 18" white
0001l CHIVES perennial 18" lavender
goolz ICICEL'f perennial 24-36" white
====3 *
i-! | *
| Line=4 | Col=1 | Al=0.0:2 | Size=41 |Files=1 | indows=1 INS HM|11:EDﬂM

Screen 8.13: HERB.TXT with PREFIX ON and NUMBER ON

If you are working through the examples on your PC, you should now enter the
command

set shadow on

before continuing on to the next section, since the discussion there assumes that
shadow lines are being displayed.

8.1.5 Prefix Commands Related to ALL

Related to ALL are KEDIT prefix commands that allow you to exclude specific lines
from the display or to bring back to the display specific lines that have been previously
excluded. Excluding and redisplaying specific lines is most commonly done using the
prefix area, so the next few examples will show screens where PREFIX ON is in effect.
To make clear where lines are excluded, these examples will also show screens with
NUMBER ON in effect.

The prefix area is provided primarily for compatibility with XEDIT, the editor used on
IBM mainframes running VM/CMS. If you are not familiar with XEDIT, then the X
and S prefix commands and the line number display are probably the main reasons why
you would use the prefix area. (See Chapter 7, “The Prefix Area”, for more information
about the prefix area.)

o
€
=
S
w
o
2
wid
0
-
o
(7]

If you are working through the examples on your PC and are not simply continuing
from the last section, then edit the file HERB.TXT. Next, issue the commands

Selective Line Editing 191

set prefix on
set number on
/BERGAMOT/

so that your screen will look like Screen 8.13.

The prefix command X can be used to exclude one line from the display (where X
stands for “eXclude”). To exclude a line, enter an X in the prefix area next to the line
you want to exclude and then execute this prefix command by pressing the F12 key (if
you are using KEDIT’s CUA interface) or the Home key (if you are using INTERFACE
CLASSIC). For example, to exclude the line containing BORAGE, you put the prefix
command X in the prefix area of line 5, as in the next screen, and then press F12 (for
INTERFACE CUA) or Home (for INTERFACE CLASSIC):

= -1~

File Edit Actions Options Window Help

EEENE] Bl N NEEIEEE

= CAKEDITWASAMPLESY\HERB. TXT v~
|2
00000 = x » Top of File * = =
00001 ANGELICA biennial 453-84" white
goooz ANISE annual 12-24" white
00003 BASIL annual 24" white
00004 BERGAMOT perennial 3R pink. purple. red. white
BORAGE annual 36" white. blus
0000e BURHET perennial 12-18" vhite, rose
aQooo? CAMOMITE perennial 12" white
00008 CARAWAY biennial 24-36" white
qonoe CATHIP perennial 24-36" purple
00010 CHERVIL annual 18" white
o011l CHIVES perennial 1a" lawvender
onolz CICELY perennial 24-36" white
[+*
4-! | -
| Line=5 | Cal=2 | Alt=0,0:2 | Size=41 |Fi|es=‘| | Windows=1 INS HM|11:5‘I A

Screen 8.14: X prefix command

After you execute the X prefix command, the screen looks like this:

192 Chapter 8. Selective Line Editing and Highlighting

File Edit Actions Options Window Help

ED|@|nj 1 @+|M| £ 5 fJ|Q| éié|| |

CAKEDITYASAMPLE S\HERE.TXT

* * * Top of File * * =
ANGELICA biennial 48-84" wvhite
ANTISE annual 12-24" wvhite
BASIL annual 24" white
BERGAHMOT perennial 36" pink, purple, red, white

1 llne(s) not displayed
BURENET perennial 1z-18" white, rose
CAMOMILE perennial 12" white
CARAWAY biennial 24-36" white
CATHIFP perennial 24-36" purple
CHERVIL annual 15" vhite
CHIVES perennial 18" lawvender
CICELY perennial 24-36" white

+
-
| Line=4 | Cal=1 | Alk=0,0:3 | Size=41 | Files=1 | Wwindows=1 INS |RiAw |11:52 A

Screen 8.15: HERB.DOC after issuing the X prefix command

To bring an excluded line back into the display, you can use the prefix command S
(where S stands for “Show”). Placing S in the prefix area of a shadow line and pressing
the F12 (for INTERFACE CUA) or Home (for INTERFACE CLASSIC) will bring
back to the display all the excluded lines corresponding to that shadow line. For exam-
ple, to redisplay the line containing BORAGE, you type S in the prefix area of line 5, as
in the next screen:

= KEDIT BE
Eile Edit Actions Options Window Help

D_I:l- I | N Yy g ol T | E Y [

CAKEDITYWASAMPLES\HERB.TXT 'I o
;
N
00000 = = = Top of File = = =
00001 ANGELICA biennial 48-94" white
oooo2 ANISE annual 12-24" white
00003 BASIL annual 24" vhite
00004 BERGAMOT perennial I pink. purple. red. white
=] 1 llne(s) not displayed
oo00e EURNET perennial 12-18" white, rose
oooo? CAMOMILE perennial 12" white
00008 CARAWAY biennial 24-36" white (o)
oooo9 CATHIFR perennial 24-36" purple _E
ooo10 CHERVIL annual 1a" white =
o001l CHIVES perennial 1a" lawender
ooolz CICELY perennial 24-36" white
====3 +

- +
[Lnes5 | Cokz | AR=0.03 | Siee=#1 |Files=1 | Windows=1 |INS |[R/w [11:53 &M

Screen 8.16: S prefix command

o
w
o
=
wid
7]
2
]
(7]

After you execute the S prefix command, the screen looks like Screen 8.13 again.

Selective Line Editing 193

As with other prefix commands, you can enter nX or X# to exclude » lines, and nS or
Sn to show n lines. You can also enter XX in the prefix area of one line and XX in the
prefix area of another line to exclude a block of lines.

For other variations of the X and S prefix commands, see Chapter 7, “The Prefix Area”.

8.2 Selective Line Editing Details

This section gives more information on how KEDIT handles the ALL command and
the X and S prefix commands. Most users, especially when first starting with these
facilities, don’t need to be concerned with these details.

8.2.1 Selection Levels

Associated with each line of a file is a number called the selection level of the line. In
KEDIT, a selection level can be from 0 to 255. Initially, the selection level of all lines in
the file is 0.

Selection levels, in conjunction with the SET DISPLAY command, are used to control
what lines of your file KEDIT displays. The command

set display nl n2

causes KEDIT to display only lines whose selection level is greater than or equal to n/
and less than or equal to n2. Lines whose selection level are outside this range are not
displayed by KEDIT. Instead, where there are lines excluded from the display, a
shadow line is displayed if SHADOW is ON, or no lines are displayed if SHADOW is
OFF.

To control the selection level of a line or group of lines, you can use the command
SET SELECT. For example,

set select 5
sets the selection level of the current line to 5. Issuing the command
set select 2 *

sets the selection level of all lines to 2, from the current line down to the last line of the
file.

Suppose you have a file with these five lines in it:

194

Chapter 8. Selective Line Editing and Highlighting

First line
Second line
Third line
Fourth line
Fifth line

and that the selection level of the first line is 10, the second line 20, the third line 30, the
fourth line 40, and the fifth line 50. With DISPLAY 0 0, the default, none of the lines
would be selected for display and the screen would show the following shadow line

—- 5 line(s) not displayed —

If you then entered the command

display 30 30

the screen would display the third line, which has a selection level of 30.
Then, issuing the command

display 20 50

would result in the display of the second, third, fourth and fifth lines, whose selection
levels range between 20 and 50. And you could enter

display 10 50

to display all the lines of the file.

8.2.2 How ALL Works

Here is an outline of how the ALL command works:

e First, ALL puts SCOPE ALL into effect and sets the selection level of all the lines
in the file to 0. (The selection level of the lines in the file would normally already
be 0, unless previous ALL commands or X prefix commands had been issued or
you had issued SET SELECT yourself.)

e Then, for all lines that match the target specified with the ALL command, the se-
lection level is set to 1.

o Next, ALL sets DISPLAY to DISPLAY 1 1 so that only the lines that match the tar-
get will be displayed.

e Regardless of the previous setting of SCOPE, the ALL command also resets
SCOPE to SCOPE DISPLAY.

You reset the selection level of all lines in your file by using ALL with no operands.
ALL with no operands sets the selection level of all lines in the file to 0, and sets DIS-
PLAY to DISPLAY 0 0.

o)
c
=
o
w
o
2
=1
(5}
o
<}
n

In KEDIT, ALL is implemented as a command to maximize performance, but ALL
could have been written as a macro. (In fact, ALL is implemented as a macro in
XEDIT.)

Selective Line Editing Details 195

8.2.3 How X and S Work

Internally, the X prefix command sets the selection level of all lines that are to be
excluded to 1 greater than the highest DISPLAY setting. Suppose you have
DISPLAY 20 30 in effect. If you then issue the X prefix command, it sets the selection
level of the affected lines to 31.

The S prefix command sets the selection level of affected lines to the higher of the two
current DISPLAY settings. For example, if you have DISPLAY 20 30 and want to
“show” some currently excluded lines, the S prefix command will set the selection
level of those lines to 30.

Under XEDIT, X and S are macros. These prefix commands are built into KEDIT for
performance reasons. Also, KEDIT does not currently support prefix macros.

8.3 Highlighting Facility

KEDIT’s highlighting facility lets you highlight portions of your file. You can, for
example, highlight lines that contain a certain string, or you can highlight altered lines.

The TAG To highlight lines that contain particular strings you will most often access the high-
command light facility by using the TAG command. The TAG command is in many ways similar
to the ALL command in that it lets you specify a subset of your file that is of interest to
you.
For example, where the command
all /Fred/
would select only the lines containing the string “Fred” for display,
tag /Fred/
would instead highlight the lines containing the string “Fred”, but leave all of the lines
in your file displayed.
And, just as you can use ALL with no operands to reset the status of selective editing
and resume displaying all the lines in your file, you can use TAG with no operands to
reset (turn off) highlighting.
Similarly, the MORE and LESS commands work in conjunction with the TAG com-
mand as well as with the ALL command. So, after specifying
tag /perennial/
you could use
more tag /white/
to highlight the entries in HERB.TXT that describe either perennials or herbs with
white flowers.
196 Chapter 8. Selective Line Editing and Highlighting

HIGHLIGHT
ALTERED

See also

Target
highlighting

The other primary use of the highlighting facility is highlighting lines that have been
altered in your current editing session. To do this you would use the command HIGH-
LIGHT ALTERED. Any lines in your file that are new or changed would be
highlighted.

As you make changes to additional lines of your file, these lines are also highlighted. If
you use the undo facility to undo all changes to a line, the line will no longer be
highlighted.

You can use the SET COLOR command to control the colors used to highlight lines of
your file; SET COLOR HIGHLIGHT controls the color used for highlighted lines.

The highlighting facility also lets you highlight lines based on other flag bits and on
selection levels. For additional information about the highlighting facility, see the
description of SET HIGHLIGHT in the Reference Manual. For additional information
about flag bits, see the description of SET LINEFLAG in the Reference Manual.

Note that the highlighting facility discussed here is different from KEDIT’s target high-
lighting. The target highlighting facility, controlled by SET THIGHLIGHT, highlights
string targets that you find using the LOCATE, CLOCATE, and TFIND commands,
and with the Edit Find and Edit Replace dialog boxes.

Highlighting Facility 197

o)
c
=
o
w
o
2
=1
(5}
o
<}
n

Chapter 9. Tailoring KEDIT

KEDIT is a highly configurable text editor. There are over 100 SET options that you
can use to control various aspects of KEDIT, and you can further adjust KEDIT’s key-
board and mouse behavior by defining your own macros in place of or in addition to the
macros that are built into KEDIT.

Sometimes you will want to make a temporary change to KEDIT’s behavior, affecting
your editing of a single file or affecting only the current editing session. At other times
you will want to make changes to KEDIT’s behavior that remain in effect during future
editing sessions.

This chapter discusses how you can use the SET command or the Options SET Com-
mand dialog box to make temporary changes to the values of KEDIT’s SET options,
how you can make these changes permanent by using the Options Save Settings dialog
box, and how you can use KEDIT’s profile facility to make further adjustments to your
SET options and to define your own macros.

9.1 SET Options

The SET
command

Levels

The SET command, covered in detail in Reference Manual Chapter 4, “The SET
Command”, provides options that you can use to control many details of KEDIT’s
behavior. Most SET options can also be controlled through the Options SET Command
dialog box. A few SET options are either too specialized or too complex to be handled
through the dialog box and are available only via the SET command.

You can control such things as the colors KEDIT uses on your display, whether the
command line is placed at the top or bottom of your document window, and whether
KEDIT’s autosave facility is enabled. For example,

set color cmdline blue
set cmdline top
set autosave 25

With the exception of the rarely-used SET ALT and SET = options, the word SET is not
required. When KEDIT sees a command that it does not recognize, it will automatically
check for a SET option and handle it properly. The examples in this chapter will gener-
ally spell out the word SET, but it is optional. The preceding commands could have
been entered as:

color cmdline blue
cmdline top
autosave 25

The documentation for each SET option, and the information displayed for each option
within the Options SET Command dialog box, indicate the “level’ at which the option
takes effect. Some SET options are at the Global level, affecting your entire KEDIT
session. Some options are at the File level, affecting only the current file. Other options

198

Chapter 9. Tailoring KEDIT

Saving your
settings

Notes

are at the View level, and can be different for each view you have of a file that is dis-
played in multiple windows.

At the Global level are options like STATUSLINE, which determines whether KEDIT
displays a line of status information at the bottom of its frame window, and
MACROPATH, which controls which directories KEDIT searches when looking for a
macro. Most options at the File level affect how a file is read from or written to disk,
such as LRECL and TABSOUT. This is because if you have several files in the ring,
you might want them all to be written to disk with different record lengths. But if the
same file is displayed in multiple windows, it is unlikely that you would want it to be
written to disk with different record lengths depending on which window the save
operation was initiated from. The largest number of options are at the View level, since
you might well want to have, for example, different VERIFY settings in different views
of the same file.

Issuing a SET command, via the command line or via the Options SET Command dia-
log box, only affects the current editing session. To make a more permanent change to
the value of a SET option, you must specifically tell KEDIT to save the new value for
use in future editing sessions.

KEDIT uses the Windows registry to keep track of information that is saved from one
editing session to the next. This includes the saved settings discussed here, lists of
recently-edited files and recently-processed command lines, and various other status
information. At the start of each new editing session, KEDIT processes the information
saved in the registry and puts your saved settings back into effect.

There are three ways to save SET option values in the Windows registry for use in
future editing sessions:

e From within the Options SET Command dialog box you can use the Save Setting
button to save the value of an individual SET option. The value of the SET option
that is currently displayed within Options SET Command will be saved, and the
saved values of other SET options will not be affected.

e You can use the Options Save Settings dialog box to process the current values of
all savable SET options. Options Save Settings displays a list of the SET options
whose current values differ from the values previously saved in the registry. You
can review this list and then either save these values to the Windows registry or
cancel the save operation.

e From the KEDIT command line, you can use the REGUTIL command, which has
operands that let you save individual settings in the Windows registry, save all set-
tings in the registry, and reset all settings saved in the registry to their default
values.

Some notes on saving your settings:

e The values of most, but not all, SET options can be saved in the Windows registry;
the SET command documentation and the Options SET Command dialog box in-
dicate which options are savable and which are not.

SET Options

199

=
o
L
X
(2]
c
=
=
©
-

The options that cannot be saved are, in general, those that you might set on a
one-time basis, or that you might use with a particular type of file, but would be un-
likely to want automatically in effect for every file that you edit. For example, you
can use the SET ZONE command to tell KEDIT to restrict string searches to cer-
tain columns of a file, but it is unlikely that you would want to automatically re-
strict the search columns in every file that you edit, so SET ZONE is not saved in
the Windows registry. Additionally, a few of the more complex options, like SET
TOOLBUTTON and SET TOOLSET, cannot be saved in the registry.

e When you use Options Save Settings, not all option values are actually written to
the Windows registry; to speed things up, KEDIT only writes out the options
whose values differ from the built-in KEDIT default.

e There is one special class of SET options whose values are automatically updated
in the Windows registry whenever they are set. These are SET INSTANCE, SET
INITIALDIR, SET INITIALDOCSIZE, SET INITIALFRAMESIZE, SET
INITIALINSERT, and SET INITIALWIDTH, and what they have in common is
that they have an effect only during KEDIT initialization. They are automatically
saved because there is no point in setting these options unless the changes are re-
flected in registry so that they can affect future KEDIT sessions. Setting these op-
tions has no effect on the current KEDIT session, because you don’t get a chance to
set them until KEDIT has already been initialized. But whenever you set one of
these options, the new value is automatically saved in the registry, and it will affect
future KEDIT sessions.

9.2 KEDIT Profiles

9.2.1 Overview of KEDIT Profiles

For many users, customizing KEDIT can simply involve using the Options SET Com-
mand dialog box to choose preferred settings, and then using the Options Save Settings
dialog box to save these settings for use in future editing sessions. There are, however,
some limitations to this approach:

e The values of some KEDIT options, like the SET TOOLBUTTON and SET
TOOLSET options used to customize the toolbar, cannot be handled by Options
Save Settings.

e Your saved settings are put into effect in all future editing sessions, regardless of
the type of file you are editing. Some other mechanism is needed if you want to put

different options into effect depending on the type of file you are editing.

e Macro definitions, which are controlled by KEDIT’s DEFINE command, are not
handled by Options Save Settings.

To address these considerations, you can create a KEDIT profile.

200 Chapter 9. Tailoring KEDIT

What is a
profile?

Using quotes

Your profile is a special macro file, normally called WINPROF.KEX, that KEDIT pro-
cesses at the start of each editing session. Any KEDIT commands that you want to have
executed at the start of each editing session, including SET commands for options not
processed by Options Save Settings, and DEFINE commands for KEDIT macros, can
be included in WINPROF.KEX. You can also use IF-THEN-ELSE logic within your
profile to issue different commands depending on the type of file that you are editing.

You do not need to know all about KEDIT macros to set up a useful KEDIT profile, and
this chapter covers only the bare minimum. Chapter 10, “Using Macros”, has much
more information about using KEDIT macros.

To create a profile, use KEDIT to create a file called WINPROF.KEX. As discussed in
Section 10.2.3, “Storing Your Macros”, we recommend that WINPROF.KEX be kept
in the “KEDIT Macros” subdirectory of your Windows Documents folder (which is
sometimes known as the My Documents folder). In WINPROF.KEX, put the KEDIT
commands that you want to issue whenever you run KEDIT. For reasons discussed
below, you should put quotes around the commands. An example:

'set synonym search 1 locate'
'set cmdline top'
'set autosave 25'

Whenever you start KEDIT, it looks for the file WINPROF.KEX. If WINPROF.KEX is
found, KEDIT processes it, issuing all the commands that it contains.

Note that the SET SYNONYM command in the above example is not handled by
Options Save Settings, and would therefore need to be put into your profile if you want
it processed at the start of every KEDIT session. Options Save Settings does handle
most options, including SET CMDLINE and SET AUTOSAVE, so these settings could
be put into effect via your profile or via Options Save Settings. SET commands issued
from your profile take precedence over saved settings loaded from the Windows regis-
try. See Section 9.2.2, “Order of Processing”, for more on this point.

Enclose commands issued from your profile in quotes. This causes the commands to be
passed directly to KEDIT for execution. Commands that are not in quotes will often be
executed properly, but are sometimes interpreted by KEDIT’s macro processor as
macro instructions, expressions, or variables, leading to unexpected and possibly con-
fusing errors. To avoid these problems, always use quotes.

You can use cither single or double quotes. Single quotes are most common:

'set wrap on'
'set arbchar on'

An exception comes when the command that you are issuing itself contains single
quotes, as DEFINE commands often do. In this case, you would normally enclose the
command in double quotes. So the command

define f£f5 'cursor down'

should appear in your profile as

KEDIT Profiles

201

=
o
L
X
(2]
c
=
=
©
-

Comments

Making
decisions

The DEFINE
command

"define f5 'cursor down'"

You can use comments to document the contents of your profile. Any line in your pro-
file that begins with an asterisk (“*’) is a comment line and is ignored by KEDIT when
it processes your profile. Note that comment lines should not be enclosed in quotes.
Blank lines in your profile are also ignored.

* set options for string searches
'set wrap on'

'set arbchar on'

'set varblank on'

* make end key toggle between beginning and end of line
"def end if after() then 'sos firstchar'; else 'sos endchar'"

You can use IF instructions in your profile to test conditions and act differently based
on the results. The most common use of this in profiles is to issue different SET com-
mands based on the extension of the file you are editing. FEXT.1() is an implied
EXTRACT function that returns the extension of the file you are editing. We will not
discuss implied EXTRACT functions in detail here, but the usage of FEXT.1() should
be clear from the following examples. Implied EXTRACT functions are discussed in
Chapter 10, “Using Macros”, and fully documented in Reference Manual Chapter 5,
“QUERY and EXTRACT”.

The next example sets WORDWRAP ON if you are editing a file with an extension of
TXT. Note that the IF instruction is not enclosed in quotes. It is part of KEDIT’s macro
language and is not a KEDIT command. However, constant strings used in macro
expressions, such as the word TXT in this example, should be given in quotes.

if fext.1l() = 'TXT' then
'set wordwrap on'

The next example sets MARGINS to columns 1 and 75 if you are editing a file with an
extension of TXT, and to columns 1 and 80 otherwise:

if fext.1l() = 'TXT' then
'set margins 1 75'
else
'set margins 1 80'

The third example shows how you can use a DO—END pair to issue several commands
when some condition is true:

if fext.1l() = 'TXT' then do
'set margins 1 75"
'set wordwrap on'
'set format justify'
end

Your profile can contain any KEDIT commands, but the commands most commonly
used in profiles are SET commands and DEFINE commands. SET commands, used to
control the values of KEDIT SET options, have been discussed already.

202

Chapter 9. Tailoring KEDIT

Your profile can use the DEFINE command to setup other KEDIT macros, most often
macros that are assigned to keys on your keyboard. Whenever you press a key on your
keyboard, KEDIT executes the macro assigned to that key. So by using the DEFINE
command, you can reconfigure your keyboard, defining the actions you want each key
to control.

Short, one-line macros can be given directly in DEFINE commands included in your
profile. For example, including the following line in your profile would cause function
key F5 to move the cursor down one line:

"define f5 'cursor down'"

If you have a number of macros to define, and they are not simple one-line macros, you
can put the macros into a file with an extension of KML (for “KEDIT Macro Library”’)
and load all of the definitions at once with a single DEFINE command in your profile.
For example,

'define mykeys.kml'

To actually write the macros handled by DEFINE commands, you’ll need to know
more about macros than is covered in this chapter. Macros are discussed in more detail
in Chapter 10, “Using Macros”.

SET By default, your profile is executed only once, at the start of each KEDIT session. If
REPROFILE your profile issues the command
'set reprofile on'
your profile will be executed at the start of each KEDIT session and, if you use KEDIT
to edit multiple files, it will be re-executed whenever you begin to edit an additional
file. You can then use IF instructions to make decisions based on information such as
the file type of the file you are editing. The following sample profile will help show
how this can be useful.
'set reprofile on'
if fext.1l() = 'TXT' then
'set wordwrap on'
If you start KEDIT by issuing, from the File Manager’s File Run dialog box, the
command
keditw program.c
this profile will turn REPROFILE ON, but will not set WORDWRAP ON for
PROGRAM.C, since it does not have an extension of TXT. If, from the KEDIT com-
mand line, you start to edit a second file by issuing the command
kedit second. txt
your profile will be re-executed (since REPROFILE ON is in effect), and
WORDWRAP ON will be put into effect for SECOND.TXT, since it has an extension
of TXT.
KEDIT Profiles 203

=
o
L
X
(2]
c
=
=
©
-

INITIAL()

Loading your
file

If you had left the default of REPROFILE OFF in effect, KEDIT would not have
re-executed your profile when you began to edit SECOND.TXT and WORDWRAP
ON would not have been put into effect.

Note that when you are editing multiple files, as in this example, it is possible to have
WORDWRAP ON in effect for one file while WORDWRAP OFF is in effect for
another file. A number of SET options work this way, and can be set on a per-file basis.
Many options can even be set on a per-view basis, where, if you are viewing the same
file through two different KEDIT windows, SET options can have different values in
each view. For more on this topic, see the discussion at the beginning of Reference
Manual Chapter 4, “The SET Command”.

With REPROFILE ON, KEDIT will re-execute your profile whenever a new file is
added to the ring. But some portions of your profile might only need to execute once, at
the start of a KEDIT session. DEFINE commands are a common example of this.

Because macro definitions are global to KEDIT and, unlike most SET options, are not
managed on a per-file or per-view basis, many KEDIT users have one set of macro defi-
nitions for their keys. These definitions can be stored in a .KML file and loaded only
once, at the start of a KEDIT session, to avoid a time-consuming reload whenever a
new file is added to the ring.

To make this possible, an IF instruction in your profile can test the Boolean function
INITIAL(), which returns 1 (meaning True) if it is called from a profile executed at the
start of a KEDIT session and otherwise returns 0 (meaning False). Here is a typical
usage:

if initial () then
'define mykeys.kml'

If your profile issues any command that depends on your file being loaded (such as a
LOCATE or CHANGE command), KEDIT loads your file before processing the com-
mand. Otherwise, KEDIT loads your file after completion of your profile. You can
force KEDIT to load your file at any point in your profile by issuing a command like
LOCATE 0. (LOCATE 0 is useful because it does not change the current line location,
which is usually set to the top-of-file line when a file is loaded but can be set elsewhere
if the LINE initialization option is used.)

Most of what is typically done in profiles does not force the loading of your file. This
includes use of the SET, EXTRACT, and DEFINE commands, and of KEXX Implied
Extract, Boolean, and built-in functions. This is useful because it gives you a chance to
issue commands like SET TABSIN from your profile before your file is loaded in, so
that the command can have an effect on how the file gets loaded. (See Reference
Manual Section 2.3 for a full list of commands that do not force the loading of your file
from within the profile.)

204

Chapter 9. Tailoring KEDIT

9.2.2 Order of Processing

During KEDIT initialization, SET options are processed in the following order:
e KEDIT’s built-in default values for the SET options are put into effect.

o KEDIT processes its section of the Windows registry, overriding the default SET
option values with any values previously saved to the registry via the Save Settings
dialog box.

e KEDIT processes any initialization options specified via the KEDITW environ-
ment variable or the command line used to invoke KEDIT.

e KEDIT processes your profile, which can make additional changes to the SET op-
tion values. Note that SET commands issued from your profile therefore override
the effect of settings saved in the registry.

e After all of this, you can make further changes by issuing the SET command from
the KEDIT command line, or by using the Options SET Command dialog box, ac-
cessible through the Options menu.

Note in particular that since your profile is processed after your saved settings are pro-
cessed, SET commands issued from your profile take precedence over saved settings.
If you use Options Save Settings, but some of the saved settings do not take effect in
future editing sessions, this is often the cause.

For example, assume that you have used the Options SET Command dialog box to put
AUTOSAVE 40 into effect, and that you used the Save Setting button to save this value
for use in future sessions. At the start of your next KEDIT session, AUTOSAVE 40 will
be put into effect when KEDIT processes your saved settings. KEDIT will then execute
your profile. If your profile contains the command SET AUTOSAVE 25, AUTOSAVE
25 will be put into effect, overriding the effect of the AUTOSAVE 40 from your saved
settings.

For more information on KEDIT’s processing of your saved settings and your profile,
see Reference Manual Section 2.3.

9.2.3 Initialization Options

There are a number of special options, known as initialization options, that you can
specify on the command line used to invoke KEDIT or to add additional files to the
ring. (The KEDITW32 command is used to start KEDIT for Windows. Once a KEDIT
session has begun, you can use the KEDIT command to add additional files to the ring.)
These options let you specify that special processing is to take place for a particular
KEDIT session, or when a particular file is added to the ring. For example, you can
specify that an alternate profile, other than the normal WINPROF.KEX, is to be exe-
cuted for a file that you are adding to the ring. To execute ALTPROF.KEX instead of
WINPROF.KEX when starting KEDIT:

KEDIT Profiles

205

=
o
L
X
(2]
c
=
=
©
-

KEDITW32 SPECIAL.FIL (PROFILE ALTPROF

Initialization options follow the fileid on the command line. They are preceded by a left
parenthesis, and are optionally followed by a right parenthesis.

For a full discussion of KEDIT’s initialization options, see Reference Manual
Chapter 2, “Invoking KEDIT”.

9.2.4 A Sample Profile

Description of
PROFILEA.KEX

Here is a very basic sample profile that you might use as a starting point for your own
profile. This file is in KEDIT’s SAMPLES subdirectory as PROFILEA.KEX. To use it,
you would want to copy it to a file called WINPROF.KEX. We recommend that you
keep WINPROF.KEX and any other macros that you create in the “KEDIT Macros”
subdirectory of your Windows Documents folder (which is sometimes known as the
My Documents folder).

