KEDIT for Windows Reference Manual
Version 1.6

Mansfield Software Group, Inc.
P.O. Box 532

Storrs, CT 06268
http://www.kedit.com

December 2007

This PDF file contains the full text of the KEDIT for Windows 1.6 Reference Manual. The entire
document is in black and white, aside from the colored KEDIT logo on the cover page.

The text of the KEDIT for Windows 1.6 User’s Guide is available in a separate PDF file.

The contents of both the Reference Manual and the User’s Guide are also available in HTML Help
format in the KEDIT for Windows Help file, KEDITW.CHM.

Copyright © 1983-2007 Mansfield Software Group, Inc.
All Rights Reserved.

KEDIT is a trademark of Mansfield Software Group, Inc.
Windows is a trademark of Microsoft Corporation.

Contents

Chapter 1. Introduction 11
1.1 Overview of Documentation. 11

1.2 Syntax Conventions 12

Chapter 2. Invoking KEDIT 14
2.1 Running KEDITW32.EXE 14

2.2 KEDIT Initialization Options 16

2.3 Initialization Processing 22

2.4 Editing Additional Files 24

Chapter 3. KEDITCommands000vueen 26
ADD . .. 26

ALERT 26

ALL. . . o 27

ALTER 28
ANSITOOEM 29
BACKWARD. 30

BOTTOM. 31

CANCEL 31

CAPPEND 31

CDELETE 32

CENTER 33
CFIRST,CLAST o o . 34

CHANGE. 34
CHDIR,CHDRIVE., 36

CINSERT. e 38
CLIPBOARD. 39

CLOCATE 40

CMATCH. s 41

CMSG e 43

COMMAND 43

COMPRESS 44

COPY. . . . 45

COVERLAY 47
CREPLACE 48
CURSOR o 49
DEBUG. 51
DEFINE 53
DELETE 54
DIALOG o 55
DIRAPPEND. 58
DIRSORT. oo 59
DMSG 60
DOS, DOSNOWAIT, DOSQUIET 61
DOWN . . . o 63
DUPLICATE o o o 64
EDITV 65
EMSG.o 67
ERASE 67
EXPAND 68
EXTEND