PROFILEA KEX

* a sample KEDIT profile

* turn on backup and autosave facilities
'set autosave 25'
'set backup keep'

* set some useful options
'set wrap on'

'set defsort date'

'set hexdisplay on'

* un-comment the next line to get an xedit-style prefix area
* 'set prefix on'

* make end key toggle between start and end of line
"def end if after() then 'sos firstchar';else 'sos endchar'"

Here is what this sample profile does:

* turn on backup and autosave facilities
'set autosave 25'
'set backup keep'

The profile turns on KEDIT’s autosave facility, telling it to save your file after every 25
changes to the file. Your file is saved under its own name, with an extension of .AUS.
This can help you recover your work in the event of a system crash or power failure.
The autosave file is erased by KEDIT whenever the file is successfully saved via File
Save or a related menu item, or via the FILE or SAVE commands.

The profile also turns on KEDIT’s backup facility, which causes KEDIT to keep the
previous copy of your file on disk (with an extension of .BAK) whenever a FILE or
SAVE command is issued. If you make changes to a file with KEDIT and then have
second thoughts about those changes, it is often useful to have access to the previous

206

Chapter 9. Tailoring KEDIT

Other sample

version of the file. You can periodically erase any .BAK files that KEDIT leaves on
your disk to free up the disk space involved.

Both SET AUTOSAVE and SET BACKUP are highly recommended for all KEDIT
users who are not extremely short on disk space.

Note that another method for getting AUTOSAVE, BACKUP, and the other options set
through this sample profile into effect at the start of each editing session would be to set
the options through the Options SET Command dialog box and then save the settings
with Options Save Settings. This would save the settings in KEDIT’s section of the
Windows registry, and you would not need to set them through your profile.

* set some useful options
'set wrap on'

'set defsort date'

'set hexdisplay on'

The next commands set options that most KEDIT users will find useful:

e SET WRAP ON means that, instead of giving up when it reaches the bottom of your file, the
LOCATE command will wrap around to the top and search your entire file for string targets.

e SET DEFSORT DATE means that the DIR command will sort files by date, with the most
recent files, which are the ones most likely to be of interest, listed first; the default is to sort
files by name.

e SETHEXDISPLAY ON tells KEDIT to display on the status line the decimal and hexadeci-
mal values of the ASCII code for the character at the cursor position. This is useful to any-
one who works with files containing special characters.

* un-comment the next line to get an xedit-style prefix area
* 'set prefix on'

If you are a user of IBM’s mainframe XEDIT editor and you want to use XEDIT-style
prefix commands, you will want to turn PREFIX ON in your profile. You should also
look at VMPROF.KEX on the KEDIT distribution disk, which is a sample profile that
turns on more of KEDIT’s XEDIT-compatible features. See also Appendix A, “XEDIT
Compatibility”.

* make end key toggle between start and end of line
"def end if after() then 'sos firstchar';else 'sos endchar'"

This DEFINE command sets the END key to toggle the cursor between the beginning
and end of a line. By default, the END always moves the cursor to the end of a line.

Two other sample profiles are on the KEDIT distribution disk:

profiles
e PROFILEB.KEX is a bit more sophisticated than the sample described here. It
uses IF instructions to tailor its behavior to the type of file being edited, and loads a
set of macros from a .KML file.
e VMPROF.KEX, mentioned above in the discussion of PREFIX ON, is a sample
profile that makes KEDIT act more like IBM’s XEDIT mainframe editor.
KEDIT Profiles 207

=
o
L
X
(2]
c
=
=
©
-

Chapter 10. Using Macros

You can use KEDIT macros to tailor KEDIT to your needs and automate repetitive edit-
ing tasks. A KEDIT macro is a program that controls a set of actions that you want
KEDIT to perform.

KEDIT macros are written in a language called KEXX. KEXX is a subset of the REXX
language, a widely-used macro language originally developed by IBM.

This chapter first discusses how to run KEDIT macros. Next it discusses the DEFINE
command, which lets you load macros into memory and redefine the macros assigned
to keys. Finally, it discusses the KEXX language itself, which you need to be familiar
with if you will write your own macros.

Several other parts of the KEDIT for Windows documentation also discuss macros:

e Chapter 9, “Tailoring KEDIT”, covers profile macros, which let you adjust
KEDIT’s default option settings and key definitions.

e Chapter 11, “Sample Macros”, shows you how macros work in practice, discuss-
ing in detail several of the sample macros supplied with KEDIT.

e Reference Manual Chapter 6, “Macro Reference”, covers the KEXX language in
more detail than does the overview given in this chapter. It also includes a sum-
mary of the differences between KEXX and REXX.

10.1 Running Macros

There are several ways to run a macro:

e Pressing a key

e Issuing the MACRO command

e Running an implied macro

e Using the mouse

e Automatically executing your profile
e Issuing the IMMEDIATE command

e Issuing the DEBUG command

Pressing a key Whenever you press a key in KEDIT, you are actually telling KEDIT to run a macro.
KEDIT takes the name of the key that you press and runs a macro with that name. When
you press function key F2, KEDIT runs a macro called F2. When you press the A key,

208 Chapter 10. Using Macros

MACRO
command

Implied
macros

Using the
mouse

Profile macros

IMMEDIATE
command

KEDIT runs a macro called A. When you press Ctrl+L, KEDIT runs a macro called
Ctrl+L.

Default definitions for all keys are built into KEDIT. Many are very simple. For exam-
ple, the macro assigned to the A key simply inserts the character ““a’ into your file, and
the macro assigned to the PgDn (Page Down) key simply issues the command FOR-
WARD. But you can use the DEFINE command, discussed in the next section, to
assign your own macros to any KEDIT key.

The MACRO command is used to run a single in-memory macro (a built-in macro or a
macro previously loaded by the DEFINE command) or a macro stored in a . KEX file.

For example,
macro test

runs a macro called TEST. KEDIT looks in memory for a macro called TEST and runs
it. If no macro called TEST is in memory, KEDIT looks on disk for TEST.KEX.

If IMPMACRO ON is in effect, as it is by default, and you type in a command that
KEDIT does not recognize, KEDIT automatically tries to execute a macro with that
name. (This feature works only if the name of the macro is entirely alphabetic, with no
numeric or special characters.) For example, with IMPMACRO ON, if you simply
enter

test

KEDIT will look for the macro TEST, just as if you had entered

macro test

Just as whenever you press a key you are actually running a KEDIT macro, whenever
you click the mouse within a document window, press a toolbar button, or select an
item from one of KEDIT’s menus, you are also running a KEDIT macro, and these
macros can be redefined. One way to do this is by adding your own buttons to the
toolbar and defining the macros to be run when they are selected. Mouse macros are
discussed in Reference Manual Chapter 7, “Built-in Macro Handling”.

A special macro called the profile is automatically executed when you start up KEDIT.
A profile is most often used to tailor KEDIT to your needs by changing KEDIT settings
and by defining other macros useful in your daily work or associated with the type of
file you are editing. Profiles are discussed in Chapter 9, “Tailoring KEDIT”.

The IMMEDIATE command can be used to run a one-time-only macro from the com-
mand line, without assigning it to an in-memory macro. Once you are familiar with the
KEXX language, you might find this useful. For example,

immediate do n = 1 to 4; 'input Part number' n; end

will insert these four lines into your file, below the current line:

Running Macros

209

DEBUG
command

Part number
Part number
Part number
Part number

S Wk

IMMEDIATE is also useful for making a quick check to see whether a macro instruc-
tion exists or works the way you think it should.

The DEBUG command is like the MACRO command, except that it runs your macro
with KEDIT’s macro debugging facility active. Debugging is discussed below in
Section 10.4, “Debugging KEXX Macros”.

10.2 Defining Macros

This section covers the DEFINE command, which is used to load macros into memory.
It also gives examples of some very simple KEXX macros and discusses how they
work.

10.2.1 One-line Macros

Using quotes

The simplest way to define a KEDIT macro and load it into memory is to enter the defi-
nition on the command line using the DEFINE command. This method is limited in
that it only allows you to define macros that fit on the command line. Later we will look
at defining longer macros.

define macroname macrodefinition

The macro name can be any name, but if it is the name of a key (or key combination)
then the macro will be bound to that key. (For a list of the key names used by KEDIT,
see Reference Manual Chapter 7, “Built-in Macro Handling”.) When a macro is bound
to a key, then pressing the key causes the macro to be run. For example, if you define a
macro with the name F1 and later press the F1 key, the F1 macro will be run.

For this reason, you should avoid using one-character names for macros that you don’t
want to have assigned to keys. For example, if you define a macro named A, it will be

[T

executed whenever you try to use the keyboard to enter the letter ““a”.

The simplest macro would issue a single KEDIT command. For example,
define f1 'top'

This binds the macro to the F1 key. So in this case pressing the F1 key executes the
KEDIT command TOP.

A KEDIT command issued from a macro should be specified as a literal string, and so
should be enclosed in single quotes (‘) or double quotes (). The command TOP is
enclosed in quotes to distinguish it from a variable name. For example, a KEDIT com-
mand such as “put * temp”” should be entered in a macro as

210

Chapter 10. Using Macros

Issuing
multiple
commands

'put * temp'

to distinguish it from a macro expression where the value of a variable named put is
multiplied by the value of a variable named temp. KEDIT commands issued from a
macro can include variable information. If you include variables in the specification of
a KEDIT command, any literal part of the command should be enclosed in quotes and
any variable part of the command should appear outside of the quotes. An example is
given and discussed in Section 10.3.5, “Commands”.

Note that if a DEFINE command is issued from a macro (and DEFINE commands are
often issued from KEDIT profile macros), the DEFINE command itself should be
enclosed in quotes. Since the DEFINE command normally includes single quote char-
acters, you would usually put it in double quotes in a macro. So the DEFINE command
in the macro above would appear in a KEDIT profile as

"define f1 'top'"

A slightly more complicated macro issues a series of KEDIT commands. For example,

define f1 ':1';'delete';'bottom';'delete'

This macro deletes the first and last lines of a file. Pressing F1 in this case will first
issue the KEDIT command :1, making the first line of the file the focus line. Then the
KEDIT command DELETE will be issued, deleting that line. Next the command BOT-
TOM will be issued, making the last line of your file the focus line. Finally, the
DELETE command will again be issued, deleting that line.

Notice that this macro contains four “clauses”, each clause made up of a separate
KEDIT command. You can put multiple clauses on one line if they are separated by
semicolons (“;).

So far we’ve looked at macros that issue KEDIT commands, but we haven’t seen any
macros that take advantage of the control structures provided by the macro facility.
The next macro makes use of a loop with a control variable.

define fl do i = 1 to 5;’input’ i i*i i**3; end

The loop in this example is executed five times. When the DO clause is first executed,
the control variable i is set to 1. The variable i is incremented after each iteration of the
loop, and looping continues until the value of / becomes greater than 5.

So the clause
'"input' i*i i**3

is evaluated five times, causing these five KEDIT INPUT commands to be issued:

Defining Macros

211

Focus line

input 1 1 1
input 2 4 8
input 3 9 27
input 4 16 64
input 5 25 125

Five lines are inserted in the file, each new line containing a number (from 1 to 5) along
with its square and cube. Where these lines are inserted depends on how you run the F1
macro. If you issue the command

macro f1l

from the command line, then the inserted lines will be added below the current line.
Since F1 is the name of a key, you could also run the F1 macro by pressing the F1 key.
If you press F1 while the cursor is in the file area, then the inserted lines will be added
below the line that the cursor is on.

Macros act relative to the focus line. If you use the MACRO command to issue a macro
from the command line, or if the cursor is on the command line when you press the key
that invokes a macro, then the focus line is the current line. If the cursor is in the file
arca when you press the key that invokes a macro, then the focus line is the line the cur-
sor is on, and the macro acts relative to the cursor line.

10.2.2 Multi-line Macros

.KEX files

Multi-line macro definitions can be stored in disk files. There are two ways to create
multi-line macros:

A file with an extension of .KEX can contain a single multi-line macro.

A macro in a .KEX file doesn’t have to be loaded into memory before you run it. You
can run amacro that resides in a . KEX file directly from disk by issuing the command

macro fname

where fname is the name of a . KEX file. Remember, too, that if IMPMACRO ON is in
effect, as it is by default, then in most cases you can enter just the macro name on the
command line without prefixing it with MACRO.

You can also load a .KEX file into memory for the duration of a KEDIT session. This
will cost you some storage, but will make the macro run a bit faster, because it doesn’t
have to be read from disk every time you execute it. To load into memory a macro
defined in a .KEX file, you enter the command

define fname.kex

where fname is the name of a .KEX file.

For example, consider the macro from the previous section which inserted into your
file lines containing the integers from 1 to 5 along with their squares and cubes. Sup-
pose you want to rewrite this macro so that each clause appears on a separate line. To
do this, you can create a file named CALC.KEX that contains the following lines:

212

Chapter 10. Using Macros

.KML files

Example

* enter table of five squares and cubes
doi=1=%tob5

'input' i i*i i**3

end

This macro has the same clauses as the earlier one-line version, but by adding a com-
ment and by using separate lines for each clause, the multi-line version is much easier
to read.

To load this macro into memory, you enter the KEDIT command
define calc.kex

Macros whose definitions have been loaded into memory via the DEFINE command
are known as in-memory macros.

Putting each multi-line macro in its own .KEX file is fine if you only have a few macros
to define. However, you might have dozens of macros that you want loaded into mem-
ory every time you use KEDIT. It would be inconvenient to have separate .KEX files
and DEFINE:s for each of these macros. Instead, you can enter a set of macro defini-
tions in a file having .KML as its extension (where .KML stands for “KEDIT Macro
Library”) and then load all of those macros into memory in one step.

To load into memory the macro definitions contained in a .KML file, you enter the
KEDIT command

define fname.kml

Each separate macro definition in a . KML file begins with a header, which identifies
the macro being defined.

:macroname

(I33)

A header must begin in column 1 with a colon (*:”’) immediately followed by the name
of the macro you’re about to define.

1 fl

or

:calc

Following the header is the definition of the macro. For example,

- fl

|l top |l

'add 2'

Here again, single clauses can appear on separate lines. The definition ends when

either end-of-file or the next header is reached.

Suppose you want to include three macros in a file called ABC.KML. This file might
contain the following lines:

Defining Macros

213

File
extensions

:fl

ltopl

ralt+r

l:l'

'delete’

'bottom’

'delete’

::* Here is the CALC macro:
:calc

* enter table of five squares and cubes
doi=1=%t05

'input' i i*i i**3

end

The first macro is named F1, and so is bound to the F1 key. The macro issues the
KEDIT command TOP.

The second macro is named Alt+R, and so is bound to the Alt+R key. The macro issues
a series of KEDIT commands (:1, DELETE, BOTTOM, and DELETE).

The third macro is named CALC.

The third macro is preceded by a KML comment line. You can use KML comments,
which are indicated by ““::*”’ beginning in column 1, anywhere within a KML file.
Unlike KEXX comments, which start with an asterisk (““*”*) or slash-asterisk (““/*”),
KEDIT completely ignores KML comment lines and does not consider them part of a
macro definition to be loaded into memory.

To load into memory the macros in the file ABC.KML, you would enter the KEDIT
command

define abc.kml

There is one other rarely-used aspect of .KML files: A macro name in a . KML file can
optionally be followed by a list of one or more file extensions. For example,

:indent .c
or

:margins .txt .1lst

If you don’t give a list of extensions, then the definition that follows the header is
always assigned to the macro named in the header. If you do give a list of extensions,
then the definition is assigned to the macro only if one of the extensions listed matches
the extension of the file that is the current file when the DEFINE command is issued.
Extensions can be given with or without a leading period. A period alone matches a file
with no extension. Once defined, the macros can be executed regardless of the exten-
sion of the current file.

214

Chapter 10. Using Macros

10.2.3 Storing Your Macros

KEDIT normally looks in the following places for .KEX and .KML files: in the current
directory, in the directories listed in your PATH environment variable (or in a different
environment variable specified via SET MACROPATH). Then it looks in the “KEDIT
Macros” subdirectory of your Windows Documents or My Documents folder, in the
directory from which KEDIT was loaded, and in the USER and SAMPLES subdirec-
tories of that directory.

We recommend that you keep any macros that you create in the “KEDIT Macros” sub-
directory of your Documents or My Documents folder. (Documents is the usual name
for this Windows folder under Windows Vista; in earlier versions of Windows, My
Documents was the usual name.) The KEDIT Macros subdirectory of Documents/My
Documents is created by KEDIT’s install program and is a convenient place to store
macros because KEDIT automatically looks in this directory when searching for
macros.

As mentioned above, KEDIT also looks for macros in the main KEDIT program direc-
tory (usually C:\Program Files\KEDITW) and in its USER and SAMPLES subdirec-
tories. However, we recommend that you not put your own files into these
subdirectories, reserving them for files installed by KEDIT’s install program, and using
the KEDIT Macros subdirectory of Documents/My Documents for your own macros.
Under Windows Vista there is another reason to avoid these directories: these directo-
ries normally cannot be written to under Windows Vista because of Vista's User
Account Control security facility.

There is one exception to our recommendation that you use the KEDIT Macros subdi-
rectory of Documents/My Documents for your own macros. If you are accessing a
copy of KEDIT for Windows that is stored on a network server, or if your computer is
shared by multiple users who access KEDIT for Windows from different Windows
accounts, the USER subdirectory of the KEDIT program directory is a good place to
put shared macros that all of the users who access that same copy of KEDIT want to
use. (See the KEDIT License Agreement if you have any questions regarding licensing
requirements for installing KEDIT on a network server.)

10.3 Features of KEXX

This section is an informal discussion of the KEXX language. Later you will want to
refer to Reference Manual Chapter 6, “Macro Reference”, where the KEXX language
is summarized more formally and aspects of KEXX not covered here are documented.

KEXX has features common to most programming languages, such as control state-
ments (called instructions), variables and assignments, and built-in functions.

Macros can directly issue KEDIT commands. Besides KEDIT commands that you nor-
mally issue from the command line, there are several KEDIT commands especially
designed to be issued from macros. These special commands handle such tasks as cur-
sor movement, getting information about the file being edited, and displaying dialog
boxes.

Features of KEXX 215

10.3.1

Comments

You can use comments to document your macros. Comment lines are optional and can
appear as any line of a macro. A line that begins with an asterisk (““***) is a KEXX com-
ment. For example,

* this is a KEXX comment

Since these comments occupy entire lines, they cannot appear on the same line as a
clause of your KEXX program and cannot be used in one-line KEXX programs.

You can also use REXX style comments, enclosing comment text between slash-aster-
isk (““/*°*) asterisk-slash (““*/*’) pairs. This type of comment must begin and end on the
same line, but need not occupy the entire line.

/* this is a comment */
X =17 /* this comment follows a clause */
/* and this comment precedes one */ N = 19

10.3.2 Variables and Assignments

KEXX variable names are made up of any combination of letters and digits, as long as
the first character is non-numeric. (The characters “!”’, ““?”’ and *“_*’ can also appear
in variable names.)

The value of any KEXX variable is a character string. When you assign a numeric
value to a variable, it is converted by KEXX into a character string. Values used in
arithmetic expressions are converted back to numbers; an error occurs if a value is not
numeric and cannot be converted. Since all KEXX variables have the same character
string type, you do not need to declare variables before using them. Each variable starts
out with a default value equal to its own name, translated to uppercase. For example,
the initial value of the variable name is

'NAME'

The value of variables can be changed by assignment clauses. Assignments have the
form

variable = expression

where the value of expression is assigned to variable. (Expressions are discussed in the
next section.)

Here are some examples of assignments:
sum = 12

sets the value of the variable sum to 12.
calc = sum**2 * 3

assigns to the variable calc the current value of the variable sum squared and multiplied
by 3.

216

Chapter 10. Using Macros

name = 'Sara'

assigns the string ““Sara” to the variable name.
parm = ''

sets the value of the variable parm to a null string.
fname = upper('Fred')

sets the value of the variable fname to “FRED”, the value returned by the function
UPPER('Fred').

In addition to the variables we’ve seen so far, KEXX also has compound variables,
which are KEXX’s closest equivalent to arrays. A compound variable is made up of a
stem and a tail, with no intervening blanks. The stem is simply a variable name, with
the same restrictions as simple variable names, immediately followed by a period. The
tail is a number or a variable that evaluates to a number. For example,

fname.3
is a compound variable, and if the variable i has the value 3, then

fname.i

is another way of referring to fname.3.

Compound variables are actually more flexible than we’ve described here. You can use
multiple variables in the tail, giving you the equivalent of multidimensional arrays, and
the variables in the tail need not have numeric values. See Reference Manual Chapter 6,
“Macro Reference”, for more information about compound variables.

10.3.3 Expressions and Operators

Expressions Here are some examples of typical KEXX expressions:

'Sara ' || lname

(2 + 9) * ((5*%*3 - 4) % sum)
12 + length('ADAM')

15.26 / 4

Expressions are built up from literal strings, variables, compound variables, numbers,
function calls, and operators.

Literal strings Literal strings are strings of characters enclosed in single quotes (') or double quotes
("). Here are some examples of literal strings:

'down 5'
"address. txt"
'today''s date'
"today’s date"

Notice that the last two examples illustrate how to enter a literal string that contains a
single quote, in this case the string “Today’s date”.

Features of KEXX 217

Variables

Numbers

Function calls

Operators

Variable names are any combination of alphabetic and numeric characters, with the
restriction that the first character must be non-numeric. Examples of variable names
are:

J

namel

file

Variable names can also contain the special characters “!”’, “?”° and .

See the previous section for a discussion of variables.

Numbers in KEXX can be integers (such as 12, 1234, 999999999, or -4321), can
involve decimal points (such as 12.2, .0005, or -13.368), or can involve exponential
notation (such as 12.34ES5, which is equal to 1234000).

Note that in KEXX there is no real distinction between numbers and character strings.
All variables are stored as character strings, but values are converted to numeric form
as necessary during the processing of arithmetic expressions, and the results of expres-
sion evaluation are converted back to character string form. For example, 12 will be
treated as a character string in the expression

12 || ' days'

since the operands of the concatenation operator are character strings. The value of the
expression is

'12 days'
Similarly, the expression '12' will be treated as a number in the expression
'12' + 3

since the operands of arithmetic operators are numbers. The value of the expression is
X3 l 5 2 .

Function calls are made by giving a function name immediately followed by a pair of
parentheses enclosing the arguments, if any, of the function. The opening left paren-
thesis must immediately follow the function name, with no intervening blanks. If a
function has multiple arguments, each argument is separated from the next by a
comma. For example,

arg(1)

upper ('fred')

substr (name, 3, 2)

min (length (name) ,10)

are all KEXX function calls. We’ll discuss KEXX functions later in this chapter.

The kinds of operators that are standard in most programming languages are also avail-
able in KEXX: concatenation, arithmetic, comparison, and Boolean operators. In gen-
eral, these operators work as you would expect, but the following items cover a few
things about KEXX operators that you should be aware of:

218

Chapter 10. Using Macros

Arithmetic KEXX normally uses up to nine significant digits for arithmetic results. If necessary,
operators you can use the NUMERIC DIGITS instruction, described in Reference Manual
Chapter 6, “Macro Reference”, to specify that KEXX use up to 1000 significant digits.

Comparison Comparison operations are Boolean: expressions involving comparison operators
operators evaluate to 1 if the expression is true and 0 if false. There are two types of comparisons
in KEXX: normal comparison and strict comparison.

Examples of normal comparison operators are = (equal), > (greater than), and < (less
than). Under normal comparison, a numeric comparison is made if both operands of
the comparison are numeric. Otherwise, a character-by-character comparison is made.
In either case, leading and trailing blanks are ignored. For example, under normal

comparison

'hello' = 23 = 0
'hello' = ' hello' = 1
005 = ' 5" = 1

Examples of strict comparison operators are == (strictly equal), >> (strictly greater
than), and << (strictly less than). Strict comparison is always a character-by-character
comparison rather than a numeric comparison, and strict comparison does not ignore
leading and trailing blanks. So, for example, although the numbers 005 and 5 will be
treated as equal under normal comparison, the strict comparison

005 ==

evaluates to 0 (false), since 005 and 5 do not match character-for-character.

Concatenation Concatenation is the joining together of character strings. You can concatenate two
operators strings either with a blank between the strings or without a blank.

To concatenate with a blank, you simply use a blank. For example,
fn 'Adam'

1n 'Smith'
name = fn 1ln

sets the value of the variable name to ““Adam Smith™.

To concatenate without a blank, you use the concatenation operator, ||. (The concatena-
tion operator consists of two occurrences of ASCII character 124, which appears on
most U.S. keyboards as a split vertical bar, located on the backslash key.) For example,

type 'straw’
kind 'berry’
fruit = type || kind

sets the value of the variable fruit to ““strawberry”.

In some cases you can concatenate without a blank simply by abutting two strings (that
is, by entering them one after the other with no intervening blank). For example,

Features of KEXX 219

type = 'straw'
fruit = type’berry’

also sets the value of the variable fruit to “strawberry’’. However, this option is not
always available to you. For example, KEXX would treat

fruit = 'straw' 'berry'

as a single literal string that contains a quote, so here the value of the variable fruit is set
to

straw’berry

For a list of all KEXX operators, along with further examples, see Reference Manual
Chapter 6, “Macro Reference”.

10.3.4 Instructions

KEXX has a number of instructions, each beginning with a keyword like IF, DO, or

SAY, that are used to control the flow of execution and handle tasks like displaying out-

put messages and controlling debugging output.

Several instructions are discussed in this section:

e SAY, used to display output messages;

e IF, THEN, and ELSE, which handle conditional execution;

e DO,END, LEAVE, and ITERATE, used to group instructions together and control
loops;

e EXIT, which terminates execution of a macro.

The other keyword instructions are:

e PARSE, an important instruction that takes strings of data and breaks them into
smaller pieces based on pattern specifications that you supply. This is useful if you
need to do pattern matching and string manipulation on arguments passed to your
macros or data in the files you are editing. See Reference Manual Chapter 6,
“Macro Reference”, for a discussion of PARSE and the related ARG and PULL
instructions;

e The TRACE instruction, which helps you debug KEXX macros by causing debug-
ging output to be displayed in a special debugging window on your screen. De-
bugging is discussed below in Section 10.4;

e CALL, PROCEDURE, and RETURN (used mainly in connection with the sub-
routines that you can write), and INTERPRET, DROP, NOP, SIGNAL, SELECT,
and NUMERIC. All are documented in Reference Manual Chapter 6, “Macro
Reference”.

220 Chapter 10. Using Macros

SAY The SAY instruction is used to output messages to the user of your macro. The output is

instruction displayed in the message area of the document window. For example,
do 5
say 'Hello'
end

will display ““Hello’” on your screen, five times.

Conditional You will often want KEDIT to perform a set of actions only if some condition is met. In
instructions such a case, you can use the instructions IF and THEN. For example, suppose you had
a macro containing the clauses

if pswd = 'mada’
then say 'Hello, Adam'

Here the message “Hello, Adam” will be displayed only if the value of the variable
pswd is “mada”.

The keywords IF and THEN each introduce a separate clause. THEN is special,
though, in that it can appear on the same line as IF without a preceding semicolon. So,
an alternative to the last example is

if pswd = 'mada' then say 'Hello, Adam'

Sometimes you want KEDIT to perform one set of actions if a certain condition is met,
and another set of actions otherwise. In this case, you can use the IF, THEN, and ELSE
instructions. For example, in a macro containing the clauses

if pswd = 'mada' then say 'Hello, Adam'
else say 'Incorrect password'

the message ““Hello, Adam” will be displayed if the value of pswd is “mada’; other-
wise, the message “‘Incorrect password’ will be displayed.

DO groups In the examples we’ve looked at so far, the set of actions that are conditionally per-
formed have been very simple—made up of a single clause. You can also group clauses
together using a DO group. Any group of clauses that appears between a DO and a
matching END is treated as a unit by KEXX.

This grouping together of clauses is most useful when used with conditionals. For
example, suppose that you want to go to the top-of-file and insert ““hello there” only if
the value of the variable j is “ON”’. Your macro might then contain the lines:

if j = 'ON' then do
ltopl
'i hello there'
end

DO loops Besides the simple DO group we’ve just looked at, you can also use DO to control
looping:

Features of KEXX 221

do name = start to finish

where name is the control variable of the loop, start is the initial value of that variable,
and the loop terminates when the value of name exceeds finish. For example,

doi=1t%to3
'input Part number' i
end

will insert these three lines in your file:

Part number 1
Part number 2
Part number 3

With each iteration of the loop, the control variable is normally incremented by 1. You
can modify the stepping of the loop by using BY. For example,

do i=1to 9 by 3
'input Part number' i
end

inserts these three lines in your file:

Part number 1
Part number 4
Part number 7

Another type of loop available in KEXX uses DO n, where 7 is a number (or an expres-
sion with a numeric value). For example,

do 2
'down'
'input *kkkk !
'center’'

end

issues a set of KEDIT commands—DOWN, INPUT, and CENTER—twice.

DO WHILE loops (which execute for as long as some condition is true) and DO
UNTIL loops (which execute until some condition becomes true) are also supported.
For example,

* input all powers of two < 500000

j=1

do while j < 500000
'input' j
j=3*2
end

A final type of loop available in KEXX has the form is the DO FOREVER loop. For
example,

222 Chapter 10. Using Macros

Leaving a
macro

do forever
'down'
'input *k*%k*!
'center’

end

executes again and again, without any predetermined limit. In this example the loop
will in fact go on forever—or at least until you press Ctrl+Break or Alt+Ctrl+Shift or
run out of memory. You normally use the LEAVE or EXIT instructions to break out of
DO FOREVER loops.

To break out of a loop early, you use the LEAVE instruction. For example, if your
macro contains the lines

don=1+to5

if n = 3 then leave

else 'input Part number' n
end

'down'

then processing of the loop stops when the value of z is 3, and then the clause following
END is processed. So in this example, the lines

Part number 1
Part number 2

are inserted in the file, and then the KEDIT command DOWN is issued.

If the loop containing LEAVE is embedded in one or more other loops, only the loop
immediately containing LEAVE is exited.

Another instruction that alters the normal processing of loops is ITERATE. The ITER-
ATE instruction interrupts processing of a DO loop and passes control back up to the
DO clause. For example, in this loop

don=1+to5

if n = 3 then iterate

else 'input Part number' n
end

processing of the loop is interrupted when the value of the variable # is 3, and then n is
incremented to 4 and processing continues. So in this case the lines

Part number
Part number
Part number
Part number

absNR

are inserted in the file.

There are two ways to exit a macro. One is simply to “run off the end” of your macro by
executing the last clause of the macro. The other is to use the EXIT instruction. When
KEXX processes an EXIT instruction, the macro ends immediately.

EXIT can appear anywhere in a macro, including inside a loop.

Features of KEXX

223

10.3.5 Commands

When KEXX comes upon a clause that isn’t an assignment or an instruction, KEXX
treats the clause as an expression whose value is passed to KEDIT as a command. After
the KEDIT command is processed, a return code is set and control is returned to the
macro. The return code is stored in a variable called RC. This variable can be examined
to determine the success or failure of the command. The return code is set to O if the
command completed successfully. A nonzero return code is set if the KEDIT command
failed or encountered something unusual. See Reference Manual Chapter 9, “Error
Messages and Return Codes”, for complete details on return codes set by KEDIT
commands.

It is a good idea to enclose each command in quotes, to indicate that the command is a
literal string, and not a variable name. For example, suppose your macro contained a
variable named file and this variable had been assigned the value ““D”’ to indicate a data
file. Suppose you want your macro to issue the KEDIT command FILE, and so you
used

file

as a clause in your macro. The expression file is evaluated, giving “D”’, the value of the
variable file. This is passed to KEDIT, and the command D—not the command
FILE—is processed by KEDIT. Instead of FILEing the file, the KEDIT command
DOWN, whose minimal truncation is D, makes the line one line below the focus line
become the new focus line.

Putting quotes around KEDIT commands, as in
'file'

avoids this problem. In this case, the expression has the value “file”’. This string is
passed to KEDIT and the KEDIT command FILE is issued, as desired.

Sometimes you will really want to include variables in KEDIT commands issued from
macros. In this case, you should quote any part of the command that you want to be
taken literally, and leave any variables outside of the quotes. For example, suppose you
have a macro that contains these lines:

targ = 'block'
'copy' targ

The first clause assigns the value ““block’ to the variable farg. The second clause issues
a KEDIT COPY command. Notice that the part of the command to be taken literally is
enclosed in quotes, and the part that is a variable appears outside he quotes. Since the
value of targ is ““block”, the command

copy block

is issued.

Any KEDIT command can be issued from a macro, but several KEDIT commands are
used only within macros, or are particularly useful within macros. Here are brief

224

Chapter 10. Using Macros

descriptions of some of these commands; all are fully documented in the Reference

Manual.
EXTRACT The EXTRACT command retrieves information about the status of your KEDIT ses-
command sion or the contents of your file, placing the results into variables that your macro can

use. For example,
'extract /zone/'

returns information to your macro about the current zone columns. With ZONE 1 255
in effect, this command would set the variable zone. I to 1, and the variable zone.2 to
255.

Depending on what information you extract, the amount of information returned by
EXTRACT can vary, so the EXTRACT command always sets another variable to indi-
cate the amount of information returned. In this case, zone.) would be set to 2, because
two pieces of information, the left zone column and the right zone column, were
returned.

Frequently used EXTRACT operands include:

'extract /curline/’'

This sets several variables, the most useful being curline.3, which is set equal to the
contents of the focus line.

'extract /line/’'
Sets line. I equal to the line number within your file of the focus line.
'extract /size/'

Sets size.] equal to the number of lines in your file.

Reference Manual Chapter 5, “QUERY and EXTRACT?”, has further discussion of the
EXTRACT command, including information on the variables set for every possible
EXTRACT operand. See also the discussion on page 229 of implied EXTRACT func-
tions, which are often a convenient alternative to the EXTRACT command.

READV You can use the READV command to obtain information from the user of your macro.

command With READV CMDLINE, the user of your macro enters a line of text in the command
line, and this text is then passed back to your macro as the value of the variable readv. 1.
(The PARSE PULL instruction is another way to read a line of user input from the com-
mand line.) With READV KEY, KEDIT reads a key from the keyboard and passes back
to your macro information about the key that was pressed.

The following example displays a message asking for the name of the user of the
macro, reads the name from the command line, and then enters the name into the cur-
rent file five times.

Features of KEXX 225

DIALOG
command

TEXT
command

CURSOR,
SOS commands

EDITV
command

NOMSG
command

say 'Enter your name:'
'readv cmdline'
do 5;’input’ readv.l;end

Another approach is provided by the DIALOG command, which reads its input from a
dialog box, and which gives your macro control over the contents of the dialog box’s
title bar, prompt text, and icons.

Here is the DIALOG equivalent of the example just given for the READV command:

'dialog /Enter your name/ editfield'
do 5;’input’ dialog.l;end

The TEXT command enters text at the cursor position, just as if you had typed the text
on the keyboard. For example, to enter the sentence “Hello there.” at the cursor posi-
tion, a macro could use:

'text Hello there.'

The CURSOR command lets you reposition the cursor from within a macro. You can
move the cursor to a particular line and column of the window, to a particular line and
column of your file, etc. The SOS (““Screen Operation Simulation””) command handles
additional cursor positioning operations (such as tabbing to the next word or next win-
dow) along with numerous miscellaneous editing functions (such as deleting the word
at the cursor position).

Many of the macros assigned by default to KEDIT’s keys do nothing more than issue
CURSOR and SOS commands.

Variables and variable values used within a macro are discarded when the macro fin-
ishes. In some cases, you might need to save information obtained during execution of
one macro for use in a macro that executes later. KEDIT’s EDITV command is avail-
able for these situations. With the EDITV command, you can access special variables
that retain their values either throughout your KEDIT session or for as long as the cur-
rent file remains in the ring.

Sometimes commands that you issue from within a macro generate messages that you
don’t want the user of your macro to see. For example, you might want a macro to issue
a LOCATE command and then test the variable RC to see if it succeeded, but you might
want to avoid display of any possible error message. The NOMSG command lets you
execute a command, but bypass display of any messages resulting from the command.

[TPL}

The following macro uppercases any “a’’s, “b’’s, and “c’’s in your file, but skips the
messages normally produced by the change command:

226

Chapter 10. Using Macros

Focus line

'nomsg c/a/A/ all *'
'nomsg c/b/B/ all *'
'nomsg c/c/C/ all *'

It is important to remember that commands issued from macros act with respect to the
focus line. When the cursor is on the command line, the current line is the focus line;
when the cursor is in the file area, the line the cursor is on is the focus line. If, for exam-
ple, the cursor is in the file area when a macro issues a DELETE command, the cursor
line, and not the current line, will be deleted. If you are not familiar with the focus line
concept, you should read Section 6.5, “The Focus Line”.

10.3.6 Functions

Internal
routines

Built-in
functions

ARG([n[,option]])

D2C(n)

Four types of functions can be used in KEXX macros: internal routines, built-in func-
tions, implied EXTRACT functions, and Boolean functions.

You can write your own function and include it in a macro as an internal routine. This is
discussed in Reference Manual Chapter 6, “Macro Reference”.

Many useful functions are built directly into KEXX, most having to do with character
string manipulation. There are several dozen built-in functions; all are described, with
examples, in Reference Manual Chapter 6, “Macro Reference”. Here are some of the
most frequently used built-in functions:

ARG() returns information about arguments passed to macros and internal routines.
ARG(1) (that is, ARG() with a parameter of 1) is the most common usage; it returns the
value of the argument string passed to a macro, or returns the null string if the macro
was invoked with no argument string.

For example, assume that the macro TEST is invoked via the following KEDIT com-
mand:

macro test I think, therefore, I am.

arg (1) = 'TI think, therefore, I am.'

When given a decimal value 7 in the range 0 to 255, returns the character that has 7 as
its character code.

d2c(97) = 'a'
d2c (50) = '2"

Features of KEXX

227

LENGTH(string)

LOWER(string)

Returns the length of string.

length('314159") = 6
length('a . b') = 5
length(''") = 0

Returns the value of string with any uppercase letters translated to lowercase.

lower ('ABCDEF') = 'abcdef’
lower ('1F3De5') = '1£3de5’

POS(string1,string2,[start])

Returns the position of the first occurrence of string! in string2. The search starts at po-
sition start, which defaults to the beginning of string2. One frequent use of POS() is to
simply test whether one string is present in another, in which case POS() will return a
nonzero result.

pos('heat', 'in the heat of the night')
pos('heat','in the heat of the night',10)
pos('sleet','in the heat of the night')
pos('heat of','in the heat of the night')

Ly uld
® © o ®

SUBSTR(string,start[,[length][,pad]])

Returns the substring of string beginning at the start position for a length of length
characters. If necessary, the value is padded with the pad character, which defaults to a
blank. The default for length is the remaining length of string beginning at the start
position.

substr('in the heat of',4)
substr ('intheheatof',3,7)
substr ('intheheatof',15,2)
substr ('intheheatof',15,2,'-")

'the heat of’
'theheat'’

LUl

UPPER(string)
Returns the value of string with any lowercase letters translated to uppercase.
upper ('abcdwxyz') = ' ABCDWXYZ'
upper ('90a3£ff"') = '90A3FF'
228 Chapter 10. Using Macros

Implied
EXTRACT
functions

Boolean
Functions

The KEDIT command EXTRACT is used to set a special set of compound variables
associated with QUERY options. An alternative way of accessing the same information
is to use implied EXTRACT functions. Implied EXTRACT functions all have the form

extractvar.n()

That is, the name of an implied EXTRACT function is the name of a variable that
would have been set by the corresponding EXTRACT command. So, for example,

a = zone.l()

can be used in place of

'extract /zone/'
a = zone.l

In both cases, the variable a will be set to the value of the variable zone. I (that is, the
left zone column). It is often more convenient to use implied EXTRACT functions
within a macro, and an implied EXTRACT is often more efficient than the correspond-
ing EXTRACT command.

See Reference Manual Chapter 5, “QUERY and EXTRACT”, for a complete list of the
information available through the EXTRACT command and implied EXTRACT
functions.

A Boolean function is a special function that tests some condition within KEDIT and
returns a 1 if the condition is true, or 0 if it is false.
Boolean functions are used most frequently in conditionals. For example,

if blank() then exit; else 'sos addline'

Here, the Boolean function BLANK() tests whether the cursor is on a blank line. Ifitis,
then the EXIT instruction is processed; otherwise, the KEDIT command
SOS ADDLINE is issued.

Some commonly used Boolean functions are listed in the table below:

Function Tests whether

AFTER () the cursor is after the last nonblank character of the cursor line
BLANK () the cursor is on a blank line

BLOCK () a block is marked

COMMAND () the cursor is on the command line
CURRENT () the cursor is on the current line
CUA() INTERFACE CUA is in effect

EOF () the cursor is on the end-of-file line

Features of KEXX

229

PREFIX() the prefix area is on
TOF () the cursor is on the top-of-file line

For a complete list, see Reference Manual Chapter 6, “Macro Reference”.

10.3.7 Passing an Argument to a Macro

You can pass an argument string to a macro that the macro can examine using the
ARG(1) function. (The PARSE ARG instruction can also be used.) For example, sup-
pose you have a macro named ID that displays the value of its argument string on the
message line. This macro might be defined as

parm = arg(l)
say 'ID given was' parm

Entering the KEDIT command
macro id Adam

displays

ID given was Adam

and entering the command

macro id Adam Smith III
displays

ID given was Adam Smith III

The value of ARG(1) is any text following the macro name, passed as a single string to
the macro.

See the notes at the end of Reference Manual Section 2.2, “KEDIT Initialization
Options”, for information on passing arguments to your profile.

10.4 Debugging KEXX Macros

KEDIT includes a debugging facility that you can use to help track down problems in
macros that you are developing.

When you debug a macro, KEDIT’s frame window and document windows are dis-
played as usual, but a special debugging window is also displayed, with output from
KEDIT’s macro debugger. As your macro executes, its progress is traced, with trace
output sent to the debugging window. You can use the KEXX TRACE instruction to
control how much information is traced (all commands issued, results of all expres-
sions evaluated, etc.) and whether tracing is interactive (with pauses for your input
after every traced clause) or noninteractive.

230

Chapter 10. Using Macros

Included in KEDIT to support the debugging facility are the SET DEBUGGING com-
mand, which controls whether the debugging window is active, how large it is, and the
default tracing level, the DEBUG command, which controls which macros are exe-
cuted with tracing in effect, and the KEXX TRACE instruction, which modifies tracing
levels while a macro is executing.

10.4.1 Using the Debugger

Interactive
trace input

To begin using the debugger, issue the command
set debugging on

This tells KEDIT to begin displaying the special debugging window, with a default
debugging window size and with a default tracing level that interactively traces all
clauses executed and shows the results of all expressions evaluated. (If you use the
KEXX TRACE instruction while the debugging window is off, you will not receive
any error messages, but no trace output will be displayed.)

Then issue the command
debug macroname

where macroname is the macro you want to debug.

KEDIT will then execute the macro, displaying trace output in the debugging window,
and pausing after each clause is executed for interactive trace input.

When you are finished with the debugger, you can turn off the debugging window with
the command

set debugging off
or you can use the mouse to close the debugging window by double-clicking on the

debugging windows’s system menu.

You can enter interactive trace input in the edit field at the bottom of the debugging
window.

e Ifyou want to continue with execution of the next clause of your macro, just press
Enter.

e Ifyou want to enter interactive trace input, the text you enter must be something
that would be valid as a line of a KEXX macro.

KEXX takes your input and executes it as if it were part of your KEXX macro. You
therefore have full access to the KEXX language from within the debugger. You can

e set variables within the macro being debugged,
e display variable values,
e issue KEDIT commands, and

e change tracing levels.

Debugging KEXX Macros 231

Examples

Issuing KEDIT
commands

say total

This would display the value of the KEXX variable fotal. Output from the SAY instruc-
tion is normally displayed in the KEDIT message area, but when the SAY instruction is
entered as interactive trace input, the output appears in the debugging window.

total = total + size.l()

This would set the value of the KEXX variable fotal to the sum of total and the number
of lines in the current file.

'change /a/b/ 4 *'

This would cause KEXX to pass the CHANGE command to KEDIT. KEDIT would
then execute this command and update its display to reflect the change that was made.

exit
This would cause KEXX to immediately end execution of your macro.
trace off

This would end interactive tracing of your macro, and the macro would finish execut-
ing without displaying additional trace output.

Two important points should be noted about issuing KEDIT commands as interactive
trace input:

e KEDIT commands are not issued directly from the interactive trace prompt. Your
input is passed to KEXX, which interprets the input according to the normal
KEXX rules before passing it to KEDIT for execution. So the quotes around the
CHANGE command in the example above are necessary, just as they would be if
the command were issued from within a KEXX macro, to prevent KEXX from in-
terpreting the command as an expression involving division or multiplication.

e You should use caution when issuing KEDIT commands via interactive trace that
change the contents of the current file, your position in the file, or that bring a new
file into the ring. You might affect the macro being debugged, since it could be in
the middle of performing some operation on what was the focus line, and it might
have variables whose values were set depending on the current file, or your
position in the file.

232

Chapter 10. Using Macros

10.4.2 The TRACE Instruction and the DEBUG Command

The level of trace output produced by the debugger is controlled by the KEXX TRACE
instruction. The TRACE instruction can appear within a KEXX macro and it can be
entered when the debugger pauses for interactive trace input. Here are the tracing lev-
els that you can use. Note that only the first character of the TRACE setting is
significant:

TRACE Off TRACE Off turns off all tracing that is in effect.

TRACE Error Any command passed to KEDIT that yields a nonzero return code is
traced, as is the return code.

TRACE Command All clauses that cause commands to be issued to KEDIT are
traced, as well as the commands themselves and any nonzero return
codes.

TRACE All All clauses are traced as they are executed, as well as all commands
issued to KEDIT and any nonzero return codes.

TRACE Results Same as TRACE All, except that the final results of all expressions
evaluated are also traced.

TRACE Intermediates Same as TRACE All, except that both the intermediate and fi-
nal results of all expressions evaluated are also traced.

TRACE Labels Traces labels in the macro as they are encountered during execution
of the macro.

In addition to controlling the level of trace output, you can also use the TRACE instruc-
tion to turn interactive tracing on or off. When interactive tracing is in effect, the
debugger will pause after execution of most traced clauses in your macro to let you
enter interactive trace input, as described in the preceding section.

TRACE + turns interactive tracing on.
TRACE - turns interactive tracing off.
TRACE ? toggles the interactive tracing on if it is off, or off if it is on.

You can also use +, -, or ? in combination with one of the trace settings discussed above.
For example,

trace +r
turns on interactive tracing of results, while
trace -c

causes noninteractive tracing of commands.

Debugging KEXX Macros 233

Notes on
interactive
tracing

Tracing with
the DEBUG
command

Three points to note about interactive tracing:

TRACE is a KEXX instruction, and is not a KEDIT command. So it can only be is-
sued from within a KEXX macro or from the interactive trace prompt, and should
not be enclosed in quotes.

When interactive tracing is in effect, TRACE instructions in your macro are ig-
nored. This is to prevent an unexpected change to tracing status while you are con-
trolling the debugging session via interactive trace input.

TRACE Off turns off all tracing output, and it also turns off interactive tracing,
whether it is or isn’t prefixed with +, -, or ?.

You can also use the TRACE instruction to tell the debugger to temporarily stop paus-
ing for interactive input, or to temporarily stop displaying trace output. To do this, spec-
ify a numeric value with the TRACE instruction:

TRACE nnnn A positive number tells the debugger to continue executing your

macro, and to continue displaying trace output, but that at the next
nnnn places where it would ordinarily pause for interactive input, it
should instead continue without a pause.

TRACE -nnnn A negative number works like a positive number, in that the next

nnnn pauses for interactive input are skipped. The difference is that
during this period the display of trace output is also suppressed.

When a macro begins execution, TRACE OFF is normally in effect. Unless the macro
contains a TRACE instruction that changes this initial TRACE setting, the KEXX
debugger will not be active while the macro is running. To let you debug macros with-
out the need to edit the source of the macro and insert TRACE instructions, KEDIT
provides the DEBUG command. The are three variations on the DEBUG command:

DEBUG [/tracesetting] macroname

The first form of the DEBUG command works just like the MACRO command,
except that, if the debugging window is on, tracing is turned on when the macro is
started. You can specify the trace setting to use via an optional DEBUG command
switch, or use a default setting controlled by SET DEBUGGING (normally +R).
For example, to run the macro XYZ with TRACE ALL in effect:

debug /a xyz

DEBUG START macroname

DEBUG START causes the in-memory macro specified to run with tracing on (us-
ing the SET DEBUGGING trace setting) whenever the macro is executed.

DEBUG STOP macroname

DEBUG STOP cancels the effect of a previous DEBUG START.

234

Chapter 10. Using Macros

PROFDEBUG To help debug problems with your profile, the KEDIT command supports the

initialization PROFDEBUG initialization option. Using this option causes KEDIT to automatically

option turn on the debugging window and execute your profile with debugging turned on. For
example, you could start KEDIT for Windows with the command

keditw sample.fil (profdebug

10.4.3 Trace Output

KEDIT displays several different types of trace output in the debugging window. To
help you identify the type of output involved, KEDIT precedes each type of trace out-
put with a three character prefix and, on a color display, KEDIT uses different colors
for different types of output. Here are the prefixes and different types of trace output:

+++ Used for messages from the debugger. Shown in blue.

w_w Used to display source code from your macro. Shown in black. Each
clause to be traced is displayed as it is executed. The line number
within the macro of the traced clause is also displayed, unless multi-
ple clauses from the line are being executed and the line number has
already been displayed.

>>> Used for the result of evaluating an expression. If the result is passed
to KEDIT as a command, it is shown in green. Other results are
shown in red.

The following types of trace output are displayed only when TRACE Intermediates is
in effect. The output is shown in magenta:

>C> Used for derived names of compound variables in which substitution
has occurred.

>F> Used for values returned from functions.

>L> Used for constant symbols, literal strings, and variables that have
their default values.

>0> Used for results of operations with two operands, such as compari-
son and concatenation.

>pP> Used for results of prefix operations, such as negation.

>V> Used for variables with non-default values.

Debugging KEXX Macros 235

Chapter 11. Sample Macros

Chapter 10, “Using Macros”, went over the rules for defining KEDIT macros and gave
an overview of the KEXX language and its debugging facilities. This chapter takes
another approach, giving you a detailed look at a number of “real life”” KEDIT macros.
Most of these macros are simple; all are useful. They have been selected primarily
because they illustrate a particular feature of KEDIT’s macro environment that is
important to understand. They also demonstrate just how much more powerful KEDIT
can become when you are able to write even the simplest of macros.

For each of the macros, the following information is presented:

e adescription of what the macro does;

e the source code for the macro;

e aline-by-line explanation of how the macro works;

e adiscussion of how the macro is used, including the commands used to define the
macro to KEDIT and to run the macro.

11.1 Counting the Words in a File

WC.KEX

Description of
WC.KEX

This first example will count the number of words in a file and display the result on the
KEDIT message line.

This macro demonstrates how to perform an action on the contents of every line in a file
using a DO WHILE loop.

total = 0

'TOP'

'DOWN 1'

do while rc =0
total = total + words(curline.3())
'DOWN 1°'
end

say 'Word count =' total

The instructions in the macro do the following:
total = 0

Total is a macro variable whose value will contain the total number of words counted.
Since the number of new words on each line is added to the existing total for the entire
file, total must be initialized to 0 so that the first addition will work properly.

236

Chapter 11. Sample Macros

'TOP'
'DOWN 1'

These two KEDIT commands set up to start counting with the first line of the file.
Another way to position yourself at the beginning of the file is with the KEDIT
LOCATE command:

'LOCATE :1'

Either will work fine under most circumstances, but the combination of commands
selected for this macro will work even if line 1 of the file is outside of the current
RANGE boundaries or has been excluded from display by the selective line editing
facility.

do while rc =0

The bulk of the work in the macro gets done in a loop that counts all the words in the
focus line and then advances to the next line in the file. The loop will terminate when
the special variable rc has a value other than zero.

The variable rc always contains the return code from the last KEDIT command a macro
issued. Testing it is an excellent way to determine if a command executed properly.
Most commands give a zero return code if no problems are encountered and a nonzero
return code if an error or an unusual situation is encountered. See Reference Manual
Chapter 9, “Error Messages and Return Codes”, for a discussion of return codes.

In this case, one of the two DOWN commands will always have been the last command
to execute before rc is tested. If its value is nonzero, that means that a DOWN com-
mand has reached the end-of-file line and there are no more lines left to count.

total = total + words(curline.3())

This statement does the actual counting. The new value of the total variable is set to the
old value plus the number of words in the focus line. The number of words is deter-
mined by the built-in KEXX function WORDS(), and the contents of the focus line are
supplied by the implied EXTRACT function CURLINE.3().

The KEDIT EXTRACT command sets the values of certain variables in your macro to
reflect information about the current state of your editing session. For example, the
command

EXTRACT /curline/

would set the variables curline.() through curline.6 with values that represent a number
of different characteristics about the current and focus line. One of those values,
curline.3, would be the contents of the focus line in mixed case.

CURLINE.3() is an example of a KEDIT implied EXTRACT function. The name of
each implied EXTRACT function corresponds to the name of a variable that would be
set by the EXTRACT command. An implied EXTRACT function returns as its value
the same information that the EXTRACT function would place in the corresponding
variable. It is used here because only the contents of the focus line are needed, and
there’s no point to setting all those other variables.

Sample Macros

Counting the Words in a File 237

Using WC.KEX

You will find a description of all the available EXTRACT operands in Reference
Manual Chapter 5, “QUERY and EXTRACT”.

'DOWN 1'
end

After each line has been processed, the loop asks KEDIT to move to the next line by
issuing another DOWN command. After DOWN is executed, the macro goes back to
the top of the loop, and checks rc to see if the command was successful.

say 'Word count =' total

The macro “falls” out of the loop after all the lines in the file have been counted. The
only task remaining is to report the results. KEXX will interpret the value of the fotal
variable, concatenate it to the end of the string ““Word count =", and SAY will put the
resulting string into the KEDIT message area.

WC.KEX is an example of a macro definition that is stored in a disk file. It can be run
from the KEDIT command line by typing:

macro wc

or, with the default of IMPMACRO ON in effect, WC.KEX can be run from the com-
mand line just by typing the filename:

wC

KEDIT will search for the macro in your current directory. Next it searches the directo-
ries in your PATH; this can be changed via the SET MACROPATH command. If the
macro still hasn’t been found KEDIT looks in the “KEDIT Macros” subdirectory of
your Windows Documents or My Documents folder, in the directory from which
KEDIT was loaded, and in the USER and SAMPLES subdirectories of that directory.
This search procedure will locate WC.KEX, which is installed in the SAMPLES subdi-
rectory by KEDIT’s setup program.

Once the macro is found, KEDIT will load it into memory and run it. After it has fin-
ished executing, KEDIT frees up the memory the macro occupied so that it can be used
for other purposes.

If you use a macro frequently, you can load the macro into memory and keep it there for
the duration of your KEDIT session. This uses more memory, but eliminates the need
for KEDIT to search your disk every time you want to use the macro.

To load WC.KEX into memory you would type
define wc.kex

at the KEDIT command line, or you can put the line
'DEFINE wc.kex'

into your WINPROF.KEX file if you want the macro to be loaded every time you
invoke KEDIT.

238

Chapter 11. Sample Macros

11.2 KEDIT Key Definitions

CTRL+F3, a

pop-up .
command line

Description of
CTRL+F3

Every functional key on the keyboard is assigned a KEDIT macro; the name of the
macro is the same as the name of the key. Pressing a key is equivalent to asking KEDIT
to run the associated macro with the MACRO command. For example, the A key runs a
macro that types a lowercase “a” at the current cursor location, and the F2 key nor-
mally corresponds to a macro that adds a line to your file.

Several of the keys on your keyboard are predefined to run a macro that simply does
nothing. They can be identified by using the DEFINE command to display their associ-
ated macro in the KEDIT message area.

For example, DEFINE CTRL+F3 displays the definition for the CTRL+F3 key. If the
response is “‘nop”’, the KEXX no-op statement that does nothing, then you’ve located a
do-nothing key. These keys are good candidates for customized macros that make it
easier for you to work with KEDIT.

This next example is a simple macro that you might find useful enough to assign to one
of those do-nothing keys on your keyboard.

If you’re going to write a lot of macros, it’s important to grasp the concept of KEDIT’s
focus line. The focus line is the line on which the cursor resides, unless the cursor is on
the command line, in which case the current line is the focus line. There is a corre-
sponding focus column concept that works exactly the same way.

If you run a KEDIT command from the command line, it will always act with respect to
the current line—which is what you would expect. If you run a command from a macro,
and the cursor is in the file area, the command acts with respect to the line that contains
the cursor, which might or might not be the current line. This is often a source of confu-
sion to new KEDIT macro writers.

This example can help demonstrate the difference. Once assigned to a key, it can be
used to pop up a dialog box from which you can run any KEDIT command. Wherever
the cursor happens to be when you press the key is the focus line, and the command you
enter through the dialog box will act with respect to that line.

For example, if you use this macro to issue the DELETE command, it will delete the
line of the file on which the cursor is located, unless the cursor is on the command line,
in which case the current line is deleted.

* prompt for and issue a command.
'DIALOG /Enter Command/ EDITFIELD'

if re \= 0 | dialog.2 \= 'OK' then exit
if dialog.l \= '' then dialog.1l

The instructions in the macro do the following:
'DIALOG /Enter Command/ EDITFIELD'

This KEDIT command displays a dialog box on the screen with an editable field in it
where the user can enter a command.

KEDIT Key Definitions 239

Sample Macros

Defining
CTRL+F3

if re \= 0 | dialog.2 \= 'OK' then exit

The dialog box is displayed with two buttons, OK and CANCEL. The name of the but-
ton the user activated to end the dialog box is returned in the KEXX variable dialog.2.
Ifthe user doesn’t select OK, or the DIALOG command fails in some other respect, the
macro terminates without doing anything more.

if dialog.l \= '' then dialog.1l

The KEDIT command that you typed into the edit field of the dialog box is returned in
the variable dialog. 1. The IF instruction checks to make sure something was entered
and, if so, executes the statement dialog. 1. Since dialog. I is not a KEXX keyword, it is
considered by KEXX to be an expression whose value must be determined and then
passed to KEDIT as a command. The expression dialog. I has as its value the contents
of the variable dialog. I, which is the command that you entered in the dialog box. So
the command that you entered is executed by KEDIT.

Keyboard macros must be predefined before they can be used. KEDIT will not search
your disk to find them as it would for a .KEX file.

Simple one-line macros can be directly established with the DEFINE command, but
not all macros are simple ones. Fortunately, KEDIT allows you to place one or more
multi-line macros into a special file known as a KEDIT Macro Library or . KML file.

Preceding each macro in a .KML file is a special label, beginning with a colon (““:”),
that names the macro that follows. This allows you to put several different macros in a
single file one after another, and permits you to keep related macros together. It can
even help improve performance when it comes time to load your macros into memory.

Using KEDIT, create a file containing the macro for Ctrl+F3, and save it in a file with
an extension of .KML. As discussed in Section 10.2.3, “Storing Your Macros”, we
suggestthat you store .KEX and .KML files that you create in the “KEDIT Macros”
subdirectory of your Windows Documents folder (which is sometimes known as the
My Documents folder). You should wind up with a file that looks like this:

:CTRL+F3

* prompt for and issue a command.
'DIALOG /Enter Command/ EDITFIELD'

if re \= 0 | dialog.2 \= 'OK' then exit
if dialog.l \= '' then dialog.1l

Even though you’ve created a . KML file, you’re not quite finished. You can’t execute a
.KML file the way you can a file with an extension of .KEX. You’ve got to load the con-
tents of the .KML file into memory with the DEFINE command. For example, assum-
ing you named the file MYMACROS.KML, you would issue the command

define mymacros.kml

The define command understands the .KML format and reads the file and loads all the
macros into memory. Once in memory they can be invoked like any other KEDIT
macro. CTRL+F3 is special because it has the same name as one of the keys on the key-
board. You can invoke it by pressing the Ctrl+F3 key.

240

Chapter 11. Sample Macros

If you wanted to load the macros in MYMACROS.KML file every time you ran
KEDIT, you could place the following line into your WINPROF.KEX file:

'DEFINE mymacros.kml'

KEDIT will search for the . KML file in the same way that it searches for .KEX files.

11.3 Working with KEDIT’s Default Key Definitions

The default
Alt+X
definition

Description of
Alt+X

The default definition of the macro assigned to the Alt+X key is set up to help you work
with DIR.DIR files—the files created by KEDIT’s DIR command that contain a list of
files and subdirectories.

If the current file is DIR.DIR, then pressing Alt+X will cause KEDIT to either bring a
new file into the ring, reissue the DIR command for a subdirectory, or do nothing,
depending on where the cursor happens to be when the key is pressed.

Alt+X can also be used to edit the file named at the cursor position in non-DIR.DIR
files.

This example demonstrates an easy way to determine if the current file is DIR.DIR,
how to find out the fileid corresponding to a line in a DIR.DIR file, and how to extend
or replace KEDIT’s predefined key definitions.

First, consider the default definition for Alt+X that is built into KEDIT:

if \dir() then
'macro edit_cursor_file'
else if dirfileid.1() = '' then
exit
else if pos('<dir>',curline.3()) = 0 then
'K "'dirfileid.1()'" (nodefext'
else
'DIR "'dirfileid.1()'"'

The instructions in the macro do the following:

if \dir() then
'macro edit cursor_ file'

This statement makes use of the Boolean function DIR() to check to see whether the
current file is a DIR.DIR file. (In fact, it tests for any file with a .DIR extension.) If it
isn’t, then the macro calls a predefined helper macro called EDIT CURSOR_FILE to
edit the file named at the cursor position of a non-DIR.DIR file. We will focus here on
the DIR.DIR handling done by Alt+X and will not discuss EDIT CURSOR_FILE.

else if dirfileid.1() = '' then

exit

The name of the file or subdirectory represented by the focus line in a DIR.DIR file is
returned by the implied EXTRACT function DIRFILEID.1(). If the current file is a

Working with KEDIT’s Default Key Definitions 241

Sample Macros

Working with
the Alt+X
macro

DIR.DIR file, but DIRFILEID.1() returns a null string, then the focus line does not
describe a file or a subdirectory. (This normally happens if the focus line is the
top-of-file or end-of-file line.) In this case it makes sense for the macro to end without
anything more being done.

else if pos('<dir>',curline.3()) = 0 then
'K "'dirfileid.1l()'" (nodefext'

else
'DIR "'dirfileid.1()'"'

At this point the macro has verified that it is in a DIR.DIR file and that the focus line
represents either a subdirectory or a file. This IF statement uses the POS() built-in func-
tion to test whether the focus line contains the string ““<dir>"’, which indicates that the
focus line describes a subdirectory.

If “<dir>"" is not found, the line represents a file that is then brought into the ring for
editing. Otherwise a DIR command is issued for the subdirectory in question.

Note that the macro encloses the value returned by DIRFILEID.1() in double quotes
when constructing either the KEDIT or DIR command string. Windows allows fileids
with embedded blanks, and any fileid with embedded blanks must be surrounded by
double quotes so that KEDIT can properly determine where the fileid begins and ends.

You should also notice the use of the NODEFEXT option on the end of the KEDIT
command. DIRFILEID. () returns the value of a fileid. If that fileid doesn’t happen to
have an extension and DEFEXT ON is in effect, the KEDIT command will tack the
extension of the current file (.DIR) onto the end. In the context of the Alt+X macro, this
behavior is undesirable, and it is overridden by the NODEFEXT option.

Since Alt+X is predefined it is available immediately as part of any editing session.
Simply issue the KEDIT DIR command, move the cursor to the line in the resulting
DIR.DIR file that represents a file you want to edit or a subdirectory you’d like to look
over, and press Alt+X.

For the sake of this discussion let’s suppose you aren’t quite happy with the existing
Alt+X macro and want it to behave a little differently. If the new macro is simple
enough, you can use the DEFINE command to change it. For example, suppose you
wanted Alt+X to always move you to the next file in the ring. You could change its defi-
nition by typing in the following on the KEDIT command line:

define alt+x 'KEDIT'

If you wanted the ALT+X key to work like this in every KEDIT session, you could
place the following into your WINPROF.KEX file:

"DEFINE alt+x 'KEDIT'"

Because the DEFINE command is being used in a macro (WINPROF.KEX) it should
be given in quotes. And since it is being used to define a macro that contains another
command string, that other command string should also be in quotes. The easiest way
to embed a quoted string inside another quoted string is to use double quotes for one
and single quotes for the other.

242

Chapter 11. Sample Macros

If you want to make changes to macros that are more complicated, you use the .KML
files that were introduced in the last example.

Any existing in-memory macro can be extracted into .KML format by the MACROS
command. The MACROS command is invaluable for looking over existing macros
and/or making slight adjustments that are more to your liking. With it you can look at
any of KEDIT’s predefined macros. Just give the MACROS command a specific macro
name and that macro’s definition will be placed in a file in the ring called
MACROS.KML.

For example, suppose you wanted to change Alt+X to do the same things it does by
default if the current file is a DIR.DIR file, but to move to the next file in the ring if it
were in any other file. You might start by getting the default definition into a
MACROS.KML file by typing:

macros alt+x

at the KEDIT command line. The resulting MACROS.KML file will look like this:

ralt+x
if \dir() then
'macro edit cursor file'

else if dirfileid.1() = '' then
exit

else if pos('<dir>',curline.3()) = 0 then
'K "'dirfileid.1()'" (nodefext'

else

'DIR "'dirfileid.1()'"™’

Using KEDIT, make the changes you desire. You might come up with the following:

ralt+x

if \dir() then
IKI

else if dirfileid.1l() = '' then
exit

else if pos('<dir>',curline.3()) = 0 then
'K "'dirfileid.1l()'" (nodefext'

else

'DIR "'dirfileid.1()'"'
The second line of the original macro:

'macro edit cursor_ file'

has been changed to move to the next file in the ring
Al K Al

The rest of the macro is essentially the same as the original default definition.

As with CTRL+F3, you can file this new macro away in a . KML file with any name you
choose, though it’s a good idea to avoid the name MACROS.KML. KEDIT uses it
automatically, and you might accidentally replace your own one day and lose any mac-
ros stored in it.

Sample Macros

Working with KEDIT’s Default Key Definitions 243

11.4 Saving Your Place in a File

XPOINT.KEX

Description of
XPOINT.KEX

It’s not unusual during an editing session to want to save your place so that you can
wander off, look at other parts of a file, and still find your way back quickly. You can
use the Set Bookmark 1 and Go to Bookmark 1 buttons on the optional bottom toolbar
to do this for a single location in your file, or you can use the Actions Bookmark dialog
box to work with multiple bookmarks. Another method is to use the sample macro dis-
cussed here. Once assigned to a key, this macro will not only save your place at the
touch of that key, but it will also find its way back later on if you press the key twice in
succession.

This macro demonstrates the READV KEY command and the concept of named lines.
It also makes interesting use of the fact that every key on the KEDIT keyboard is
assigned a macro. Pressing a key is equivalent to asking KEDIT to run the associated
macro with the MACRO command.

'EXTRACT /lastkey/'
'READV KEY NOIGNOREMOUSE'
if rc = 0 then do
if lastkey.l \= readv.1l then do
'SET POINT . 'lastkey.1l
'MACRO' readv.l1
end
else
'LOCATE . 'readv.1l
end
else if rc = 2 then
'SET POINT . 'lastkey.1l

The instructions in the macro do the following:
'EXTRACT /lastkey/'

The macro needs to know the name of the key that was pressed to invoke this macro if it
is going to be able to check to see if the key was pressed twice in succession.
EXTRACT will store this keyname in the variable lastkey. .

'READV KEY NOIGNOREMOUSE'

Next, the READV command waits for another key press or a mouse event; either will
terminate the command. If a mouse event was detected, the return code from the com-
mand will be nonzero. If a key was pressed, rc will be 0 and the name of the key will be
stored in the variable readv. .

if rc = 0 then do

This IF statement is used to separate out mouse events. A key press gets handled by the
THEN clause; mouse events are handled by the corresponding ELSE at the end of the
macro.

244

Chapter 11. Sample Macros

Using
XPOINT.KEX

if lastkey.l \= readv.l then do
'SET POINT .'lastkey.l
'MACRO' readv.1l
end

The next IF statement knows it has the name of the key just pressed in readv./ and
checks to see if it is the same as the one that EXTRACT stored in lastkey. I.

If the keys don’t match, then two different jobs have to be attended to. First, the line
must be named so that it can be found later on. The SET POINT command can be used
to name a line, and a good name to use is the name of the key the macro is assigned to
since it will be unique for each key this macro is associated with.

The macro must also process the second key that was pressed, since it was read by the
READV command instead of KEDIT’s normal keyboard handler. Each and every key
on the keyboard has a macro assigned to it. KEDIT’s keyboard handler executes the
macros automatically every time it handles a key press. XPOINT.KEX needs to be a lit-
tle more explicit and runs the macro that is bound to that key with the MACRO
command.

else
'LOCATE . 'readv.l

If the keys match, then a double key press must be handled and the line named earlier
when the key was pressed only once must be located.

else if rc = 2 then
'SET POINT . 'lastkey.1l

This is the ELSE clause that belongs to the IF statement that checks the return code
from the READV command. If it was nonzero, then it needs to be checked again to see
if it was 2 which indicates that a mouse event was responsible for terminating READV.
The mouse event itself is automatically queued up by KEDIT and is processed after the
macro terminates.

Since a mouse event means that two identical key presses didn’t happen in succession,
a place saving is called for and SET POINT is used to name the current location.

KEDIT’s setup program normally installs XPOINT.KEX in the SAMPLES subdirec-
tory of the main KEDITW directory. XPOINT.KEX needs to be assigned to a key for it
to work properly. This can be done by typing the following command on the KEDIT
command line:

define alt+l 'macro xpoint'

This associates a macro that runs the XPOINT.KEX macro with the ALT+1 key. When
the ALT+1 key is pressed, the MACRO XPOINT command is executed which will go
through the process, discussed earlier, of looking for XPOINT in memory and then on
disk in a .KEX file.

To set up three keys, Alt+1, Alt+2, and Alt+3 to run XPOINT, letting you maintain
three separate bookmarks, you could place the following lines into your
WINPROF.KEX. Since XPOINT is a short macro that you might use often, a DEFINE
command loading XPOINT into memory is also included.

Saving Your Place in a File 245

Sample Macros

"DEFINE alt+l 'macro xpoint'"
"DEFINE alt+2 'macro xpoint'"
"DEFINE alt+3 'macro xpoint'"
'DEFINE xpoint.kex'

11.5 Saving the Contents of All Changed Files

SAVEALL.KEX

Description of
SAVEALL.KEX

This macro checks each file in the ring to see if it has been altered. If a file has been
changed, a dialog box is displayed asking the user whether or not it should be saved to
disk.

ANOPROMPT option is available to save all of the altered files without first asking for
the user’s permission.

This example demonstrates how it is possible to move through the ring one file at a
time, features the use of dialog boxes for displaying messages that allow the user to
control the actions taken by the macro, and uses PARSE UPPER ARG to handle any
supplied parameter. It also shows how to display multiple lines of output in a dialog
box, and the use of the DELIMIT() built-in function.

parse upper arg prompt_option

do nbfile.1()
'KEDIT'
if \alt() then iterate

* skip prompting for DIR.DIR
if dir() then iterate

if prompt_option \= "NOPROMPT" then do

'DIALOG /Save changes to' Fileid.1()'/ YESNOCANCEL'
if dialog.2 "CANCEL" then exit 1

if dialog.2 "NO" then iterate
end

'"NOMSG SAVE'
if rc \= 0 then do
1f = d2c(10)
msg = 'Unable to save changes to' fileid.1()
msg = msg || 1f || lastmsg.1l()
'ALERT' delimit(msg) 'TITLE /Save Error/ OKCANCEL’'
if alert.2 = "CANCEL" then exit 1
end

end

The instructions in the macro do the following:
parse upper arg prompt_option

The first line of the macro uses a PARSE UPPER ARG statement to save the
uppercased value of any argument string passed to the macro in the variable
prompt_option. Uppercasing the value makes it easier to test for a specific value later

246

Chapter 11. Sample Macros

on. See Reference Manual Chapter 6, “Macro Reference”, for a full discussion of
PARSE, one of KEXX’s most useful and powerful instructions.

do nbfile.1()

NBFILE.1() is an implied EXTRACT function that returns the number of files in the
ring. This DO loop is going to be executed once for each of those files.

'KEDIT'

The KEDIT command without any operands moves to the next file in the ring. Each
time through the DO loop this command sets up a different current file for the macro to
work with.

if \alt() then iterate

ALT() is a Boolean function that only returns 1 (TRUE) if the current file has been
altered somehow. If the file hasn’t been changed, then there is nothing to save.

The ITERATE statement instructs KEDIT to skip the rest of the current DO loop. Con-
trol returns to the top of the loop, and starts with the next iteration if appropriate. If
there aren’t any more files left, control will fall out of the loop to the end of the macro.

* skip prompting for DIR.DIR
if dir() then iterate

If the current file is a DIR.DIR file, even though it has been changed, it’s unlikely that
those changes need to be saved to disk; it is ignored.

if prompt_option \= "NOPROMPT" then do

Because it is usually better to err on the side of caution, the macro interprets any value
passed to the macro other than “NOPROMPT”’ as meaning “PROMPT”. If the value
is “NOPROMPT”, the logic asking for permission is skipped and any changed files
always get saved.

'DIALOG /Save changes to' fileid.1l()'/ YESNOCANCEL'
if dialog.2 "CANCEL" then exit 1
if dialog.2 "NO" then iterate

end

The DIALOG command prompts the user for instructions about each changed file. The
dialog box displayed will have three buttons: YES, NO, and CANCEL. The name of
the button the user selects is returned in the variable dialog.2.

If the user selects CANCEL, the entire process is aborted and the EXIT statement stops
the macro before it can go any further. A return code of 1 is specified, indicating that the
macro didn’t succeed. This return code can be checked by any other macros that “call”
SAVEALL.KEX with the MACRO command.

Sample Macros

If NO was selected, then the remainder of the loop is skipped, and the current file
doesn’t get saved.

Saving the Contents of All Changed Files 247

'NOMSG SAVE'

If execution gets this far, the file has been changed, it isn’t a DIR.DIR file, and the user
requested that the file be saved either by selecting the YES button in the dialog box or
specifying “NOPROMPT” as an argument to the macro.

The NOMSG command tells KEDIT to issue the command that is passed as an argu-
ment without displaying any resulting messages on the screen. (There will be more to
say about this shortly.) In this particular case, it is used to issue the SAVE command that
will attempt to save the contents of the altered file.

if rec \= 0 then do

The IF statement checks the value of rc after the SAVE command is issued to determine
if SAVE was able to do what was expected of it. If 7c is nonzero, something went
wrong, and the user should be notified. When a command fails, KEDIT usually dis-
plays a message relating something that the user might need to know.

Under most circumstances, KEDIT does not update the screen when a macro is run-
ning. Any messages that were “displayed” during a macro’s execution usually show up
only when the screen is refreshed after the macro finishes.

If a message results when the SAVE command is issued for one of the files in the ring, it
might not be visible at the end of the macro because switching to another file in the ring
will clear the KEDIT message area. If there are more files to work with, the message
will be gone before the end of the macro and won’t be shown when the screen is finally
refreshed. Even if the messages were to remain on the screen, it wouldn’t always be
clear to which file a particular message corresponded.

Instead of relying on KEDIT to display the error messages, the SAVE command is
issued through the NOMSG command, and the macro displays any resulting messages
itself in an alert dialog box. This has the added advantage of allowing the user the
opportunity to decide whether the error can be ignored, or to end the macro before it
goes any further.

1f = d2c(10)

This statement sets the value of the variable /fto the linefeed character (character code
10), which is needed later in the macro. Use of the built-in function D2C(10) is a tech-
nique that allows a macro to use linefeeds without embedding the actual character
directly into the source, which would be a problem since KEDIT would treat it as an
end-of-line character when reading in your macro.

Of course, not everyone can easily interpret D2C(10) as a linefeed character. Saving
the value in a variable called /f'helps to make the reference less obscure.

msg
msg

'Unable to save changes to' fileid.1l()
msg || 1f || lastmsg.1l()

LASTMSG.1() is an implied EXTRACT function that returns the value of the last mes-
sage issued by KEDIT. Even when a message doesn’t get displayed on the screen, it is
still kept internally and can be retrieved by LASTMSG.1(). The message to be dis-
played by the macro will contain the name of the current file, which is returned by

248

Chapter 11. Sample Macros

Using
SAVEALL.KEX

FILEID.1(), and the error message issued by the SAVE command. A linefeed character
is used to split the two lines at an appropriate place.

'ALERT' delimit(msg) 'TITLE /Save Error/ OKCANCEL'
if alert.2 = "CANCEL" then exit 1
end

The format of the ALERT command requires that you put delimiter characters around
the text to be displayed. The DELIMIT() built-in function is used to find a valid KEDIT
delimiter character that is not a part of the value of msg. DELIMIT(MSG) returns a
string that consists of the value of msg surrounded by appropriate delimiter characters.

Note that a single text string passed to the ALERT command contains text that ALERT
will actually display on different lines of your screen. Linefeed characters have been
added to the text. Wherever the ALERT (or DIALOG) command sees a linefeed char-
acter in the string that it displays, it puts the text that follows on a new line of the dialog
box.

An ALERT dialog box containing this text is issued with two buttons: OK and
CANCEL. The name of the button the user selects is returned in the variable alert.2.
CANCEL is interpreted as being a request to end the macro without going any further.
OK means that the user has decided to live with the error and let the macro proceed.

KEDIT’s setup program normally installs SAVEALL.KEX into the SAMPLES subdi-
rectory of the main KEDITW directory. SAVEALL.KEX is another example of a
disk-based macro and is run in much the same way as WC.KEX. The primary differ-
ence with SAVEALL.KEX is that it accepts a parameter.

To use SAVEALL.KEX to save all the files in the ring without prompting for permis-
sion, type

saveall noprompt

on the KEDIT command line. The string “noprompt” is passed to the macro as an argu-
ment. It is uppercased and saved for later use in the variable prompt option by the
PARSE UPPER ARG statement.

If you want the macro to prompt for permission, no parameters are necessary. Simply
type

saveall

11.6 Batch Macro Operations

It is sometimes necessary to make the same changes in several different files. Loading
each file into KEDIT, making the changes, and saving the file back to disk can get
tedious and is subject to mistakes. This section discusses a macro that can help auto-
mate the process, to save time and reduce the likelihood of errors.

Batch Macro Operations 249

Sample Macros

BATCH.KEX

Description of

This example macro can help automate the process of making repetitive changes in
your files. You first use the DIR command to create a DIR.DIR file that lists the files to
be changed. Then you run BATCH.KEX, which steps through each of the files and, for
each file, calls a second, task-specific macro to actually make the changes.

if \dir() then do
'EMSG Current file must be DIR.DIR file'
exit 1
end

parse arg macroname

if macroname = '' then do
'EMSG Macro name not specified'
exit 2
end

'TOP'

'DOWN 1'

do while rc =0
'MSG Processing line' line.1()
'REFRESH'
'KEDIT "'dirfileid.1l()'" (nodefext profile' macroname
if re \= 0 | \dir() then do
'EMSG File not properly processed'
exit 3
end
'DOWN 1'
end

The instructions in the macro do the following:

BATCH.KEX

if \dir() then do

'EMSG Current file must be DIR.DIR file'

exit 1

end
The Boolean function DIR() is used to make sure that this macro is being run from a
DIR.DIR file. If it isn’t, the macro exits with an error message because continuing
doesn’t make much sense.
parse arg macroname
if macroname = '' then do

'EMSG Macro name not specified'

exit 2

end
The name of the “batched” macro is supplied as an argument. The PARSE instruction
saves that name in the variable macroname. Macroname is then checked to be certain
that an argument was specified. If not, the macro exits with an error message.
'TOP'
'DOWN 1'
Much like WC.KEX, BATCH.KEX will loop through all the lines in a file, though in
this case the file is a DIR.DIR file containing the names of the files to be processed.
These commands set up the loop that follows by moving to the first line of the file.

250 Chapter 11. Sample Macros

do while rc = 0
'MSG Processing line' line.1()
'REFRESH'

Next the macro uses a DO WHILE loop to step through each line in the DIR.DIR file.
The loop terminates when one of the DOWN commands fails to set 7c to 0, indicating
that the macro has reached the bottom of the DIR.DIR file. Each individual line in the
DIR.DIR file represents a file that you want to process. Before processing a file, the
macro displays a progress message. Messages generated while macros execute are nor-
mally not displayed until the macros complete or KEDIT pauses for user input. The
REFRESH command forces KEDIT to update the display, so that you can see the prog-
ress message immediately.

'KEDIT "'dirfileid.1l()'" (nodefext profile' macroname
if re¢ \= 0 | \dir() then do
'EMSG File not properly processed'
exit 3
end
'DOWN 1'
end

Next, the macro edits the file described in the DIR.DIR file’s focus line, specifying the
“batched” macro as an alternate profile, instead of the normal WINPROF.KEX. The
macro uses DIRFILEID.1() to get the name of the file listed at the focus line, and the
NODEFEXT option to be sure that a file with no extension is edited properly; both of
these were discussed above in connection with the Alt+X macro. It is the job of the
batched macro to make any necessary changes to the file, and then to remove it from the
ring. At that point, the DIR.DIR file should once again be the current file; if it isn’t, or if
the KEDIT command had a non-zero return code, something has gone wrong and
BATCH.KEX exits with an error message. Otherwise, BATCH.KEX moves down to
the next line of DIR.DIR, in preparation for the next iteration through the loop.

Using BATCH.KEX isn’t useful all by itself; the ““batched”” macro must be supplied and has a

BATCH.KEX few responsibilities of its own. This “batched” macro is entirely responsible for mak-
ing all the desired changes and seeing to it that they are saved and that the file is
removed from the ring when it is finished.

For example, the following macro might be used to change all occurrences of
“Superman” to “Clark Kent” and then save the results:

'"CHANGE /Superman/Clark Kent/ all *'
if alt() then 'FILE'
else 'QUIT'

The first line of this macro issues the appropriate CHANGE command after the file has
been loaded into memory by BATCH.KEX. Since there’s no sense saving the file if
nothing has changed, the second line uses the Boolean function ALT() to see if the con-
tents of the file were changed. If changes were made they are filed away; otherwise the
file is simply removed from the ring by the QUIT command.

Suppose that you want to change all of the references to Superman in all the .TXT files
in your C:\COMICS subdirectory. First you type the macro above and save it in a file;
let’s call the file TOKENT.KEX.

Sample Macros

Batch Macro Operations 251

Next you create the DIR.DIR file with the names of all the files that need to be changed
by typing, for example:

dir c:\comics*.txt

Finally, you would run BATCH.KEX from the command line of the DIR.DIR file,
specifying TOKENT as the batched macro:

batch tokent

KEDIT’s setup program normally installs BATCH.KEX and TOKENT.KEX in
KEDITW’s SAMPLES subdirectory.

11.7 Putting Sequence Numbers into a File

SERIAL.KEX

Sequence numbers originated in the days of punched cards; by putting the number of
the card in a specific place, cards could be sorted into order after they were carelessly
dropped or otherwise mishandled. Today, sequence numbers are often used on main-
frame systems as a way to keep track of particular lines in files.

This macro will put sequence numbers into the lines of a file. For example, all lines of a
file might have numbers in columns 73—80, growing in increments of 1000.

SERIAL.KEX brings together some of the things that were introduced elsewhere in
this chapter. Much like WC.KEX, it uses a DO WHILE loop to work with each line in a
file. Furthermore, the macro uses PARSE ARG to save the values of any arguments
supplied when it was invoked.

It also demonstrates a technique for supplying default values for arguments that
weren’t specified, addresses some ALT and AUTOSAVE considerations for macros
that make a large number of changes to a file, and makes use of a user-defined subrou-
tine to check the validity of any supplied parameters.

252

Chapter 11. Sample Macros

parse arg incr startcol width

if incr = '' then incr = 1000
if startcol = '' then startcol = 73
if width = '' then width = 8

call argcheck "increment", incr
call argcheck "starting column", startcol
call argcheck "width", width

'"EXTRACT /alt/autosave/'
'SET autosave off'

'CLOCATE :'startcol
seq = incr
'TOP'
'DOWN 1'
do while rc =0
'COVERLAY' right(seq, width, '0')
seq = seq + incr
'DOWN 1'
end

'SET alt' alt.l1l + 1 alt.2 + 1
'SET autosave' autosave.l
exit

argcheck:
parse arg type, integer
if \datatype (integer, "N") then do

emsg "Invalid" type":" integer
exit 1
end
return
Description of The instructions in the macro do the following:

SERIAL.KEX

parse arg incr startcol width

This PARSE statement processes any arguments to the macro and saves their values in

the variables incr, startcol, and width. Because there is a *“.”” at the end of the instruc-
tion, any arguments beyond the first three will be ignored.

if incr = '' then incr = 1000
if startcol = '' then startcol = 73
if width = '' then width = 8

These three instructions set default values for any of the arguments that weren’t speci-
fied when the macro was invoked. This is a commonly used technique, and it is a good
idea to put this sort of thing at the beginning of the macro where it is easier to find and
change.

The default values specified here represent sequence numbers that are commonly
found in files on IBM mainframe systems.

Sample Macros

Putting Sequence Numbers into a File 253

call argcheck "increment", incr
call argcheck "starting column", startcol
call argcheck "width", width

If it’s possible, checking user supplied arguments is always a good idea. It will often
prevent macros from failing in unexpected and confusing ways.

Each of these subroutine calls checks an argument to see if it represents a valid value.
The first parameter in each statement is informational, and will be used to construct a
message that will notify the user of any errors. The second parameter is the value to be
checked.

Note that the CALL statement is used to invoke the subroutine as opposed to the func-
tion reference. CALL is used here because ARGCHECK doesn’t return a value to the
caller.

There are a couple of common syntax mistakes people make when using the CALL
instruction. Note that there are not any enclosing parentheses around the arguments,
and that the parameters are separated from one another by commas.

'"EXTRACT /alt/autosave/'
'SET autosave off'

This macro will be changing each line in the file, one line at a time. Even so, the
changes will be made to look like a single alteration. This will require some direct
manipulation of the ALT counter that KEDIT displays on the status line. The
EXTRACT command is used to save the current alteration counts in a/t./ and alt.2.
These values will be used later on to set the ALT count so that it looks as if only a single
change was made to the file by the macro.

To further enhance the pretense of a single global file change, AUTOSAVE will need to
be turned off while the changes are being made to the file. EXTRACT will save the cur-
rent AUTOSAVE setting in autosave. 1, so that it can be properly restored at the end of
the macro.

'CLOCATE : 'startcol
seq = incr

'TOP'

'DOWN 1'

The next group of statements sets things up so that when the loop starts, it will have the
proper set of conditions in place for the first iteration. The CLOCATE command sets
the current column to be the one in which the sequence numbers are to start. The vari-
able seq will always contain the sequence number that is to be put on the next line. It is
initially set to the value appropriate to the first line in the file. Finally, the TOP and
DOWN commands are used to move to the first line in the file.

do while rc = 0
'COVERLAY' right(seq, width, '0')
seq = seq + incr
'DOWN 1'
end

These statements constitute the DO WHILE loop; you should notice that it is very
much like to the ones used in both WC.KEX and BATCH.KEX. RC will reflect the

254

Chapter 11. Sample Macros

success or failure of the last DOWN command, and the loop will terminate when there
are no longer any lines left to process.

The COVERLAY command is used to put the sequence number into the line. The
RIGHTY() built-in function is used to pad the value stored in seq with leading zeros until
the number is width characters wide.

After the sequence number has been added, seq is incremented in anticipation of the
next iteration of the loop. Finally, the next DOWN command is issued, and if there’s
another line left, the macro does it all over again.

'SET alt' alt.1 + 1 alt.2 + 1
'SET autosave' autosave.l

After the loop finishes making changes to the file, all that remains is to set the ALT
count to reflect a single change and to restore the AUTOSAVE setting.

exit

An EXIT statement immediately ends the execution of a macro. In this case one is nec-
essary to keep the macro from falling through to the statements that make up the
ARGCHECK subroutine.

argcheck:

This is the KEXX label that identifies the beginning of a subroutine called
ARGCHECK.

Since the process of checking parameters for validity is needed in several different
places in this macro and since it isn’t completely trivial, the ARGCHECK subroutine is
used to accomplish the task. This helps reduce the complexity of the macro.

parse arg type, integer

The first line of the function uses a PARSE ARG statement to save the values passed as
arguments into the variables #ype and integer.

Since two strings are passed with each function call, fype and integer must be separated
by a comma. Otherwise, type would be assigned the first word of the first string, integer
would be assigned whatever was left of the first string, and the second parameter,
which contains the number to be verified, wouldn’t be assigned to anything at all.

if \datatype (integer, "N") then do
emsg "Invalid" type":" integer
exit 1
end

return

The rest of the ARGCHECK subroutine is fairly simple. The infeger argument is
checked to be certain it represents a numeric value with the DATATYPE() built-in
function. If it checks out, control is returned to the caller by the return statement. If the
argument isn’t numeric, then it is presumed bad, so the #ype argument is used to help
construct an informative error message and the macro terminates.

Sample Macros

Putting Sequence Numbers into a File 255

Using
SERIAL.KEX

KEDIT’s setup program normally installs SERIAL.KEX in the SAMPLES subdirec-
tory of the main KEDITW directory. You can run it by, for example, entering the fol-
lowing on the command line to put sequential line numbers in columns 1 through 5 of
your file:

SERIAL 1 1 5

11.8 Macros and KEDIT’s Toolbar

A Lock button

The toolbar makes it easy to access many KEDIT facilities. When you click on a
toolbar button with the mouse KEDIT runs a corresponding macro, and you can cus-
tomize the toolbar by supplying your own buttons and macros.

This example demonstrates how to add new buttons to the toolbar and how to define
their corresponding macros. The example puts a Lock button on the toolbar, which will
toggle the file locking status of a file, issuing the LOCK command to lock a file that is
not locked, or issuing the UNLOCK command to unlock a file that is locked. See
Chapter 12, “File Processing”, for a discussion of KEDIT’s file locking facility.

Adding Lock to the toolbar will let you lock or unlock files you are editing with the
mouse instead of requiring you to use the keyboard. Many other KEDIT commands
might be useful to have on the toolbar as well. It is completely customizable, and you’re
encouraged to experiment.

Three main steps are involved in adding a button to the toolbar:

e Use the SET TOOLBUTTON command to define the button’s name, visual ap-
pearance, and help text.

e Use the DEFINE command to define the macro to be executed when the button is
pressed.

e Use the SET TOOLSET command to position the button on the toolbar.

Adding the following macro line to your WINPROF.KEX file will create a new
toolbutton:

'set toolbutton lock lock.bmp /Lock or unlock file/'

The SET TOOLBUTTON command is used to create a toolbutton. In this case, a button
named “Lock™ is being created. The bitmap used to paint the button on the screen is
located on disk in a file called LOCK.BMP. When the mouse pointer is over the button,
“Lock or unlock file” is displayed in a pop-up help box and on the status line.

In addition to defining the toolbar button with SET TOOLBUTTON, you need to sup-
ply the associated macro. The macro should be given the name TOOL LOCK, because
when you click on a toolbar button, KEDIT executes a macro called TOOL name,
where name is the name you used as the first operand of the SET TOOLBUTTON com-
mand. Here is the macro:

256

Chapter 11. Sample Macros

if filestatus.1l() \= 'NONE' then 'UNLOCK';else 'LOCK'

It is short enough to define as a one-line macro directly in your WINPROF.KEX file:

"DEFINE tool lock if filestatus.1l() \= 'NONE' then 'UNLOCK';else 'LOCK'"

The macro is very simple. If the file is currently unlocked, the LOCK command is
issued, otherwise the macro will issue the UNLOCK command.

Finally, the toolbutton must be added to the current toolbar. This requires another line
in your WINPROF.KEX file:

'set toolset top add Lock'

The SET TOOLSET command is used to construct the list of toolbuttons that are dis-
played on the toolbars at the top and the bottom of KEDIT’s main window. Here, the
ADD operand specifies that the Lock button is added to the end of toolset that displays
at the top of the window.

So you could add the Lock button to your toolbar by including the following lines in
your WINPROF.KEX file:

if initial() then do
'set toolbutton lock lock.bmp /Lock or unlock file/'
"DEFINE tool lock if filestatus.1() \= 'NONE' then 'UNLOCK' ;else 'LOCK'"
end

'set toolset top add Lock'

When REPROFILE ON is in effect, your profile is re-executed whenever a file is added
to the ring. Since the SET TOOLBUTTON and DEFINE commands need only be pro-
cessed once in each editing session, they are executed in this example only if the
Boolean function INITIAL() returns 1, which it will do only for the first execution of
your profile, at the start of an editing session. The SET TOOLSET command, on the
other hand, is not dependent on the value of INITIAL(), so that if REPROFILE ON is
in effect it will update the toolbar displayed for each file that is added to the ring.

KEDIT’s setup program normally installs the bitmap used in this example,
LOCK.BMP, in the SAMPLES directory of the main KEDITW directory. If you want
to create your own toolbar bitmaps, you can do so with most paint programs and
resource editing programs. For additional information on defining your own toolbar
buttons, including additional examples, see the descriptions of SET TOOLBUTTON
and SET TOOLSET in Reference Manual Chapter 4, “The SET Command”.

Even more Your entire KEDIT package is filled with examples of how to write macros. One good

examples place to look is in KEDITW’s SAMPLES subdirectory, where most of the macros dis-
cussed in this chapter, as well as a number of other sample macros, are usually installed
by KEDIT’s setup program. Reference Manual Chapter 7, “Built-in Macro Handling”,
has a discussion of the different types of macros built into KEDIT, and the file
BUILTIN.KML in KEDITW’s SAMPLES subdirectory gives the definitions of all of
KEDIT’s built-in macros. Additional macros can be downloaded via our Internet site at
http://www.kedit.com.

Sample Macros

Macros and KEDIT’s Toolbar 257

Chapter 12. File Processing

This chapter discusses three important aspects of how KEDIT processes the files that
you edit.

e First, it covers KEDIT’s file locking facility and the related timestamp checking
capability. These features help you work with files that other users or other pro-
grams might try to access while you are using KEDIT to edit them.

e Next, it discusses the file formats that KEDIT can process and the options you can
use to control KEDIT’s handling of tab characters, end-of-file characters,
end-of-line sequences, etc.

e Finally, it gives information about KEDIT’s handling of long filenames.

12.1 File Locking

When a program like KEDIT wants to begin using a disk file, it tells the operating sys-
tem to open the file. When it has finished using the file, it tells the operating system to
close the file. When a program opens a file, it can ask the operating system to restrict
the access that other programs have to the file; these restrictions are only in effect for as
long as the file remains open.

KEDIT normally has a file open only when it is reading the file into memory at the start
of an editing session and when it is writing it to disk during a save operation. Since all
of the editing that you do is actually done on the copy of the file that KEDIT keeps in
memory, KEDIT has no need to use the disk file, and hence no need to have the file
open, during most of your editing session. This can cause problems on a network,
where two or more users might try to access the same file at the same time, or even on
an individual PC, where one user might try to access the same file from two different
programs at the same time. Here is an example of the problem:

e Sharon begins to edit a file with KEDIT.
e Unaware of what Sharon is doing, Robert begins to edit the same file.

e Sharon finishes with the file, and uses File Close to write the file to disk and re-
move it from the ring.

e Robert finishes with the file, and also uses File Close to write his modified copy to
disk. Both users think that their changes are safely on the disk, but Sharon’s ver-
sion of the file has been completely replaced by Robert’s.

KEDIT’s file locking facility, controlled by the SET LOCKING command, provides a
solution to this problem. With the default of LOCKING OFF in effect, KEDIT opens
files only briefly, as described above. But with LOCKING ON, KEDIT keeps files
open for as long as you are editing them and prevents access to the files by other users.

258

Chapter 12. File Processing

Special
considerations

In the example above, if Sharon had set LOCKING ON before editing the file, Robert
would have gotten an error message as soon as he tried to begin editing it.

LOCKING ON is a global setting, affecting each new file as it is added to the ring. The
status of files already in the ring is not affected when you issue the SET LOCKING
command. If you want to lock a file that is already in the ring but is not already locked
you can use the LOCK command, which locks the current file. If the current file is
locked and you want to unlock it, you can use the UNLOCK command.

You can tell whether a file you are editing is locked by looking at the status line at the
bottom of the frame window. If a file is locked, KEDIT displays “Lock” in the box to
the right of the Insert/Overtype Mode indicator.

You can override the status of LOCKING when you begin editing a particular file by
using the LOCK and NOLOCK options of the KEDIT command. For example, if
LOCKING ON is in effect because you want to lock most of the files that you edit, but
you want to edit the file ABC.TXT without locking, you could issue the command

KEDIT ABC.TXT (NOLOCK

There are several special considerations and special cases that you should be aware of
if you plan to use file locking with KEDIT:

e The advantage of KEDIT’s file locking facility is that it can prevent access to files
you are editing by other users on a network and by other processes on your own
computer. There are, however, situations where this can be a disadvantage. For
example, if you are using KEDIT to look at a file, and do not intend to change the
file, the file locking facility can needlessly prevent other users from doing the
same thing. See the description in the Reference Manual of the SET SHARING
command, which provides some degree of control over the sharing modes used by
KEDIT and can sometimes help with problems like this.

e File locking can also cause problems with compilers. For example, assume you
are using file locking while you are editing the source code of a C program and you
use File Save to copy your changes to disk while leaving the file locked and in the
ring. If you then attempt to process the file with your C compiler, the C compiler
might be unable to access your file because it is locked.

e The SET BACKUP command asks KEDIT to keep a backup copy of any existing
file that you are editing before saving a modified version. KEDIT does this by re-
naming the existing copy, giving it an extension of .BAK, and then creating a new
file to hold the modified version of the contents. It is not possible to rename a
locked file, so when LOCKING ON is in effect, KEDIT must unlock your file, re-
name it to have the .BAK extension, and then create a new locked file to hold the
modified contents of the file. During the brief period between the unlocking of the
old file and the creation of a new file, it is possible that another user on the network
could access the file, bypassing the protection normally provided by SET
LOCKING. The chances of this happening are very slight, but you should be
aware that it is a possibility.

File Locking

259

o
=
»
7
@
o
o
S
o
9
=

Timestamp
checking

e When you edit a new file with KEDIT and LOCKING ON is in effect, there is a
potential problem. The file does not yet exist, so it cannot be opened and locked,
but if another user were to create a file with the same name before the new file is
saved to disk, the other user’s file could be overwritten. KEDIT resolves this prob-
lem by creating a new file on disk, zero bytes in size, when you edit a new file with
LOCKING ON. If you later close the file without ever writing your version of the
file to disk, KEDIT then erases the zero byte disk file that it created.

e LOCKING ON does not cause files on your A: and B: drives to be locked. This is
to reduce the possibility of your switching disks in a floppy drive while files are
open on that drive. If you need to lock a file on your A: or B: drive, you can still use
the LOCK initialization option or the LOCK command.

e Itis not possible for KEDIT to lock a disk file that has its Read Only attribute set.
But since it is also not possible for KEDIT or any other program (except for utility
programs that change the Read Only attribute) to overwrite a Read Only file and
cause unexpected changes to the file, there is generally no need to lock such a file.
Therefore, even if LOCKING ON is in effect, KEDIT does not attempt to lock
Read Only files that you edit, and KEDIT does not consider this to be an error. To
let you know that you are editing a Read Only file, KEDIT displays “R/O” on the
status line, in the box to the right of the Insert/Overtype Mode indicator.

e When you use the DIR command to create a DIR.DIR file and when you use the
MACROS command to create a MACROS.KML file, the LOCKING ON process-
ing is bypassed, since these are normally used as temporary in-memory files.

e KEDIT also bypasses lock processing for UNTITLED files.

KEDIT has another facility that can help prevent inadvertent changes to a file by
multiple users. Whenever you start editing a file, KEDIT makes a record of the
timestamp of the file. This is the date and time that the file was last written to, the same
date and time displayed by the DIR command. Whenever you attempt to save a file,
KEDIT compares its internal record of the timestamp of the file with the actual
timestamp on the disk file. If the two timestamps disagree, it is likely that some other
user or program has changed the disk file since you began editing it, and you might be
about to inadvertently overwrite these changes.

SET TIMECHECK controls KEDIT’s timestamp checking. If TIMECHECK ON, the
default, is in effect, KEDIT gives you a warning when this situation occurs. If you
decide that you want to go ahead with your changes to the file, you can tell the dialog
box displayed by File Save to save the file anyway. You can also use the FFILE or
SSAVE commands to bypass the warning and overwrite the existing file. With
TIMECHECK OFF, this warning is never issued.

12.2 File Formats

To understand the file formats that KEDIT can process and how KEDIT handles spe-
cial characters (for example, tab characters and end-of-file characters), you should be

260

Chapter 12. File Processing

aware of how KEDIT processes your file in each of three phases: reading a file from
disk into memory, editing a file in memory, and writing a file from memory to disk.

12.2.1 Reading a File from Disk
Here are the rules followed by KEDIT when it reads a file to be edited into memory:

Files must consist of a series of lines. SET EOLIN controls what characters signal
the end of a line. By default, KEDIT treats either a carriage return (character code
13) optionally followed by a linefeed (character code 10) or a linefeed character
alone as signalling the end of a line. With SET EOLIN you can tell KEDIT to treat
only a carriage return (optionally followed by a linefeed) or only a linefeed (op-
tionally preceded by a carriage return) as signalling the end of a line. (You can also
use EOLIN NONE, a special case discussed in Section 12.2.4, “EOLIN NONE
and EOLOUT NONE”.)

KEDIT cannot properly process lines that are longer than the WIDTH value.
WIDTH is controlled by the SET INITIALWIDTH command and by the WIDTH
initialization option. The default WIDTH is 10000, but you can set it as high as
999999. The WIDTH value cannot be changed once your KEDIT session has
begun.

The last line of a file can optionally be followed by one or more end-of-file (char-
acter code 26) characters.

If EOFIN ALLOW is in effect, as it is by default, files can contain embedded
end-of-file characters. If EOFIN PREVENT is in effect, the first end-of-file char-
acter encountered is taken as the end of the file.

Null characters (character code 0) are allowed in files and are handled like any
other character.

If TABSIN ON is in effect, tab characters (character code 9) are expanded as files
are read in to sequences of blanks, according to standard tab positions 1, 9, 17, etc.
(You can use SET TABSIN to change this standard eight-column tab increment).
With TABSIN OFF, tab characters are handled like any other character.

If TRAILING ON is in effect, trailing blanks are preserved. With the default of
TRAILING OFF, trailing blanks are not preserved, and KEDIT ignores any blanks
following the last nonblank character in the lines that it reads in.

If TRANSLATEIN OEMTOANSI is in effect, KEDIT converts your file, as it is
read in, from the OEM character set to the ANSI character set. See Section 3.7.2,
“Converting between OEM and ANSI”, for a discussion of character set conver-
sion issues.

LRECL and RECFM settings affect how a file is written to disk. Except when
EOLIN NONE is in effect (this special case is discussed in Section 12.2.4,
“EOLIN NONE and EOLOUT NONE”), RECFM and LRECL have no effect on
how a file is read in.

File Formats

261

o
=
»
7
@
o
o
S
o
9
=

Notes

Some observations based on these rules:

KEDIT cannot properly process files that are in binary format. You cannot, for ex-
ample, directly edit Excel spreadsheets or graphics files with KEDIT.

Many word processors produce files whose lines don’t end with carriage return or
carriage return-linefeed pairs. With these word processors, carriage returns might
appear only at the end of a paragraph, or carriage returns with the high bit set (char-
acter code 141) can end lines. KEDIT cannot properly process these files.

Many database programs produce files with fixed length records not separated by
carriage returns or carriage return-linefeed pairs; KEDIT’s normal file processing
does not work with these files. You might be able to process these files by using
EOLIN NONE and EOLOUT NONE, as discussed below in Section 12.2.4,
“EOLIN NONE and EOLOUT NONE”.

Files with lines longer than the WIDTH value can be read in, but the longer lines
will not be handled properly by KEDIT; they will either be split or truncated as
they are read in. It can occasionally be useful to view such a file with KEDIT, but
such files should not be written back to disk, since these long lines will be split in
undesirable places and possibly changed unpredictably.

12.2.2 Editing a File

Here are some things you should know about how KEDIT handles your file while it is
being edited:

Some editors handle files internally as sequences of characters, with end-of-line
characters that can be added, deleted, or changed like any other character. KEDIT
instead treats files as sequences of lines. Files are stored internally as a
doubly-linked list of lines. Line endings are implicit; carriage-return and linefeed
characters are not actually used internally to mark the ends of lines.

While you are editing a file, you can enter and manipulate any of the 256 possible
characters, including null characters, tab characters, carriage return characters,
linefeed characters, and end-of-file characters.

Carriage return and linefeed characters are treated like any other characters while a
file is being edited. Inserting or deleting these characters does not cause lines to be
split or joined; the SPLIT, JOIN, and SPLTJOIN commands handle these
operations.

Some editors give special handling to tab characters; KEDIT does not. “Tabbing”
with KEDIT (usually assigned to the Tab and F4 keys) simply moves the cursor to
the next tab column, and does not insert a tab character into your file.

SET EOFIN and SET EOFOUT affect end-of-file character processing when a file
is read in from disk or written out to disk. They have no effect on the editing of
files in memory, where end-of-file characters are treated like any other character.

262

Chapter 12. File Processing

If TRAILING ON is in effect, KEDIT preserves any trailing blanks at the end of a
line, and keeps track of any trailing blanks that you add to a line or remove from a
line during your editing session. With the default of TRAILING OFF, KEDIT does
not keep track of the number of trailing blanks at the end of a line; KEDIT inter-
nally stores text up to the last nonblank character of a line, and does not store
trailing blanks.

You cannot change or manipulate text beyond the truncation column of a line. The
truncation column, controlled by SET TRUNC, is normally set equal to the
WIDTH setting.

12.2.3 Writing a File to Disk
Here are the rules that KEDIT follows when writing your file to disk:

Any carriage returns or linefeeds within a line of your file are written to disk like
any other character. Note that if KEDIT reads such a file back in again, KEDIT
will usually interpret any carriage returns or linefeeds as marking the end of a line.

After each line is written to disk, KEDIT adds an end-of-line sequence, which is
determined by SET EOLOUT and is normally a carriage return-linefeed pair. You
can also use SET EOLOUT to specify that only a linefeed be written after each
line, or only a carriage return, or (in a special case discussed below in
Section 12.2.4, “EOLIN NONE and EOLOUT NONE”) that no end-of-line se-
quence should be written.

A special case is the character sequence written after the last line of your file,
which is determined by SET EOFOUT . This sequence is usually the end-of-line
sequence determined by SET EOLOUT. But you can use SET EOFOUT to specify
that an end-of-file character should be added to this sequence, that only an
end-of-file character should be written, or that no characters at all should be
written.

If TRAILING ON is in effect, any trailing blanks in your file are written to disk.
With the default of TRAILING OFF, trailing blanks are not preserved, and KEDIT
ignores any blanks following the last nonblank character in the lines that it writes
to disk.

If TRANSLATEOUT ANSITOOEM is in effect, KEDIT converts your file, as it
is written out, from the ANSI character set to the OEM character set. See
Section 3.7.2, “Converting between OEM and ANSI”, for a discussion of charac-
ter set conversion issues.

If TABSOUT ON is in effect, sequences of blanks within a line are compressed to
tabs according to standard tab settings 1, 9, 17, etc. (You can use SET TABSIN to
change this standard eight-column tab increment).

If RECFM VARYING, the default, is in effect, text through the last character of
each line is written to disk. A trailing blank might be added, depending on the set-
ting of TRAILING. Any lines longer than the LRECL setting are truncated with-

File Formats

263

o
=
»
7
@
o
o
S
o
9
=

out warning to the LRECL setting before being written to disk. By default,
LRECL is set equal to the WIDTH value.

e If RECFM FIXED is in effect, all lines shorter than the logical record length
(LRECL) setting are padded with blanks up to the LRECL setting, and lines longer
than the LRECL setting are truncated without warning to the LRECL setting be-
fore being written to disk.

12.2.4 EOLIN NONE and EOLOUT NONE

Usage

KEDIT was designed to work with text files that are organized into lines, with an
end-of-line sequence (such as a carriage return-linefeed) marking the end of each line.
You might occasionally need to work with files that are instead organized into
fixed-length records with no explicit end-of-line sequences. For example, you might
have a data file that is 8000 bytes long, containing 100 records with 80 bytes of data
each. EOLIN NONE and EOLOUT NONE are intended to help in special situations
like these.

With EOLIN NONE, KEDIT does not look for end-of-line sequences as it reads in your
file. Instead, it reads your file as a series of fixed-length records, using the LRECL set-
ting to determine how many bytes make up each record.

With EOLOUT NONE, KEDIT does not add end-of-line sequences to the lines that it
writes to disk.

It is somewhat tricky to use EOLIN NONE and EOLOUT NONE properly, because
they are usually used with a special alternate profile, and because they require that sev-
eral related KEDIT options also be set. For these reasons, we recommend that EOLIN
NONE and EOLOUT NONE be used only by advanced KEDIT users. We also recom-
mend that you use them first with test files, to be sure you understand how they work
and that you do not inadvertently change the formats of the files you work with.

To have an effect when a file is read in, EOLIN NONE must be set before the file is read
in, so it is normally issued from a profile. Since you would not want to put EOLIN
NONE in effect in your standard profile, it is usually issued from an alternate profile.
When you set EOLIN NONE, you also need to set LRECL to the record length of the
file you will work with. You should also be sure that TABSIN OFF and EOFIN
ALLOW are in effect, so that tab characters and end-of-file characters do not receive
special treatment as the file is read in.

To use EOLOUT NONE, you also need to set LRECL, but the LRECL value used to
read the file in with EOLIN NONE is usually the same value you want to use when
writing the file out. You also need to set RECFM FIXED so that KEDIT will write your
data to disk as fixed length records (each record LRECL bytes long, with no end-of-line
sequence), and you want EOFOUT EOL and TABSOUT OFF in effect, to be sure that
no extra end-of-file character is written and that blanks aren’t compressed to tabs.

The alternate profile that you would use to edit a file with no end-of-line sequences that
has, for example, 80-byte records would look something like the following. (See
Chapter 9, “Tailoring KEDIT”, for discussion of profiles and alternate profiles.)

264

Chapter 12. File Processing

'set reprofile on'
'set eolin none'
'set lrecl 80'
'set tabsin off'
'set eofin allow'
'set eolout none'
'set recfm fixed'
'set tabsout off'’
'set eofout none'

If this profile was stored on disk as EOLNONE.KEX, you could use this KEDIT com-
mand to edit your file:

kedit data.fil (profile eolnone

12.2.5 TABSAVE

SET TABSAVE is a specialized command that deals with an issue affecting a small
number of KEDIT users.

KEDIT's TABSIN/TABSOUT processing can sometimes lead an “unchanged” line to
be written back to disk differently than when it was read in — existing tabs can be
replaced with spaces, or vice versa. Some version control systems undesirably see
these all as “changed” lines.

TABSAVE ON avoids this by checking to see whether the current line is subject to the
problem and, if so, by saving an exact copy of the character sequence of the original
line. Later, when the file is saved, and an “unchanged” line is about to be written back
to disk, KEDIT doesn't write the line out in the normal way, but instead writes back its
saved copy of the exact original version of the line.

See the discussion of SET TABSAVE in the Reference Manual for full details on SET
TABSAVE.

12.3 Long Filenames

Here are some notes about the support provided by KEDIT for the long filenames avail-
able with all current versions of Windows. (In Windows 3.1 and earlier, and under
DOS, file names were limited to a maximum of 8 characters and file extensions to a
maximum of 3 characters.)

e When you use filenames that contain blanks or parentheses in commands issued
from a macro or from the command line, you will need to enclose these names in
double quotes. For example, from the KEDIT command line:

KEDIT "A name with blanks"

e SET FCASE controls whether KEDIT handles all fileids internally in lowercase or
keeps them in mixed case, as is necessary to create and preserve mixed case fileids.

Long Filenames

265

o
=
»
7
@
o
o
S
o
9
=

With the default of FCASE ASIS (““as is”), KEDIT displays filenames in the same
case (upper, lower, or mixed) that the names have on disk, and creates new files us-
ing exactly the combination of upper- and lowercase characters that you specify.
An exception comes within DIR.DIR files, where names that are in lowercase or
mixed case are displayed as is, but names that are in uppercase are displayed in
lowercase, since this is generally easier to read.

With FCASE LOWER, KEDIT displays all filenames in lowercase in DIR.DIR
files and on the ID line, and in uppercase on the title bar. New files are created with
lowercase names, regardless of the case in which you enter the name.

Whenever a disk file with a long name is created, Windows also creates a short
DOS-compatible name for the file, so that the file can be accessed by older pro-
grams that can’t handle long names. KEDIT uses only the long names for these
files, and doesn’t keep track of or display the short name. You can specify the short
name for a file that you want to work with, but KEDIT will automatically convert
the short name to the long name. For example, consider a file on your disk called

C:\files\A long name.txt

with which Windows has associated the DOS-compatible name
C:\files\along~1l. txt

You can begin editing the file with the command

KEDIT "C:\files\A long name.txt"

or with the command

C:\files\along~1l. txt

In either case, assuming the default of FCASE ASIS is in effect, KEDIT will dis-
play the fileid on the title bar as

C:\files\A long name.txt

You can enter filenames in lowercase, uppercase, or mixed case. When searching
for a file on disk, KEDIT does a case insensitive comparison of the fileid, so if you
have a file on disk called, for example,

D:\Sample. TxT

you could begin editing the file by using any of these commands:
KEDIT D:\Sample.Txt
KEDIT D:\SAMPLE.TXT

KEDIT D:\sAMPLE. tXT

With the default of FCASE ASIS in effect, KEDIT will display all fileids using the
case in which they actually exist on disk. So in the preceding example, the fileid
would be displayed on the title bar as

D:\Sample.TxT

266

Chapter 12. File Processing

regardless of the command you use to begin editing the file.

The case that you use to enter a fileid does matter when you are editing a new file
or changing the name of an existing file. With the default of FCASE ASIS in ef-
fect, KEDIT will save the file to disk using the exact name that you entered, with
the same combination of upper- and lowercase letters.

The display of long filenames in DIR.DIR files is affected by the SET
DIRFORMAT command, whose first two operands control the amount of space set
aside in DIR.DIR files for file names and for file extensions. (The third operand of
SET DIRFORMAT controls whether KEDIT uses 2 or 4 digits for the year in the
date field of DIR.DIR files.) By default, KEDIT sets aside 30 columns in DIR.DIR
files for filenames and 10 columns for file extensions. This corresponds to the
command

SET DIRFORMAT 30 10

As a special case, you can specify 0 as the value for file extensions. This causes
KEDIT to display the name and extension together as a unit in the columns nor-
mally set aside for the file name.

Long Filenames

267

o
=
»
7
@
o
o
S
o
9
=

Appendix A. XEDIT Compatibility

Quick Start

KEDIT and
XEDIT

KEDIT supports many of the most commonly used commands and features of XEDIT,
the mainframe text editor used with IBM’s VM/CMS operating system. Not all XEDIT
features are available in KEDIT, and there are a number of differences, both in default
settings and how some commands are implemented. This chapter reviews some of the
major differences.

Here are some things that XEDIT users immediately ask about when moving to
KEDIT:

The prefix area and scale line are off by default. To turn them on, select SET Command
from the Options menu and, in the resulting dialog box, select the PREFIX option and
turn it on, and then select the SCALE option and enable the scale line. Then select Save
Settings from the Options menu and press the Save button in the resulting dialog box to
make your new settings take effect in future editing sessions.

KEDIT’s keyboard behavior takes a little getting used to. With KEDIT’s default inter-
face settings, the keyboard behavior is much like that of other Windows applications.
Here are the keys that you can use for some common XEDIT-related tasks:

e To move the cursor from the file area to the command line, use the F12 key. Any
pending prefix commands will also be executed when you press F12.

e Toaddnew lines to the file, press the Enter key while the cursor is in the file area.

e To execute a command that you have typed on the command line, press the Enter
key while the cursor is on the command line.

e To move to the beginning of the next line of the file area, press Ctrl+Enter.

Here are some of the reasons for the differences between KEDIT and XEDIT:

e KEDIT and XEDIT run on different hardware. KEDIT can act on each keystroke
you enter rather than processing an entire screen of data at a time, as XEDIT does.
Many common editing operations, such as deleting or adding lines, are assigned to
single keys or key combinations in KEDIT. The PC allows KEDIT to implement
automatic scrolling and other features not available on a 3270 terminal. So
KEDIT’s display and keyboard handling differ from XEDIT’s.

e As a Windows application, KEDIT’s visual appearance is quite different from
XEDIT’s. For example, KEDIT displays files in overlapping, resizable windows,
while XEDIT uses tiled, non-overlapping windows. Much of your interaction with
KEDIT is through menus, dialog boxes, scroll bars, and other aspects of the Win-
dows user interface that don’t directly correspond to elements of the XEDIT user
interface.

e The underlying operating systems used by KEDIT and XEDIT are different. For
example, KEDIT and XEDIT use different file naming conventions, because DOS
fileids have different rules than CMS fileids.

268

Appendix A. XEDIT Compatibility

Overview of
differences

Here are some of the major differences between KEDIT and XEDIT:

The keys on the PC keyboard do not always have a direct counterpart on the 3270
keyboard. Consequently, some default key assignments differ between KEDIT
and XEDIT. For example, the 3270 terminal has an Enter key that, when pressed,
executes any pending prefix commands, executes any commands on the command
line and puts the cursor on the command line. A separate new-line key moves the
cursor to the beginning of the next line on the screen. The PC keyboard has no sep-
arate new-line key. (But see the SET RIGHTCTRL command, which lets you use
the right Ctrl key as an Enter key.)

By default, the Enter key adds new lines to your file when the cursor is in the file
area and behaves like XEDIT’s Enter key when the cursor is on the command line.
Use Ctrl+Enter to move the cursor to the next line of the file area, and use the F12
key to move the cursor to the command line and to execute pending prefix
commands.

Default settings of some function keys are different in KEDIT than in XEDIT.
KEDIT uses the Page Up and Page Down keys to page backward and forward in
your file, and so has other functions assigned to F7 and F8. The default assign-
ments for F5, F10, and F12 are also different from XEDIT’s. The SET PF com-
mand is not supported in KEDIT; instead, keys are redefined via the DEFINE
command.

The default settings of several SET options are different in KEDIT than in XEDIT.
KEDIT uses PREFIX OFF, STAY ON, SCALE OFF, and CASE MIXED
IGNORE. XEDIT uses PREFIX ON, STAY OFF, SCALE ON, and the setting of
CASE depends on the type of file you are editing.

The ID line, controlled in KEDIT by the SET IDLINE command, is normally dis-
played in XEDIT but is off by default in KEDIT.

To use KEDIT’s equivalent of XEDIT’s Input Mode, you must first issue the
KEDIT command SET INPUTMODE FULL.

KEDIT has no Powerinput Mode. However, entering Input Mode with
INPUTMODE FULL and WORDWRAP ON provides an approximation of
Powerinput Mode.

In XEDIT, it is possible to move the cursor to any part of the screen. In KEDIT, it
is impossible to position the cursor on certain protected areas of your document
windows, such as reserved lines, the command line arrow, and the area above the
top-of-file line or below the end-of-file line.

In XEDIT there are question mark (?) buffers for each view of a file. In KEDIT
there is one global question mark buffer shared by all files.

FILE, SAVE, FFILE, and SSAVE are handled as synonyms in XEDIT, but are
commands in KEDIT.

Overview of differences 269

XEDIT Notes

VMPROF.KEX

Macro facility
differences

o Several of KEDIT’s commands, such as ALL, ALTER, and the X and S prefix
commands, are implemented in XEDIT as macros.

e KEDIT’s handling of SCHANGE differs from XEDIT’s.
e KEDIT does not have support for XEDIT’s UPDATE facility.

e KEDIT cannot display long lines on multiple lines of your display, as XEDIT can.
KEDIT always displays a line of your file on a single line of the display.

e In XEDIT, your profile is called PROFILE XEDIT. In KEDIT, it is called
WINPROF.KEX. Your profile is somewhat less important in KEDIT than in
XEDIT, because many SET options can be controlled through the Options SET
Command dialog box, and their values saved for use in future editing sessions via
the Options Save Settings dialog box.

A KEDIT macro called VMPROF.KEX is normally installed by KEDIT’s setup pro-
gram in KEDITW’s SAMPLES subdirectory. This macro redefines many keys to make
KEDIT act more like XEDIT. Note that in most cases you will probably not want to use
all of these key assignments, because KEDIT’s default assignments, though different
from XEDIT’s, are quite useful on a PC. For example, in KEDIT the Cursor Up and
Cursor Down keys cause automatic vertical scrolling, a powerful feature not available
with XEDIT. In XEDIT, the Cursor Up and Cursor Down keys “wrap” around the top
and bottom of the screen, respectively.

You might want to modify VMPROF.KEX to obtain the level of XEDIT compatibility
you are most comfortable with. To use VMPROF.KEX, or your modification of it, you
will need to rename it to WINPROF.KEX. WINPROF.KEX is normally kept in the
“KEDIT Macros” subdirectory of your Windows Documents folder, which is some-
times known as the My Documents folder.

These are some of the differences between the KEDIT and XEDIT macro facilities:

o XEDIT macros are written in EXEC 2 or in REXX, macro languages that are avail-
able in CMS. KEDIT macros are written in KEXX, which is a subset of the REXX
language and is built into KEDIT.

e Several facilities typically used in KEDIT macros are not available in XEDIT, in-
cluding KEDIT’s Boolean functions, implied EXTRACT functions, and the
EDITV command.

e Commands issued from KEDIT act relative to the focus line, rather than the current
line. The focus line is the same as the current line when the cursor is on the com-
mand line, but when the cursor is in the file area, the focus line is the line on which
the cursor is located. XEDIT commands always act relative to the current line. See
Section 6.5, “The Focus Line”, for a discussion of the focus line concept.

o KEDIT does not support prefix macros.

270

Appendix A. XEDIT Compatibility

e KEDIT does not support the XEDIT READ and SET CTLCHAR commands used
for defining input screens and obtaining user input with a macro. KEDIT’s closest
equivalents are the READV KEY command, which lets a macro read a single
keystroke, and the DIALOG command, which displays and receives input from a
dialog box.

e Commands issued from KEDIT macros are not subject to LINEND processing, do
not normally affect the contents of the = buffer, and, unless they are issued via
KEDIT’s SYNEX command, are not subject to synonym processing.

XEDIT Notes

Macro facility differences 271

Appendix B. Glossary

= buffer

? buffers

AUS

alteration count

alternate profile

Buffer that holds the last command entered on the command line. The command in the
= buffer will be re-executed when you enter the = command.

Buffers that hold the 200 lines most recently entered from the command line. These
commands can be redisplayed on the command line by successive entries of the ? com-
mand or by pressing F6. You can cycle through these commands with Ctrl+Cursor Up
and Ctrl+Cursor Down. This is also referred to as KEDIT's “command history”
feature.

File extension used for temporary files written to disk by KEDIT’s AUTOSAVE
facility.

Count of changes made to your file during an editing session. Two numbers are given:
the number of changes to your file since KEDIT’s AUTOSAVE facility last saved it to
disk, and the number of changes to your file since the last time it was saved to disk
because you issued the SAVE command. Displayed as the first two numbers that follow
“Alt=" on the status line; the third number following Alt= is the undo count.

A profile macro, specified via the PROFILE option on the KEDIT command line, exe-
cuted instead of the default profile.

Alt+numeric keypad Characters that don’t appear on the keyboard can often be entered using the Alt key in

ANSI character set

ANSI font

ARBCHAR

autosave

.BAK

block

combination with the keys on the numeric key pad. (For more details, see Section 4.6,
“Entering Special Characters”.)

Character set used by most Windows fonts and by most Windows applications. KEDIT
uses the ANSI character set in all of its dialog boxes, and it is used by default within
KEDIT’s document windows. ANSI stands for the American National Standards Insti-
tute, which originally defined the character set. The main alternative is the OEM char-
acter set, which is the character set used by DOS.

A font that uses the ANSI character set. Most Windows fonts, including KEDIT’s
default fonts, are ANSI fonts.

Wildcard characters used in string searches when ARBCHAR ON is in effect. Usually,
“$”’ matches zero or more characters and ““?’* matches exactly one character.

Automatic save of your file to a temporary disk file with an extension of .AUS after a
specified number of changes have been made to the file. Controlled by
SET AUTOSAVE.

File extension used for backup files created when files are written to disk. Creation of
backup files is controlled by SET BACKUP.

A marked area of your file that can be operated on as a unit by cut-and-paste operations
and by such commands as COPY and MOVE. KEDIT supports both persistent blocks

272

Appendix B. Glossary

block target

bookmark

box block

box selection

change bit

character code

character set

CLASSIC interface

click

clipboard

column pointer

column target

(which remain marked until you explicitly unmark them) and non-persistent blocks
(which are unmarked as soon as you move the cursor and which are often referred to as
selections). Three different ““shapes’ are available: /ine blocks, box blocks, and stream
blocks. (For more details, see Section 3.3, “Blocks and Selections™.)

Marked block used as the operand of a command that takes target operands, making the
marked block the target area for the command.

Named line target used to set and return to a specific point in the file, controlled via the
Actions Bookmark dialog box and by the SET POINT command.

A KEDIT block involving a rectangular area of your file. Marked via the Alt+B key
combination, by dragging with Alt+mouse button 1 with INTERFACE CUA in effect,
or by dragging with both mouse buttons down with INTERFACE CLASSIC in effect.

A non-persistent box block.

One of the flag bits associated with a line. A line’s change bit is set when the line is
changed during a KEDIT session. Also controlled by the SET LINEFLAG command.

The numeric value used to encode a given character in a particular character set. For
example, the British pound symbol has the character code 156 in the OEM character set
and the character code 163 in the ANSI character set, while a lowercase ““a’ has the
character code 61 in both the OEM and ANSI character sets.

A set of characters including alphanumerics, punctuation, and other symbols, along
with an assignment of a character code to each of those characters. KEDIT for Win-
dows normally uses the ANSI character set, but can also use the OEM character set; for
both of these character sets, the character codes are in the range 0 to 255.

One of the two sets of keyboard and mouse conventions supported by KEDIT for Win-
dows; the other is the CUA interface. With the CLASSIC interface, most keyboard and
mouse behavior in KEDIT for Windows is compatible with the behavior of earlier text
mode versions of KEDIT, even where this means that KEDIT for Windows behaves
differently than other Windows applications.

To press down one of the buttons on a mouse and then immediately release it.

A temporary storage area into which KEDIT and other applications can place data used
in cut-and-paste operations. The data can then be pasted into a document that you are
editing with KEDIT, or can be transferred to another application.

Imaginary pointer to the current column, used as a starting point for column commands
such as CDELETE and CLOCATE when these commands are issued from the com-
mand line.

Special target used by CDELETE and CINSERT commands. (See also Section 6.4,
“Column Targets”)

273

command

command line

Instruction to KEDIT to perform a specific operation. You can issue commands from
the KEDIT command line or from macros.

The line, usually beginning with an arrow (“====>"), on which KEDIT commands are
entered.

command line selection A portion of the text on the command line, selected by dragging with mouse button

CUA interface

current column

current directory

current file

current line

current window
cursor column

cursor field

cursor line

default profile

dialog box

DIR.DIR file

1 or by using Shift+cursor keys, that can be used in cut-and-paste operations. Com-
mand line selections are available only if INTERFACE CUA is in effect.

The CUA (Common User Access) interface is a set of conventions, originally estab-
lished by IBM, for how graphical PC applications should work. When the default of
INTERFACE CUA is in effect, KEDIT for Windows uses a variant of the CUA inter-
face, adapted from Microsoft’s “The Windows Interface: An Application Design
Guide” and from applications like Microsoft’s Word for Windows. With the alternative
of INTERFACE CLASSIC, KEDIT for Windows instead uses many of the conven-
tions of earlier text mode versions of KEDIT.

Column of the current line relative to which column commands issued from the com-
mand line operate. (See also focus column)

The directory that KEDIT uses by default for certain operations. For example, if you
use the KEDIT command with a fileid that does not include a drive or path specifica-
tion, the first place that KEDIT looks for the file is the current directory. The current
directory is controlled by the File Directory dialog box and by the CHDIR command.

File in which the cursor is currently located.

The line of the file, normally displayed in the middle of the document window, that is
the starting point for most commands issued from the command line. When the cursor
is on the command line, KEDIT normally draws a box around the current line to
emphasize its location. (See also focus line)

Document window in which the cursor is currently located.

Column in which the cursor is currently located.

Field in which the cursor is currently located, which can be either a line of the file, the
prefix area of a line, or the command line.

Line of the file in which the cursor is currently located.

Fileid of default profile run by KEDIT for Windows. Usually WINPROF.KEX, but
this can be changed via the DEFPROFILE initialization option.

Pop-up box that presents information to, and optionally obtains input from, the user.

Temporary file created by KEDIT when you issue the DIR command. The DIR.DIR
file displays information about the names, sizes, and dates of files that you specify via
the DIR command.

274

Appendix B. Glossary

document window Window used to display the contents of a file that you are editing. Several document

double-click

drag

windows may be present if you are editing several documents at a time, or have created
additional windows to display multiple views of a file. Document windows are always
displayed within the boundaries of KEDIT’s frame window. KEDIT’s document win-
dows include a file area, with data from your file, a command line, and optional prefix
area and scroll bars.

To press down and release one of the buttons on a mouse twice in rapid succession.

To press down one of the buttons on a mouse and, without releasing the button, move
the mouse.

end-of-file character Character code 26. Sometimes found as the last character of DOS files. SET EOFIN

end-of-file line

and SET EOFOUT control KEDIT’s handling of the end-of-file character.

Imaginary line located just beyond the last line of your file.

end-of-line sequence Sequence of characters, normally a carriage return character and a linefeed character,

end-of-range line

excluded line

field

file area

file locking

fileid

fixed-pitch font

flag bit

focus column

that mark the end of each line of a disk file. SET EOLIN and SET EOLOUT control
KEDIT’s handling of end-of-line sequences.

Imaginary line located just below the last line in the range. Displayed only after you
have issued the SET RANGE command.

Text line present in your file but temporarily not displayed due to use of selective edit-
ing commands like the ALL command or the X prefix command. Usually its place in
the file is indicated on the screen by a shadow line.

An area of the document window to which you can move the cursor and whose contents
can be edited as a unit. The command line is a field, as is each line of the file area and
each line of the prefix area.

The portion of the document window used for display of the contents of your file.

KEDIT facility, controlled by SET LOCKING and related commands, in which files
you edit are kept open throughout the editing session, to prevent access to or changes to
the files by other users on your network or other processes on your own workstation.

The filename and extension, and optionally drive and path specifier, used to refer to
disk files.

A font in which all characters have the same width, as opposed to a proportional font, in
which the width of the characters can vary. KEDIT uses only fixed-pitch fonts to dis-
play text in document windows.

Associated with each line in your file are three flag bits: the new bit, the change bit, and
the tag bit. Line class targets can refer to lines whose flag bits are set a certain way, and
the highlighting facility refers to these bits when highlighting altered or tagged lines.

Column relative to which KEDIT’s column commands (CLOCATE, CINSERT, etc.)
operate. When the cursor is on the command line, the column pointer column is the

275

focus line

font

frame window

FSA

highlighting facility

ID line

focus column. When the cursor is in the file area, the cursor column is the focus
column.

The line of the file relative to which KEDIT commands operate. When the cursor is on
the command line, the current line is the focus line. When the cursor is in the file area,
the cursor line is the focus line. (See also Section 6.5, “The Focus Line™)

A graphical representation of a character set, in a given size and style. Fonts can be
fixed-pitch (monospaced), in which each character has the same width, or proportional,
in which different characters have different widths. KEDIT uses only fixed-pitch fonts
to display text in document windows.

The main window for a KEDIT session, which can contain one or more document
windows.

File Storage Area. The area of Windows memory used by KEDIT to hold the contents
of the files you are editing, as well as control information for each line of your files,
your macro definitions, and the values of KEXX and EDITV variables.

KEDIT facility, controlled by the SET HIGHLIGHT command and the TAG com-
mand, that lets you highlight certain lines of your file on the screen depending on their
contents, their selection level, or whether they have been altered.

Optional identification line at the top of a document window with information about
the file in that window: the fileid, the cursor line and column, the file size, and alter-
ation and undo counts. The ID line is normally not used in KEDIT for Windows,
because all of the information it contains is available through the status line and the
document window’s title bar.

initialization options Options specified via the KEDIT environment variable or on the KEDIT command

line. They specify such things as the maximum width that KEDIT will handle and al-
ternate profile macros. (See also Reference Manual Chapter 2, “Invoking KEDIT”)

INTERFACE CLASSIC When INTERFACE CLASSIC is in effect, KEDIT uses its CLASSIC interface,

INTERFACE CUA

input mode

Insert Mode

in which most of its keyboard and mouse behavior is compatible with the behavior of
earlier text mode versions of KEDIT. The alternative is INTERFACE CUA, in which
KEDIT’s behavior is compatible with that of most other Windows applications.
INTERFACE CLASSIC is controlled by the Options Interface dialog box and by the
SET INTERFACE command.

When INTERFACE CUA is in effect, KEDIT uses its CUA interface, in which most of
its keyboard and mouse behavior is compatible with that of other Windows applica-
tions. The alternative is INTERFACE CLASSIC, in which KEDIT’s behavior is com-
patible with that of earlier text mode versions of KEDIT. INTERFACE CUA is
controlled by the Options Interface dialog box and by the SET INTERFACE command.

Special mode used for inputting text after the INPUT command is issued with
INPUTMODE FULL or INPUTMODE LINE in effect.

Mode in which each character that you type will be inserted at the cursor position, shift-
ing any existing text at the cursor position to the right. Controlled by the Insert key and

276

Appendix B. Glossary

ISA

indicated on the status line by INS, as opposed to the OVR that indicates Overtype
Mode.

Internal Storage Area. Memory area used by KEDIT to hold certain internal control
information.

KEDIT Language Definition A KEDIT Language Definition file is a file, which normally has an extension

KEX

KEXX

KLD

KML

line block

line class target

line selection

linend character

of .KLD, containing the language-specific rules used by the syntax coloring facility to
decide which text should be displayed as comments, strings, numbers, etc. .KLD files
are loaded via the SET PARSER command.

Extension used for a file that contains a single KEDIT macro that can be executed with
the MACRO command or loaded into memory with the DEFINE command.

Macro language built into KEDIT. KEXX is a subset of the REXX language.

KEDIT Language Definition. Extension used for KEDIT Language Definition files,
which contain the language-specific rules used by the syntax coloring facility to decide
which text should be displayed as comments, strings, numbers, etc. .KLD files are
loaded via the SET PARSER command.

KEDIT Macro Library. Extension used for files that contain a number of KEDIT
macro definitions which can be loaded into memory as a group with the DEFINE
command.

A KEDIT block involving consecutive lines of text. Marked via the Alt+L key combi-
nation, by dragging with button 1 in the margin area or in the prefix area, by dragging
with Ctrl+mouse button 1 with INTERFACE CUA in effect, or by dragging with mouse
button 2 with INTERFACE CLASSIC in effect. KEDIT supports both persistent line
blocks and (with INTERFACE CUA in effect) non-persistent line blocks, which are
also referred to as line selections.

Atype of target involving a line identified not according to some string contained in the
line, but by some attribute of the line. Line class targets include BLANK, NEW,
CHANGED, ALTERED, TAGGED, and SELECT targets.

A non-persistent line block.

Character (normally “#”’) used to separate multiple commands entered on a single
KEDIT command line when LINEND ON is in effect.

logical record length The maximum length of lines written to disk by File Save and by the KEDIT com-

macro

margin area

mands FILE, SAVE and PUT. With RECFM FIXED, all lines are padded or truncated
to this length. With RECFM VARYING, longer lines are truncated to this length. Con-
trolled by SET LRECL command, initially equal to the WIDTH value.

Sequence of instructions that controls a set of actions that you want KEDIT to perform.
KEDIT macros are written in the KEXX macro language; they can loop, test condi-
tions, and issue KEDIT commands.

Area between the border of a document window and the start of the first column of text
in the document window. Also referred to as the window margin area. When the mouse

277

margins

MDI

message line

minimal truncation

mouse pointer

named line

new bit

is over this area, the mouse pointer changes to an arrow pointing to the upper right. The
margin area provides a convenient way to mark line blocks; simply drag with mouse
button 1 while the mouse pointer is in the margin area. The margin area is controlled by
SET WINMARGIN.

The FLOW command and Ctrl+F key combination reformat paragraphs to fit within
the left and right margins. The margin columns are also used as boundaries by other
commands, such as the LEFTADJUST command, and by the wordwrap facility. The
left and right margin columns, along with paragraph indent value, are controlled with
the SET MARGINS command.

The MDI (Multiple Document Interface) is a method that KEDIT, and many other Win-
dows applications that work with several files at a time, use to organize output on your
display. An MDI application has one frame window, within which one or more docu-
ment windows are displayed.

The message line is the line of the document window where KEDIT messages are dis-
played. By default, the message line is at the top of the document window, and is used
to display a line of your file when there is no message displayed. For display of multiple
messages at a time, you can define several message lines, which are then referred to as
the message area.

Shortest legal abbreviation of a command, SET option, QUERY or EXTRACT oper-
and, or initialization option.

A visible indicator on your screen of the location at which mouse operations will take
place. Moving the mouse on your work surface will move the mouse pointer on your
screen.

Line to which you have assigned a name with the SET POINT command. The named
line can be used as a target in KEDIT commands. Named lines are also controlled via
the Edit Bookmark dialog box.

One of the flag bits associated with a line. A line’s new bit is set when the line is added
to your file during a KEDIT session.

non-persistent block A block that remains marked only until the next cursor movement. Non-persistent

OEM character set

OEM font

blocks are also referred to as selections. Most Windows applications only support
non-persistent blocks, but KEDIT also supports persistent blocks, which remain
marked until you explicitly unmark them. Non-persistent blocks are only available
when INTERFACE CUA is in effect.

Character set used by MS-DOS and by most DOS text mode applications. KEDIT sup-
ports fonts that use the OEM character set, but the ANSI character set, which is used by
Windows itself and by most Windows applications, is generally preferred. The OEM
character set varies somewhat from country to country, and the name comes about
because the OEM character set is the character set supplied by your OEM (Original
Equipment Manufacturer) for use with DOS.

A font that uses the OEM character set.

278

Appendix B. Glossary

Overtype Mode

paragraph

parser

persistent block

pixel

pop-up

prefix area

prefix command

profile

proportional font

Quick Find

Mode in which each character that you type replaces any existing character at the cur-
sor location. Controlled by the Insert key and indicated on the status line by OVR, as
opposed to the INS that indicates Insert Mode.

A set of lines that is treated as a unit when you reformat text or use a PARAGRAPH tar-
get. Paragraphs are normally delimited by blank lines, but this can be controlled with
the SET FORMAT command.

Code within KEDIT that scans a file that you are editing and determines which text will
be treated as keywords, numbers, strings, etc. for the purposes of syntax coloring. Pars-
ers are defined by the SET PARSER command, which associates a parser name with a
KEDIT Language Definition file that contains the rules to be used for parsing a particu-
lar language.

A marked area of your file on which you can perform multiple operations, and which
remains marked until explicitly unmarked. The alternative is a non-persistent block,
also referred to as a selection, which is unmarked as soon as the cursor is repositioned.

The smallest unit that can be individually written to your display screen; each pixel cor-
responds to an individual “dot” on your display. The resolution of PC displays is mea-
sured in pixels, and KEDIT is typically used on systems whose resolution is 640 by 480
(which means 640 pixels horizontally by 480 pixels vertically), 800 by 600, 1024 by
768, or 1280 by 1024.

Dialog box, menu, or help information displayed in a temporary box that overlays part
of the screen and is activated by a macro, mouse action or keyboard command.

An optionally displayed area of the window, provided mainly for XEDIT compatibility,
in which prefix commands are entered. (See also Chapter 7, “The Prefix Area”)

Special commands entered in the prefix area, normally executed when the F12 key
(with INTERFACE CUA in effect) or the Home key (with INTERFACE CLASSIC) is
hit, that act relative to the line in whose prefix area they are entered. (See also
Chapter 7, “The Prefix Area”)

KEDIT macro, normally WINPROF.KEX, that is automatically run at the start of each
KEDIT session and, if REPROFILE ON is in effect, whenever a new file is added to the
ring.

A font in which different characters can have different widths, as opposed to a
fixed-pitch font, in which the width of all characters is the same. KEDIT uses only
fixed-pitch fonts to display text in document windows.

Toolbar item that displays the most recent search string. You can use the Find Next but-
ton to search for the next occurrence of this string, or you can activate the Quick Find
item to make changes to the string or to select from a dropdown list of other recent
search strings.

279

range

regular expression

The portion of your file in which KEDIT commands can operate. Normally, the range
is the entire file, but you can use the SET RANGE command to specify the starting and
ending lines of the portion to which commands will be limited.

Special type of string target that uses various pattern matching operators to match text.
Described in detail in Section 6.6, “Regular Expressions”.

remembered operands KEDIT “remembers” the last operands of several KEDIT commands (ALTER,

reserved line

return code

REXX

ring

saved setting

scale line

scope

selection

selection level

selective editing

CHANGE, CLOCATE, COUNT, FIND, LOCATE, SCHANGE and TFIND). If you
issue these commands with no operands, KEDIT reuses the operands used when these
commands were last issued from the command line.

Non-editable line optionally displayed in a document window whose location, color,
and contents are controlled via the SET RESERVED command.

Numeric value set by each KEDIT command indicating success or failure of the com-
mand. For commands issued from macros, the return code is placed in the variable RC.

General purpose macro language originally developed by IBM. KEXX, a large subset
of the REXX language, is built into KEDIT.

The set of all files currently being edited by KEDIT.

The value of a KEDIT SET option that has been saved, by using the Options Save Set-
tings dialog box or by using the Save Setting button of the Options SET Command dia-
log box, for use in future editing sessions.

Optionally displayed, non-editable line indicating column locations within your file.
Controlled by SET SCALE.

The specification which controls whether or not excluded lines will be processed by
most KEDIT commands. Controlled by SET SCOPE. With SCOPE DISPLAY,
excluded lines are not processed by most KEDIT commands. With SCOPE ALL, they
are.

Selections are non-persistent blocks. That is, they are blocks that remain marked only
until the next cursor movement. Most Windows applications only support selections,
but KEDIT also supports persistent blocks, which remain marked until you explicitly
unmark them. Selections are only available when INTERFACE CUA is in effect.

Number in the range 0 to 255 assigned to each line of the file either directly through the
SET SELECT command or indirectly by using the Edit Selective Editing dialog box,
the ALL command, or the prefix commands X or S. Lines whose selection level falls
outside the range specified by SET DISPLAY are excluded from the display.

KEDIT facility that lets you work with only a subset of the lines in a file. Most often
used to work with those lines in a file that contain a particular string that has been speci-
fied via the Edit Selective Editing dialog box or via the ALL command. (See also
Chapter 8, “Selective Line Editing and Highlighting”)

280

Appendix B. Glossary

SET option

shadow line
slider

status line

stream block

stream selection

syntax coloring

system menu

tab column

tab line

tag bit

target

An option whose value is controlled by the SET command, such as ARBCHAR or
ZONE. Most SET options can also be set via the Options SET Command dialog box,
and the values of most SET options can be displayed via the Options Status dialog box.
(See also Reference Manual Chapter 4, “The SET Command”)

Non-editable line displayed in place of excluded lines if SHADOW ON is in effect.
A small box that appears in a scroll bar to indicate your relative position in a file.

Optionally displayed non-editable line at the bottom of the frame window giving infor-
mation about your KEDIT session. The default status line includes your line and col-
umn location in the current file, alterations and undo levels for the current file, the size
of the current file, the number of files in the ring, the number of document windows,
Insert/Overtype Mode status, file locking status, and the time of day. Controlled by
SET STATUSLINE.

A KEDIT block involving a stream of consecutive characters spanning one or more
lines of your file (typically, a phrase, sentence, or group of sentences that you want to
treat as a unit). Marked by the Alt+Z key combination, by using Shift+cursor key com-
binations with INTERFACE CUA in effect, or by dragging with mouse button 1.
KEDIT supports both persistent stream blocks and (with INTERFACE CUA in effect)
non-persistent stream blocks, which are also referred to as stream selections.

A non-persistent stream block.

KEDIT facility that shows different types of text within a file in different colors. When
syntax coloring is enabled, a parser scans the file, classifying the text of the file into
keywords, comments, strings, etc. which are then displayed in the appropriate color.
Syntax coloring is controlled by the SET COLORING command.

Menu activated by clicking on an icon at the left of a window’s title bar that lets you
move, size, or close the window. The frame window’s system menu controls the frame
window, and closing the frame window closes KEDIT. A document window’s system
menu controls the document window. If a document window is maximized, its system
menu icon appears at the left of the menu bar.

One of the columns, controlled by the SET TABS command, that the cursor can move
to when you hit the F4 key or, if the prefix area is not displayed, the Tab and Shift+Tab
keys.

Optionally displayed non-editable line indicating the position of each tab column.
Controlled by SET TABLINE.

One of the flag bits associated with a line. The tag bit is most often set via the TAG
command, which puts HIGHLIGHT TAGGED in effect, causing tagged lines to be
highlighted.

A way of referring to some location in your file. Types of targets include absolute line
number targets, relative line number targets, string targets, named line targets, line class
targets, and group targets. (See also Chapter 6, “Targets™)

281

target area

target highlighting

text mode

timestamp

toolbar

top-of-file line

top-of-range line

truncation column

The portion of the file on which a command will operate, determined by a target oper-
and of the command. The target area is usually a group of lines but, depending on the
command involved, can also be a box or stream block.

KEDIT facility, controlled by the SET THIGHLIGHT, in which string targets found by
the LOCATE, CLOCATE, and TFIND commands, by the Edit Find and Edit Replace
dialog boxes, and by the Quick Find toolbar item are temporarily highlighted on your
screen.

Mode of operation, used by most DOS programs (including KEDIT), in which an
application is limited to characters from a predefined character set, appearing in fixed
positions on the screen. Contrast this with the graphics mode used by Windows appli-
cations, which can involve text in different fonts, icons, and other graphic elements.
Text mode KEDIT refers to versions of KEDIT developed for use as text mode applica-
tions running under DOS or OS/2.

The time and date information associated with a disk file by the operating system. With
TIMECHECK ON, KEDIT checks this timestamp information before writing a file to
disk, and if the timestamp has changed since you began editing the file, warns you that
the file has been changed.

Row of redefinable, mouse-selectable buttons displayed on the screen when
TOOLBAR ON is in effect. The default toolbar buttons let you open, save, or print a
file, manipulate DIR.DIR files, etc.

Imaginary line located just above the first line of your file.

Imaginary line located just above the first line in the range. Displayed only after you
have issued the SET RANGE command.

The last column of your file that can be affected by most editing operations. Data that
any command attempts to place beyond the truncation column is normally truncated.
Controlled by SET TRUNC, initially equal to the WIDTH value.

typing-replaces-selection Convention used by KEDIT, and by many other Windows applications, in which

undo level

any text that you type while a selection is marked causes the contents of the selection to
be deleted, with the text that you type entered into your file in its place. Typing-re-
places-selection is only available when INTERFACE CUA is in effect. It only works
properly when you are in Insert Mode; if you are in Overtype Mode, typing when a se-
lection is marked will delete the selection, but the new text will replace the text that fol-
lowed the selection, instead of being inserted in front of it.

A set of changes to a file, normally all changes made to a file by a single keystroke, or
by a single command or macro issued from the command line, that is processed as a unit
by the UNDO and REDO commands.

Universal Naming Convention (UNC) A naming convention, often used with files stored on a network, in

which files are referred to not by a drive letter, path, and filename, but by a server name,

282

Appendix B. Glossary

UNTITLED file

vershift

view

width

window

the name of a shared resource on the server, and then a path and filename. UNC names
always begin with a pair of backslashes.

\\SERVER2\COMMON\ SAMPLES\TEST .FIL

In this example, SERVER2 is the server name, COMMON is a shared resource on the
server, SAMPLES is a subdirectory, and TEST.FIL is a file name and extension.

A temporary file that KEDIT creates when you begin a KEDIT session without specify-
ing a fileid, or when you use the File New menu item. If you attempt to save an UNTI-
TLED file to disk, KEDIT will ask you to specify a permanent name for the file.

The number of columns by which the displayed text is offset from the current verify
setting because automatic horizontal scrolling has moved the window to the left or the
right or because you have issued the LEFT or RIGHT commands. The number is posi-
tive if the display is offset to the right and negative if the display is offset to the left.

The portion of the file visible in one window. If the same file is displayed in multiple
windows, you have multiple views of the file. Each view can have a different current
line, VERIFY setting, ZONE columns, etc.

Maximum line length that can be handled in a given KEDIT session. The default is
10000, but a width of up to 999999 can be specified using SET INITTALWIDTH or the
WIDTH initialization option.

Rectangular area in which output from some Windows application appears. MDI (Mul-
tiple Document Window) applications like KEDIT have a frame window, within which
one or more document windows are displayed.

window margin area Another name for the margin area. Area between the border of a document window

word target

wordwrap

zone

and the start of the first column of text in the document window. When the mouse is
over this area, the mouse pointer changes to an arrow pointing to the upper right. The
margin area provides a convenient way to mark line blocks; simply drag with mouse
button 1 while the mouse pointer is in the margin area. The window margin area is con-
trolled by SET WINMARGIN.

A string target in which the string to be located must begin and end at a word boundary.

Automatic addition of a new line whenever the text being entered would extend beyond
the right margin. Controlled by SET WORDWRAP.

The left and right zone columns determine the range of columns to which KEDIT
restricts itself when doing string searches and related operations. Controlled by
SET ZONE.

283

Index
!
= buffer
definition 272
? buffers
definition 272
A
AFTER()

Boolean function 229
ALL command 180, 195

target 157

with no operands 182
ALT

used in sample macro 254
ALT()

used in sample macro 251
ALTERED target 154
ANSI

definition 272

entering special characters 99

font 272

See also “Character set”
ARBCHAR

SET option 152

definition 272
ARG

built-in function 227, 230
AUS file 272
AUTOSAVE

SET option 206

used in sample macro 254
Absolute line number targets 148
Actions menu 120

Bookmark dialog box 120

Fill dialog box 122

Lowercase 124

Sort dialog box 122

Uppercase 123
Alt+numeric keypad

definition 272

entering special characters 99
Alteration count

definition 272
Alternate profile

definition 272

used in sample macro 251

Arguments
ARG built-in function 227
passing to a macro 230
Arithmetic operators 219
Arrange Icons
Window menu 137
Arrange dialog box
Window menu 136
Assignments 216
Autosave
definition 272

BACKUP
SET option 206, 259
BAK file 272
BLANK target 153
BLANK()
Boolean function 229
BLOCK target 157
definition 273
BLOCK()
Boolean function 229
BOUNDMARK
SET option 50
Blocks 26
CLASSIC interface 83
CUA interface 63
definition 272
make persistent 113
prefix area block operations 176
unmarking 112
using as target in commands 157
Bookmark dialog box
Actions menu 120
Bookmarks
XPOINT.KEX 244
definition 273
named line targets 153
Boolean functions 229
Box block
definition 273
Box selection
definition 273

284

Built-in functions 227

CALL

used in sample macro 254
CASE

SET option 152
CENTER command 51
CHANGED target 154
CLASSIC interface

definition 273

dialog box 126

differences from CUA 95

keyboard assignments 89

mouse summary 94

overview 19, 25

using 80
COMMAND()

Boolean function 229
COPY command 224
CUA interface

definition 274

dialog box 126

differences from CLASSIC 95

keyboard assignments 73

mouse summary 79

overview 19, 25

using 60
CUA()

Boolean function 229
CURRENT()

Boolean function 229
CURSOR command 226
Carriage return character 261
Cascade

Window menu 136
Case conversion

to lowercase 124

to uppercase 123
Change bit

definition 273
Changing text

CHANGE command 30

Replace dialog box 115

undoing changes 56
Character code

definition 273
Character set

and printing 44

conversion 42

definition 273

entering special characters 99
Click

definition 273

Clipboard
definition 273
Close
File menu 103
Column pointer 158
definition 273
Column targets 158
absolute column targets 158
definition 273
relative column targets 158
Command line 28
CLASSIC interface 87
CUA interface 71
definition 274
overview 28
Command line selection
definition 274
Commands
definition 274
entered from prefix area 174
issued from a macro 224
retrieval 29
Comments
KEXX 216
KML 214
Comparison operators 219
Compound variables 217
Concatenation operators 219
Conditional instructions 202, 221
Copy
Edit menu 111
toolbar button 141
Copy Block
toolbar button 142
Copying text
C or CC in prefix area 174
CLASSIC interface 84
CUA interface 67
from clipboard 111
to clipboard 111
Current column 158, 160
definition 274
Current directory
Directory dialog box 108
definition 274
Current file
definition 274
Current line 28
defining from prefix area 174
definition 274
Current window
definition 274
Cursor
moving to prefix area 177

Cursor column
definition 274
Cursor field
definition 274
Cursor line
definition 274
Customizing KEDIT
See “Tailoring KEDIT”
Cut
Edit menu 111
Cut and paste
CLASSIC interface 84
CUA interface 67
Cut to Clipboard
toolbar button 141

D2C

built-in function 227

function used in sample macro 248
DATATYPE

used in sample macro 255
DEBUG command 210, 234
DEBUGGING

SET option 231

used with DEBUG command 231

used with TRACE command 233
DEFINE command 202, 210, 212 - 213, 240

used with sample macro 238
DELIMIT

function used in sample macro 249
DIALOG command 226, 239
DIR command 46
DIR.DIR file

definition 274

toolbar 145
DIRFILEID

used in sample macro 241, 251
DISPLAY

SET option 194
DO

KEXX instruction 221
Date 46
Decisions

See “Conditional instructions”
Default profile

definition 274
Delete

Edit menu 112
Delete Block

toolbar button 142
Deleting text

D or DD in prefix area 174

block delete 112

to clipboard 111
Delimiters 150
Dialog box

definition 274
Directory dialog box

File menu 108
Directory listing 46

Directory dialog box 108

toolbar button 147
Document window

arranging 136

layout 24

overview 22
Drag

definition 275
Drag and drop

CUA interface 67

from file manager 34
Duplicating text

double quote in prefix area 174

EDITV command 226
ELSE

KEXX instruction 221
EOF()

Boolean function 229
EOFIN

SET option 261
EOFOUT

SET option 263 - 264
EOLIN

SET option 261, 264
EXIT

KEXX instruction 223
EXTRACT command 225
Edit menu 110

Copy 111

Cut 111

Delete 112

Find dialog box 113

Go To dialog box 119

Make Persistent 113

Paste 111

Redo 110

Replace dialog box 115

Select All 112

Selective Editing dialog box 118

Undo 110

Unmark 112
End-of-file character 261

definition 275

286

End-of-file line
definition 275
End-of-line sequence 261
definition 275
End-of-range line
definition 275
Entering special characters 99
Excluded lines
definition 275
editing with 183
Excluding lines from display 180, 192, 194
showing excluded lines 193
Executing macros 208
Exit
File menu 109
toolbar button 147
Expressions 217

FCASE
SET option 265
FILE command 32, 224
FLOW command 52
FORMAT
SET option 53
FSA
definition 276
Field
definition 275
File area
definition 275
File locking
definition 275
overview 258 - 259
File menu 101
Close 103
Directory dialog box 108
Exit 109
New 101
Open dialog box 102
Print Setup dialog box 107
Print dialog box 105
Save 103
Save As dialog box 104
recently edited files 109
Fileid
definition 275
Files
closing 32, 35, 103
creating 101
formats 260
locking 258 - 259
long filenames 265, 267
multiple 33

multiple views 35, 135
opening 32, 34, 102
rules KEDIT uses to read files 261
rules KEDIT uses to write files 263
rules KEDIT uses when editing files 262
saving 32, 103
Fill block
toolbar button 144
Fill dialog box
Actions menu 122
Find Dialog Box
toolbar button 140
Find Next
toolbar button 140
Find dialog box
Edit menu 113
Fixed-pitch font
definition 275
Flag bit
definition 275
targets 154
Focus column 160
definition 275
Focus line 159, 270
definition 276
in macros 212
used in sample macro 239
Font
definition 276
overview 38
screen fonts 125
Frame window
definition 276
layout 22
overview 22
Function keys
redefining 210
See also “Keys”
Functions
Boolean 229
built-in 227
calls 218
implied EXTRACT 229

Go To dialog box
Edit menu 119
Go to Bookmark1
toolbar button 144
Group targets 157

HEX
SET option 152

287

HIGHLIGHT command 197
Header in KML file 213
Help 20, 33
Help menu 137
Hide Excluded Lines
toolbar button 145
See also “Selective line editing”
Highlighting facility 196 - 197
definition 276

ID line

definition 276
IF

KEXX instruction 221
IMMEDIATE command 209
IMPMACRO

SET option 209
INITIAL()

Boolean function 204

used in sample macro 256 - 257
INTERFACE CLASSIC

definition 276
INTERFACE CUA

definition 276
ISA

definition 277
ITERATE

KEXX instruction 223
Implied EXTRACT functions 229

used in sample macro 237
In-memory macros 213
Initialization options

PROFDEBUG 235

WIDTH 261

definition 276
Input mode

definition 276
Insert Mode

definition 276
Inserting text

A or I in prefix area 174

SET WORDWRAP 51

no automatic justification 53
Installing KEDIT 14
Instructions, KEXX 220
Interface dialog box

Options menu 126
Interface settings

See “CLASSIC interface”

See “CUA interface”
Internal routine

used in sample macro 255

International support
case conversion 45
date 46
time 46

Justifying text 53

KEDIT
Macro Library 213
command 32
KEDIT Language Definition file
definition 277
KEX file 212, 277
KEXX 208
arithmetic 219
comments 216
definition 277
instructions 220
loops 221
operators 218
variables 216
KEXX instructions
DO 221
ELSE 221
EXIT 223
IF 221
ITERATE 223
LEAVE 223
SAY 221
THEN 221
TRACE 233
KLD file
definition 277
KML file 213, 277
comments 214
used with sample macro 240
Keys
CLASSIC interface 80
CLASSIC summary 89
CUA interface 60
CUA summary 73
CUA versus CLASSIC 96
key actions changed by prefix area 177
prefix equivalents 179
redefining 210, 212

LASTMSG

used in sample macro 248
LEAVE

KEXX instruction 223

288

LEFTADJUST command 52
LENGTH
built-in function 228
LESS command 182
LOCK command 259
LOCKING
SET option 258
LOWER
built-in function 228
LRECL
SET option 263
Leftadjust Block
toolbar button 143
Line block
definition 277
Line class targets 153
definition 277
Line selection
definition 277
Linefeed character 261
Linend character
definition 277
Lines
adding from prefix area 174
copying from prefix area 174
deleting from prefix area 174
duplicating from prefix area 174
moving from prefix area 174
moving to 119
selective line editing 118, 180
shifting from prefix area 174
width of 261
Literal strings 210, 217
containing quotes 217
Locating text 29, 113, 139
blank lines 153
Locking files 258 - 259
Logical record length
definition 277
Long filenames 265, 267
Looping 221
Lowercase
Actions menu 124
toolbar button 143

MACRO command 209
MACROS command 243
MARGINS
SET option 50
definition 278
used with SET WORDWRAP 51
word processing 49

MDI (Multiple Document Interface)
definition 278
MORE command 182
Macros 208
commands 224
definition 277
execution 208
immediate execution 209
in-memory 213
multi-line 212
one-line 210
passing arguments to 230
samples 236
storing 215
Make Persistent
Edit menu 113
Margin area
definition 277
Memory usage
UNDOING SET option 58
Menu
Actions 120
Edit 110
File 101
Help 137
Options 124
Window 135
Message line
defined 278
Minimal truncation 28
definition 278
Mouse
CLASSIC interface 80
CLASSIC summary 94
CUA interface 60
CUA summary 79
CUA versus CLASSIC 98
Mouse pointer
definition 278
Move Block
toolbar button 142
Moving text
CLASSIC interface 84
CUA interface 67
M or MM in prefix area 174
Multiple files
See “Files, multiple”

NEW target 154
NODEFEXT

used in sample macro 242, 251
NOMSG command 226

used in sample macro 248

289

NUMBER
SET option 173, 190
Named line
definition 278
targets 153
Naming lines 174

Networks

See also “File locking™
New

File menu 101
New File

toolbar button 138
New Window

Window menu 135
New bit

definition 278
New file

toolbar button 147
Next File

toolbar button 140
Non-persistent block

definition 278

See also “Selection”
Null characters

entering 100
Numbers 218

OEM
character set 40, 278
entering special characters 99
font 278
See also “Character set”
One-file-per-window 36
Open File
toolbar button 139, 147
Open dialog box
File menu 102
Operators 218
Options menu 124
Interface dialog box 126
SET Command dialog box 130
Save Settings dialog box 134
Screen Font dialog box 125
Status dialog box 133
Overlay Block
toolbar button 142
Overtype Mode
definition 279

PARAGRAPH target 157
PARSE

used in sample macro 246
POINT

SET option 153

name line from prefix area 174
POS

built-in function 228

PREFIX

SET option 173, 190
PREFIX()

Boolean function 230
PROFDEBUG

initialization option 235
Paragraph 51, 157
definition 279
Parent Directory
toolbar button 146
Parser
definition 279
Paste
Edit menu 111
toolbar button 141
Persistent block
CLASSIC interface 83
CUA interface 65
definition 279
overview 26
Pixel
definition 279
Pop-up
definition 279
Prefix area
basic commands 174
commands related to ALL 191
considerations 177
definition 279
example of 173
invoking 173
keyboard equivalents 179
turning off 173
Prefix command
definition 279
list of commands 174, 176
Prefix targets 151
Previous File
toolbar button 140
Print File
toolbar button 139
Print Setup dialog box
File menu 107

Print dialog box
File menu 105
Printing
Print Setup dialog box 107
Print dialog box 105
and character conversion 44
overview 48
Profiles
definition 279
overview 200
sample 206
Proportional font
definition 279

QQUIT command 32
QUERY option
overview 32
QUIT command 32
Quick Find
definition 279
toolbar item 139
Quotation marks 201, 210

RC variable 224

used in sample macro 237
READYV command 225

used in sample macro 244
RECFM

SET option 263
REDO command 56
REFRESH command

used in sample macro 251
REPROFILE

SET option 203
REXX

definition 280
RIGHTADJUST command 51
Range

definition 280
Recent file list

File menu 109
Recovering text

undoing changes 56
Redisplaying excluded lines 145, 182, 193
Redo

Edit menu 110

toolbar button 141
Regular expressions

definition 280

overview 160

predefined expressions 169

summary 172
Relative line number targets 149
Remembered operands

definition 280
Replace dialog box

Edit menu 115
Replacing text

See “Changing text”
Reserved line

definition 280
Return code

definition 280

from a macro 224
Rightadjust Block

toolbar button 144
Ring 33

definition 280
Running macros 208

SAVE command 32
SAY
KEXX instruction 221
SCOPE
SET option 184
SELECT
SET option 194
SET
SET ARBCHAR 152
SET AUTOSAVE 206
SET BACKUP 206, 259
SET BOUNDMARK 50
SET CASE 152
SET DEBUGGING 231
SET DISPLAY 194
SET EOFIN 261
SET EOFOUT 263 - 264
SET EOLIN 261, 264
SET FORMAT 53
SET HEX 152
SET IMPMACRO 209
SET LOCKING 258
SET LRECL 263
SET MARGINS 50
SET NUMBER 173, 190
SET POINT 153
SET PREFIX 173, 190
SET RECFM 263
SET REPROFILE 203
SET SCOPE 184
SET SELECT 194
SET SHADOW 188
SET SHARING 259
SET STAY 152
SET TABSIN 261

291

SET TABSOUT 263
SET TIMECHECK 260
SET TRAILING 261, 263
SET TRANSLATEIN 43, 261
SET TRANSLATEOUT 43, 263
SET TRUNC 263
SET UNDOING 58
SET VARBLANK 152
SET WORDWRAP 51
SET WRAP 153
SET ZONE 153
dialog box 130
overview 198
SET Command dialog box
Options menu 130
SET option
definition 281
overview 32
SHADOW
SET option 188
SHARING
SET option 259
SOS command 226
STAY
SET option 152
SUBSTR
built-in function 228
Save
File menu 103
toolbar button 139
Save As dialog box
File menu 104
Save Settings dialog box
Options menu 134
Saved settings
definition 280
dialog box 134
order of processing 205
overview 199
Scale line
defined from prefix area 174
definition 280
Scope
definition 280
Screen
prefix area 173
Screen Font dialog box
Options menu 125
Select All
Edit menu 112
Selection 26
CUA interface 63
definition 280
entire file 112
make persistent 113

unmarking 112
Selection level 194

definition 280

targets 154
Selective Editing dialog box

Edit menu 118
Selective editing

definition 280
Selective line editing 18, 31, 118, 180
Set Bookmark1

toolbar button 144
Shadow line 181

definition 281
Shift Block Left

toolbar button 143
Shift Block Right

toolbar button 143
Shifting text

prefix area commands for 174
Show All Lines

toolbar button 145
Slider

definition 281
Sort by Date

toolbar button 146
Sort by Extension

toolbar button 146
Sort by Name

toolbar button 146
Sort by Size

toolbar button 146
Sort dialog box

Actions menu 122
Sorting 122
Special characters 150
Status dialog box

Options menu 133
Status line

contents 23

definition 281
Stream block

definition 281
Stream selection

definition 281
String targets 149
Suffix targets 151
Syntax coloring 53

definition 281
System menu

definition 281

292

TABSIN
SET option 261
TABSOUT
SET option 263
TAG command 31, 196
TAGGED target 154
TEXT command 226
THEN
KEXX instruction 221
TIMECHECK
SET option 260
TOF()
Boolean function 230
TOOLBUTTON
used in sample macro 256
TRACE
KEXX instruction 233
output 235
TRAILING
SET option 261, 263
TRANSLATEIN
SET option 43, 261
TRANSLATEOUT
SET option 43, 263
TRUNC
SET option 263
Tab characters 260
Tab column
definition 281
Tab line
defined from prefix area 174
definition 281
Tag bit
definition 281
Tailoring KEDIT 198
profile 200
Target area
definition 282
Target highlighting
definition 282
Targets
ALL 157
ALTERED 154
BLANK 153
BLOCK 157
CHANGED 154
NEW 154
PARAGRAPH 157
SET command effects on 152
TAGGED 154
absolute column targets 158
absolute line number 148

column targets 158
definition 281
examples of 155
flag bit targets 154
group 157
line class 153
logical operators 152
named line (SET POINT) 153
negative 151
prefix targets 151
relative column targets 158
relative line number 149
selection level targets 154
string 152
string column targets 158
string target delimiters 150
string targets 149
suffix targets 151
word targets 150
See also “Regular Expressions’
Text mode
definition 282
Tile Horizontally
Window menu 136
Tile Vertically
Window menu 136
Time 46
Timestamp
definition 282
Toolbar
DIR.DIR file 145
bottom 142
definition 282
empty ring 147
top 138
working with 20
Top-of-file line
definition 282
Top-of-range line
definition 282
Truncation column
definition 282
Typing-replaces-selection
definition 282

s

UNC

definition 282
UNDO command 56
UNDOING

SET option 58
UNLOCK command 259
UNTITLED file

definition 283

293

UPPER

built-in function 228
Undo

Edit menu 110

toolbar button 140
Undo level

definition 282
Universal Naming Convention

definition 282
Unmark

Edit menu 112
Uppercase

Actions menu 123

toolbar button 143

VARBLANK

SET option 152
VMPROF.KEX 270
Variables 216

compound 217

global 226
Vershift

definition 283
View

definition 283

WIDTH
definition 283
initialization option 261
WINPROF.KEX 200
order of processing 205
WORDWRAP
SET option 51
WRAP
SET option 153
Window
definition 283
Window list
window menu 137
Window margin area
definition 283
Window menu 135
Arrange Icons 137
Arrange dialog box 136
Cascade 136
New Window 135
Tile Horizontally 136
Tile Vertically 136
window list 137
Word processing
adjusting text 51
centering text 51

formatting text 51 - 52

justifying text 53

margins 49

new paragraph 51
Word targets 150

definition 283
Wordwrap

definition 283

XEDIT compatibility 268

ZONE

SET option 153
Zone

definition 283

294

	Contents
	Chapter 1. Introduction 11
	1.1 Overview of Documentation 12

	Chapter 2. Getting Started 14
	2.1 Installing KEDIT 14
	2.2 Your First KEDIT Session 14
	2.3 The KEDIT Screen 15
	2.4 Working in the File Area 16
	2.5 Working With Menus 17
	2.5.1 The File Menu 17
	2.5.2 The Window Menu 17
	2.5.3 The Edit Menu 18
	2.5.4 The Actions Menu 18
	2.5.5 The Options Menu 19

	2.6 Working with the Toolbar 20
	2.7 Getting Help 20
	2.8 Ending a Session 21

	Chapter 3. Using KEDIT for Windows 22
	3.1 Frame Window and Document Windows 22
	3.2 CUA and Classic Interfaces 25
	3.3 Blocks and Selections 26
	3.4 The KEDIT Command Line 28
	3.4.1 Command Line Basics 28
	3.4.2 Some Useful Commands 29

	3.5 Editing Multiple Files 33
	3.5.1 The Ring 33
	3.5.2 One-File-Per-Window 36

	3.6 Fonts 38
	3.7 Character Sets 40
	3.7.1 Overview 40
	3.7.2 Converting between OEM and ANSI 42

	3.8 International Support 45
	3.8.1 Uppercase and Lowercase 45
	3.8.2 Date and Time 46

	3.9 The DIR.DIR File 46
	3.10 Printing 48
	3.11 Word Processing Facilities 49
	3.11.1 Margins 49
	3.11.2 Wordwrap 51
	3.11.3 Starting a New Paragraph 51
	3.11.4 Adjusting Text 51
	3.11.5 Formatting Text 52

	3.12 Syntax Coloring 53
	3.13 The Undo Facility 56

	Chapter 4. Keyboard and Mouse 60
	4.1 Using the CUA Interface 60
	4.1.1 Moving the Cursor 60
	4.1.2 Entering and Editing Text 61
	4.1.3 Selecting Text 63
	4.1.4 Marking Persistent Blocks 65
	4.1.5 Moving and Copying Text 67
	4.1.6 Other Block Operations 68
	4.1.7 Menus, Files, and Windows 69
	4.1.8 Command Line and Prefix Area 71
	4.1.9 Miscellaneous 72

	4.2 Summary of CUA Interface 73
	4.3 Using the Classic Interface 80
	4.3.1 Moving the Cursor 80
	4.3.2 Entering and Editing Text 81
	4.3.3 Marking Blocks 83
	4.3.4 Moving and Copying Text 84
	4.3.5 Other Block Operations 85
	4.3.6 Menus, Files, and Windows 86
	4.3.7 Command Line and Prefix Area 87
	4.3.8 Miscellaneous 88

	4.4 Summary of Classic Interface 89
	4.5 Summary of Differences Between Classic and CUA Interfaces 95
	4.5.1 Overview 95
	4.5.2 Keyboard Comparison 96
	4.5.3 Mouse Comparison 98

	4.6 Entering Special Characters 99

	Chapter 5. Menus and Toolbars 101
	5.1 File Menu 101
	5.1.1 New 101
	5.1.2 Open... 102
	5.1.3 Close 103
	5.1.4 Save 103
	5.1.5 Save As... 104
	5.1.6 Print... 105
	5.1.7 Print Setup... 107
	5.1.8 Directory... 108
	5.1.9 Exit 109
	5.1.10 Recently Edited File List 109

	5.2 Edit Menu 110
	5.2.1 Undo 110
	5.2.2 Redo 110
	5.2.3 Cut 111
	5.2.4 Copy 111
	5.2.5 Paste 111
	5.2.6 Select All 112
	5.2.7 Delete 112
	5.2.8 Unmark 112
	5.2.9 Make Persistent 113
	5.2.10 Find... 113
	5.2.11 Replace... 115
	5.2.12 Selective Editing... 118
	5.2.13 Go To... 119

	5.3 Actions Menu 120
	5.3.1 Bookmark... 120
	5.3.2 Fill... 122
	5.3.3 Sort... 122
	5.3.4 Uppercase 123
	5.3.5 Lowercase 124

	5.4 Options Menu 124
	5.4.1 Screen Font... 125
	5.4.2 Interface... 126
	5.4.3 SET Command... 130
	5.4.4 Status... 133
	5.4.5 Save Settings... 134

	5.5 Window Menu 135
	5.5.1 New Window 135
	5.5.2 Cascade 136
	5.5.3 Tile Horizontally 136
	5.5.4 Tile Vertically 136
	5.5.5 Arrange... 136
	5.5.6 Arrange Icons 137
	5.5.7 Document Window List 137

	5.6 Help Menu 137
	5.6.1 KEDIT Help File 137
	5.6.2 User’s Guide 138
	5.6.3 Reference Manual 138
	5.6.4 KEDIT Web Site 138
	5.6.5 About KEDIT for Windows... 138

	5.7 Top Toolbar 138
	5.7.1 New File 138
	5.7.2 Open File 139
	5.7.3 Save File 139
	5.7.4 Print File 139
	5.7.5 Quick Find 139
	5.7.6 Find Next 140
	5.7.7 Find Dialog Box 140
	5.7.8 Previous File 140
	5.7.9 Next File 140
	5.7.10 Undo 140
	5.7.11 Redo 141
	5.7.12 Cut to Clipboard 141
	5.7.13 Copy to Clipboard 141
	5.7.14 Paste from Clipboard 141

	5.8 Bottom Toolbar 142
	5.8.1 Copy Block 142
	5.8.2 Move Block 142
	5.8.3 Overlay Block 142
	5.8.4 Delete Block 142
	5.8.5 Shift Block Left 143
	5.8.6 Shift Block Right 143
	5.8.7 Uppercase Block 143
	5.8.8 Lowercase Block 143
	5.8.9 Leftadjust Block 143
	5.8.10 Rightadjust Block 144
	5.8.11 Fill Block 144
	5.8.12 Set Bookmark1 144
	5.8.13 Go to Bookmark1 144
	5.8.14 Hide Excluded Lines 145
	5.8.15 Show All Lines 145

	5.9 Top Toolbar for DIR.DIR File 145
	5.9.1 Sort by Name 146
	5.9.2 Sort by Extension 146
	5.9.3 Sort by Size 146
	5.9.4 Sort by Date 146
	5.9.5 Parent Directory 146

	5.10 Top Toolbar for Empty Ring 147
	5.10.1 New File 147
	5.10.2 Open File 147
	5.10.3 Directory 147
	5.10.4 Exit KEDIT 147

	Chapter 6. Targets 148
	6.1 Types of Targets 148
	6.1.1 Absolute Line Number Targets 148
	6.1.2 Relative Line Number Targets 149
	6.1.3 String Targets 149
	6.1.4 Word Targets 150
	6.1.5 More About String Targets 151
	6.1.6 Named Line Targets 153
	6.1.7 Line Class Targets 153
	6.1.8 Some Further Examples 155

	6.2 Other Uses for Targets 156
	6.3 Group Targets 157
	6.4 Column Targets 158
	6.5 The Focus Line 159
	6.6 Regular Expressions 160
	6.6.1 Overview 160
	6.6.2 Regular Expression Text Specifiers 163
	6.6.3 Regular Expression Operators 166
	6.6.4 Usage Notes 170
	6.6.5 Regular Expression Summary 172

	Chapter 7. The Prefix Area 173
	7.1 Prefix Commands 173
	7.2 Prefix Area Keyboard Considerations 177
	7.3 Prefix Command Equivalents 179

	Chapter 8. Selective Line Editing and Highlighting 180
	8.1 Selective Line Editing 180
	8.1.1 General Discussion 180
	8.1.2 The MORE and LESS Commands 182
	8.1.3 Editing Files that have Excluded Lines 183
	8.1.4 SET SHADOW 188
	8.1.5 Prefix Commands Related to ALL 191

	8.2 Selective Line Editing Details 194
	8.2.1 Selection Levels 194
	8.2.2 How ALL Works 195
	8.2.3 How X and S Work 196

	8.3 Highlighting Facility 196

	Chapter 9. Tailoring KEDIT 198
	9.1 SET Options 198
	9.2 KEDIT Profiles 200
	9.2.1 Overview of KEDIT Profiles 200
	9.2.2 Order of Processing 205
	9.2.3 Initialization Options 205
	9.2.4 A Sample Profile 206

	Chapter 10. Using Macros 208
	10.1 Running Macros 208
	10.2 Defining Macros 210
	10.2.1 One-line Macros 210
	10.2.2 Multi-line Macros 212
	10.2.3 Storing Your Macros 215

	10.3 Features of KEXX 215
	10.3.1 Comments 216
	10.3.2 Variables and Assignments 216
	10.3.3 Expressions and Operators 217
	10.3.4 Instructions 220
	10.3.5 Commands 224
	10.3.6 Functions 227
	10.3.7 Passing an Argument to a Macro 230

	10.4 Debugging KEXX Macros 230
	10.4.1 Using the Debugger 231
	10.4.2 The TRACE Instruction and the DEBUG Command 233
	10.4.3 Trace Output 235

	Chapter 11. Sample Macros 236
	11.1 Counting the Words in a File 236
	11.2 KEDIT Key Definitions 239
	11.3 Working with KEDIT’s Default Key Definitions 241
	11.4 Saving Your Place in a File 244
	11.5 Saving the Contents of All Changed Files 246
	11.6 Batch Macro Operations 249
	11.7 Putting Sequence Numbers into a File 252
	11.8 Macros and KEDIT’s Toolbar 256

	Chapter 12. File Processing 258
	12.1 File Locking 258
	12.2 File Formats 260
	12.2.1 Reading a File from Disk 261
	12.2.2 Editing a File 262
	12.2.3 Writing a File to Disk 263
	12.2.4 EOLIN NONE and EOLOUT NONE 264
	12.2.5 TABSAVE 265

	12.3 Long Filenames 265

	Appendix A. XEDIT Compatibility 268
	Appendix B. Glossary 272
	Index 284

	Index
	!
	= buffer
	definition 272

	? buffers
	definition 272

	A
	AFTER()
	Boolean function 229

	ALL command 180, 195
	target 157
	with no operands 182

	ALT
	used in sample macro 254

	ALT()
	used in sample macro 251

	ALTERED target 154
	ANSI
	definition 272
	entering special characters 99
	font 272
	See also ‘‘Character set’’

	ARBCHAR
	SET option 152
	definition 272

	ARG
	built-in function 227, 230

	AUS file 272
	AUTOSAVE
	SET option 206
	used in sample macro 254

	Absolute line number targets 148
	Actions menu 120
	Bookmark dialog box 120
	Fill dialog box 122
	Lowercase 124
	Sort dialog box 122
	Uppercase 123

	Alt+numeric keypad
	definition 272
	entering special characters 99

	Alteration count
	definition 272

	Alternate profile
	definition 272
	used in sample macro 251

	Arguments
	ARG built-in function 227
	passing to a macro 230

	Arithmetic operators 219
	Arrange Icons
	Window menu 137

	Arrange dialog box
	Window menu 136

	Assignments 216
	Autosave
	definition 272

	B
	BACKUP
	SET option 206, 259

	BAK file 272
	BLANK target 153
	BLANK()
	Boolean function 229

	BLOCK target 157
	definition 273

	BLOCK()
	Boolean function 229

	BOUNDMARK
	SET option 50

	Blocks 26
	CLASSIC interface 83
	CUA interface 63
	definition 272
	make persistent 113
	prefix area block operations 176
	unmarking 112
	using as target in commands 157

	Bookmark dialog box
	Actions menu 120

	Bookmarks
	XPOINT.KEX 244
	definition 273
	named line targets 153

	Boolean functions 229
	Box block
	definition 273

	Box selection
	definition 273

	Built-in functions 227

	C
	CALL
	used in sample macro 254

	CASE
	SET option 152

	CENTER command 51
	CHANGED target 154
	CLASSIC interface
	definition 273
	dialog box 126
	differences from CUA 95
	keyboard assignments 89
	mouse summary 94
	overview 19, 25
	using 80

	COMMAND()
	Boolean function 229

	COPY command 224
	CUA interface
	definition 274
	dialog box 126
	differences from CLASSIC 95
	keyboard assignments 73
	mouse summary 79
	overview 19, 25
	using 60

	CUA()
	Boolean function 229

	CURRENT()
	Boolean function 229

	CURSOR command 226
	Carriage return character 261
	Cascade
	Window menu 136

	Case conversion
	to lowercase 124
	to uppercase 123

	Change bit
	definition 273

	Changing text
	CHANGE command 30
	Replace dialog box 115
	undoing changes 56

	Character code
	definition 273

	Character set
	and printing 44
	conversion 42
	definition 273
	entering special characters 99

	Click
	definition 273

	Clipboard
	definition 273

	Close
	File menu 103

	Column pointer 158
	definition 273

	Column targets 158
	absolute column targets 158
	definition 273
	relative column targets 158

	Command line 28
	CLASSIC interface 87
	CUA interface 71
	definition 274
	overview 28

	Command line selection
	definition 274

	Commands
	definition 274
	entered from prefix area 174
	issued from a macro 224
	retrieval 29

	Comments
	KEXX 216
	KML 214

	Comparison operators 219
	Compound variables 217
	Concatenation operators 219
	Conditional instructions 202, 221
	Copy
	Edit menu 111
	toolbar button 141

	Copy Block
	toolbar button 142

	Copying text
	C or CC in prefix area 174
	CLASSIC interface 84
	CUA interface 67
	from clipboard 111
	to clipboard 111

	Current column 158, 160
	definition 274

	Current directory
	Directory dialog box 108
	definition 274

	Current file
	definition 274

	Current line 28
	defining from prefix area 174
	definition 274

	Current window
	definition 274

	Cursor
	moving to prefix area 177

	Cursor column
	definition 274

	Cursor field
	definition 274

	Cursor line
	definition 274

	Customizing KEDIT
	See ‘‘Tailoring KEDIT’’

	Cut
	Edit menu 111

	Cut and paste
	CLASSIC interface 84
	CUA interface 67

	Cut to Clipboard
	toolbar button 141

	D
	D2C
	built-in function 227
	function used in sample macro 248

	DATATYPE
	used in sample macro 255

	DEBUG command 210, 234
	DEBUGGING
	SET option 231
	used with DEBUG command 231
	used with TRACE command 233

	DEFINE command 202, 210, 212 - 213, 240
	used with sample macro 238

	DELIMIT
	function used in sample macro 249

	DIALOG command 226, 239
	DIR command 46
	DIR.DIR file
	definition 274
	toolbar 145

	DIRFILEID
	used in sample macro 241, 251

	DISPLAY
	SET option 194

	DO
	KEXX instruction 221

	Date 46
	Decisions
	See ‘‘Conditional instructions’’

	Default profile
	definition 274

	Delete
	Edit menu 112

	Delete Block
	toolbar button 142

	Deleting text
	D or DD in prefix area 174
	block delete 112
	to clipboard 111

	Delimiters 150
	Dialog box
	definition 274

	Directory dialog box
	File menu 108

	Directory listing 46
	Directory dialog box 108
	toolbar button 147

	Document window
	arranging 136
	layout 24
	overview 22

	Drag
	definition 275

	Drag and drop
	CUA interface 67
	from file manager 34

	Duplicating text
	double quote in prefix area 174

	E
	EDITV command 226
	ELSE
	KEXX instruction 221

	EOF()
	Boolean function 229

	EOFIN
	SET option 261

	EOFOUT
	SET option 263 - 264

	EOLIN
	SET option 261, 264

	EXIT
	KEXX instruction 223

	EXTRACT command 225
	Edit menu 110
	Copy 111
	Cut 111
	Delete 112
	Find dialog box 113
	Go To dialog box 119
	Make Persistent 113
	Paste 111
	Redo 110
	Replace dialog box 115
	Select All 112
	Selective Editing dialog box 118
	Undo 110
	Unmark 112

	End-of-file character 261
	definition 275

	End-of-file line
	definition 275

	End-of-line sequence 261
	definition 275

	End-of-range line
	definition 275

	Entering special characters 99
	Excluded lines
	definition 275
	editing with 183

	Excluding lines from display 180, 192, 194
	showing excluded lines 193

	Executing macros 208
	Exit
	File menu 109
	toolbar button 147

	Expressions 217

	F
	FCASE
	SET option 265

	FILE command 32, 224
	FLOW command 52
	FORMAT
	SET option 53

	FSA
	definition 276

	Field
	definition 275

	File area
	definition 275

	File locking
	definition 275
	overview 258 - 259

	File menu 101
	Close 103
	Directory dialog box 108
	Exit 109
	New 101
	Open dialog box 102
	Print Setup dialog box 107
	Print dialog box 105
	Save 103
	Save As dialog box 104
	recently edited files 109

	Fileid
	definition 275

	Files
	closing 32, 35, 103
	creating 101
	formats 260
	locking 258 - 259
	long filenames 265, 267
	multiple 33
	multiple views 35, 135
	opening 32, 34, 102
	rules KEDIT uses to read files 261
	rules KEDIT uses to write files 263
	rules KEDIT uses when editing files 262
	saving 32, 103

	Fill block
	toolbar button 144

	Fill dialog box
	Actions menu 122

	Find Dialog Box
	toolbar button 140

	Find Next
	toolbar button 140

	Find dialog box
	Edit menu 113

	Fixed-pitch font
	definition 275

	Flag bit
	definition 275
	targets 154

	Focus column 160
	definition 275

	Focus line 159, 270
	definition 276
	in macros 212
	used in sample macro 239

	Font
	definition 276
	overview 38
	screen fonts 125

	Frame window
	definition 276
	layout 22
	overview 22

	Function keys
	redefining 210
	See also ‘‘Keys’’

	Functions
	Boolean 229
	built-in 227
	calls 218
	implied EXTRACT 229

	G
	Go To dialog box
	Edit menu 119

	Go to Bookmark1
	toolbar button 144

	Group targets 157

	H
	HEX
	SET option 152

	HIGHLIGHT command 197
	Header in KML file 213
	Help 20, 33
	Help menu 137
	Hide Excluded Lines
	toolbar button 145
	See also ‘‘Selective line editing’’

	Highlighting facility 196 - 197
	definition 276

	I
	ID line
	definition 276

	IF
	KEXX instruction 221

	IMMEDIATE command 209
	IMPMACRO
	SET option 209

	INITIAL()
	Boolean function 204
	used in sample macro 256 - 257

	INTERFACE CLASSIC
	definition 276

	INTERFACE CUA
	definition 276

	ISA
	definition 277

	ITERATE
	KEXX instruction 223

	Implied EXTRACT functions 229
	used in sample macro 237

	In-memory macros 213
	Initialization options
	PROFDEBUG 235
	WIDTH 261
	definition 276

	Input mode
	definition 276

	Insert Mode
	definition 276

	Inserting text
	A or I in prefix area 174
	SET WORDWRAP 51
	no automatic justification 53

	Installing KEDIT 14
	Instructions, KEXX 220
	Interface dialog box
	Options menu 126

	Interface settings
	See ‘‘CLASSIC interface’’
	See ‘‘CUA interface’’

	Internal routine
	used in sample macro 255

	International support
	case conversion 45
	date 46
	time 46

	J
	Justifying text 53

	K
	KEDIT
	Macro Library 213
	command 32

	KEDIT Language Definition file
	definition 277

	KEX file 212, 277
	KEXX 208
	arithmetic 219
	comments 216
	definition 277
	instructions 220
	loops 221
	operators 218
	variables 216

	KEXX instructions
	DO 221
	ELSE 221
	EXIT 223
	IF 221
	ITERATE 223
	LEAVE 223
	SAY 221
	THEN 221
	TRACE 233

	KLD file
	definition 277

	KML file 213, 277
	comments 214
	used with sample macro 240

	Keys
	CLASSIC interface 80
	CLASSIC summary 89
	CUA interface 60
	CUA summary 73
	CUA versus CLASSIC 96
	key actions changed by prefix area 177
	prefix equivalents 179
	redefining 210, 212

	L
	LASTMSG
	used in sample macro 248

	LEAVE
	KEXX instruction 223

	LEFTADJUST command 52
	LENGTH
	built-in function 228

	LESS command 182
	LOCK command 259
	LOCKING
	SET option 258

	LOWER
	built-in function 228

	LRECL
	SET option 263

	Leftadjust Block
	toolbar button 143

	Line block
	definition 277

	Line class targets 153
	definition 277

	Line selection
	definition 277

	Linefeed character 261
	Linend character
	definition 277

	Lines
	adding from prefix area 174
	copying from prefix area 174
	deleting from prefix area 174
	duplicating from prefix area 174
	moving from prefix area 174
	moving to 119
	selective line editing 118, 180
	shifting from prefix area 174
	width of 261

	Literal strings 210, 217
	containing quotes 217

	Locating text 29, 113, 139
	blank lines 153

	Locking files 258 - 259
	Logical record length
	definition 277

	Long filenames 265, 267
	Looping 221
	Lowercase
	Actions menu 124
	toolbar button 143

	M
	MACRO command 209
	MACROS command 243
	MARGINS
	SET option 50
	definition 278
	used with SET WORDWRAP 51
	word processing 49

	MDI (Multiple Document Interface)
	definition 278

	MORE command 182
	Macros 208
	commands 224
	definition 277
	execution 208
	immediate execution 209
	in-memory 213
	multi-line 212
	one-line 210
	passing arguments to 230
	samples 236
	storing 215

	Make Persistent
	Edit menu 113

	Margin area
	definition 277

	Memory usage
	UNDOING SET option 58

	Menu
	Actions 120
	Edit 110
	File 101
	Help 137
	Options 124
	Window 135

	Message line
	defined 278

	Minimal truncation 28
	definition 278

	Mouse
	CLASSIC interface 80
	CLASSIC summary 94
	CUA interface 60
	CUA summary 79
	CUA versus CLASSIC 98

	Mouse pointer
	definition 278

	Move Block
	toolbar button 142

	Moving text
	CLASSIC interface 84
	CUA interface 67
	M or MM in prefix area 174

	Multiple files
	See ‘‘Files, multiple’’

	N
	NEW target 154
	NODEFEXT
	used in sample macro 242, 251

	NOMSG command 226
	used in sample macro 248

	NUMBER
	SET option 173, 190

	Named line
	definition 278
	targets 153

	Naming lines 174
	Networks
	See also ‘‘File locking’’

	New
	File menu 101

	New File
	toolbar button 138

	New Window
	Window menu 135

	New bit
	definition 278

	New file
	toolbar button 147

	Next File
	toolbar button 140

	Non-persistent block
	definition 278
	See also ‘‘Selection’’

	Null characters
	entering 100

	Numbers 218

	O
	OEM
	character set 40, 278
	entering special characters 99
	font 278
	See also ‘‘Character set’’

	One-file-per-window 36
	Open File
	toolbar button 139, 147

	Open dialog box
	File menu 102

	Operators 218
	Options menu 124
	Interface dialog box 126
	SET Command dialog box 130
	Save Settings dialog box 134
	Screen Font dialog box 125
	Status dialog box 133

	Overlay Block
	toolbar button 142

	Overtype Mode
	definition 279

	P
	PARAGRAPH target 157
	PARSE
	used in sample macro 246

	POINT
	SET option 153
	name line from prefix area 174

	POS
	built-in function 228

	PREFIX
	SET option 173, 190

	PREFIX()
	Boolean function 230

	PROFDEBUG
	initialization option 235

	Paragraph 51, 157
	definition 279

	Parent Directory
	toolbar button 146

	Parser
	definition 279

	Paste
	Edit menu 111
	toolbar button 141

	Persistent block
	CLASSIC interface 83
	CUA interface 65
	definition 279
	overview 26

	Pixel
	definition 279

	Pop-up
	definition 279

	Prefix area
	basic commands 174
	commands related to ALL 191
	considerations 177
	definition 279
	example of 173
	invoking 173
	keyboard equivalents 179
	turning off 173

	Prefix command
	definition 279
	list of commands 174, 176

	Prefix targets 151
	Previous File
	toolbar button 140

	Print File
	toolbar button 139

	Print Setup dialog box
	File menu 107

	Print dialog box
	File menu 105

	Printing
	Print Setup dialog box 107
	Print dialog box 105
	and character conversion 44
	overview 48

	Profiles
	definition 279
	overview 200
	sample 206

	Proportional font
	definition 279

	Q
	QQUIT command 32
	QUERY option
	overview 32

	QUIT command 32
	Quick Find
	definition 279
	toolbar item 139

	Quotation marks 201, 210

	R
	RC variable 224
	used in sample macro 237

	READV command 225
	used in sample macro 244

	RECFM
	SET option 263

	REDO command 56
	REFRESH command
	used in sample macro 251

	REPROFILE
	SET option 203

	REXX
	definition 280

	RIGHTADJUST command 51
	Range
	definition 280

	Recent file list
	File menu 109

	Recovering text
	undoing changes 56

	Redisplaying excluded lines 145, 182, 193
	Redo
	Edit menu 110
	toolbar button 141

	Regular expressions
	definition 280
	overview 160
	predefined expressions 169
	summary 172

	Relative line number targets 149
	Remembered operands
	definition 280

	Replace dialog box
	Edit menu 115

	Replacing text
	See ‘‘Changing text’’

	Reserved line
	definition 280

	Return code
	definition 280
	from a macro 224

	Rightadjust Block
	toolbar button 144

	Ring 33
	definition 280

	Running macros 208

	S
	SAVE command 32
	SAY
	KEXX instruction 221

	SCOPE
	SET option 184

	SELECT
	SET option 194

	SET
	SET ARBCHAR 152
	SET AUTOSAVE 206
	SET BACKUP 206, 259
	SET BOUNDMARK 50
	SET CASE 152
	SET DEBUGGING 231
	SET DISPLAY 194
	SET EOFIN 261
	SET EOFOUT 263 - 264
	SET EOLIN 261, 264
	SET FORMAT 53
	SET HEX 152
	SET IMPMACRO 209
	SET LOCKING 258
	SET LRECL 263
	SET MARGINS 50
	SET NUMBER 173, 190
	SET POINT 153
	SET PREFIX 173, 190
	SET RECFM 263
	SET REPROFILE 203
	SET SCOPE 184
	SET SELECT 194
	SET SHADOW 188
	SET SHARING 259
	SET STAY 152
	SET TABSIN 261
	SET TABSOUT 263
	SET TIMECHECK 260
	SET TRAILING 261, 263
	SET TRANSLATEIN 43, 261
	SET TRANSLATEOUT 43, 263
	SET TRUNC 263
	SET UNDOING 58
	SET VARBLANK 152
	SET WORDWRAP 51
	SET WRAP 153
	SET ZONE 153
	dialog box 130
	overview 198

	SET Command dialog box
	Options menu 130

	SET option
	definition 281
	overview 32

	SHADOW
	SET option 188

	SHARING
	SET option 259

	SOS command 226
	STAY
	SET option 152

	SUBSTR
	built-in function 228

	Save
	File menu 103
	toolbar button 139

	Save As dialog box
	File menu 104

	Save Settings dialog box
	Options menu 134

	Saved settings
	definition 280
	dialog box 134
	order of processing 205
	overview 199

	Scale line
	defined from prefix area 174
	definition 280

	Scope
	definition 280

	Screen
	prefix area 173

	Screen Font dialog box
	Options menu 125

	Select All
	Edit menu 112

	Selection 26
	CUA interface 63
	definition 280
	entire file 112
	make persistent 113
	unmarking 112

	Selection level 194
	definition 280
	targets 154

	Selective Editing dialog box
	Edit menu 118

	Selective editing
	definition 280

	Selective line editing 18, 31, 118, 180
	Set Bookmark1
	toolbar button 144

	Shadow line 181
	definition 281

	Shift Block Left
	toolbar button 143

	Shift Block Right
	toolbar button 143

	Shifting text
	prefix area commands for 174

	Show All Lines
	toolbar button 145

	Slider
	definition 281

	Sort by Date
	toolbar button 146

	Sort by Extension
	toolbar button 146

	Sort by Name
	toolbar button 146

	Sort by Size
	toolbar button 146

	Sort dialog box
	Actions menu 122

	Sorting 122
	Special characters 150
	Status dialog box
	Options menu 133

	Status line
	contents 23
	definition 281

	Stream block
	definition 281

	Stream selection
	definition 281

	String targets 149
	Suffix targets 151
	Syntax coloring 53
	definition 281

	System menu
	definition 281

	T
	TABSIN
	SET option 261

	TABSOUT
	SET option 263

	TAG command 31, 196
	TAGGED target 154
	TEXT command 226
	THEN
	KEXX instruction 221

	TIMECHECK
	SET option 260

	TOF()
	Boolean function 230

	TOOLBUTTON
	used in sample macro 256

	TRACE
	KEXX instruction 233
	output 235

	TRAILING
	SET option 261, 263

	TRANSLATEIN
	SET option 43, 261

	TRANSLATEOUT
	SET option 43, 263

	TRUNC
	SET option 263

	Tab characters 260
	Tab column
	definition 281

	Tab line
	defined from prefix area 174
	definition 281

	Tag bit
	definition 281

	Tailoring KEDIT 198
	profile 200

	Target area
	definition 282

	Target highlighting
	definition 282

	Targets
	ALL 157
	ALTERED 154
	BLANK 153
	BLOCK 157
	CHANGED 154
	NEW 154
	PARAGRAPH 157
	SET command effects on 152
	TAGGED 154
	absolute column targets 158
	absolute line number 148
	column targets 158
	definition 281
	examples of 155
	flag bit targets 154
	group 157
	line class 153
	logical operators 152
	named line (SET POINT) 153
	negative 151
	prefix targets 151
	relative column targets 158
	relative line number 149
	selection level targets 154
	string 152
	string column targets 158
	string target delimiters 150
	string targets 149
	suffix targets 151
	word targets 150
	See also ‘‘Regular Expressions’’

	Text mode
	definition 282

	Tile Horizontally
	Window menu 136

	Tile Vertically
	Window menu 136

	Time 46
	Timestamp
	definition 282

	Toolbar
	DIR.DIR file 145
	bottom 142
	definition 282
	empty ring 147
	top 138
	working with 20

	Top-of-file line
	definition 282

	Top-of-range line
	definition 282

	Truncation column
	definition 282

	Typing-replaces-selection
	definition 282

	U
	UNC
	definition 282

	UNDO command 56
	UNDOING
	SET option 58

	UNLOCK command 259
	UNTITLED file
	definition 283

	UPPER
	built-in function 228

	Undo
	Edit menu 110
	toolbar button 140

	Undo level
	definition 282

	Universal Naming Convention
	definition 282

	Unmark
	Edit menu 112

	Uppercase
	Actions menu 123
	toolbar button 143

	V
	VARBLANK
	SET option 152

	VMPROF.KEX 270
	Variables 216
	compound 217
	global 226

	Vershift
	definition 283

	View
	definition 283

	W
	WIDTH
	definition 283
	initialization option 261

	WINPROF.KEX 200
	order of processing 205

	WORDWRAP
	SET option 51

	WRAP
	SET option 153

	Window
	definition 283

	Window list
	window menu 137

	Window margin area
	definition 283

	Window menu 135
	Arrange Icons 137
	Arrange dialog box 136
	Cascade 136
	New Window 135
	Tile Horizontally 136
	Tile Vertically 136
	window list 137

	Word processing
	adjusting text 51
	centering text 51
	formatting text 51 - 52
	justifying text 53
	margins 49
	new paragraph 51

	Word targets 150
	definition 283

	Wordwrap
	definition 283

	X
	XEDIT compatibility 268

	Z
	ZONE
	SET option 153

	Zone
	definition 283

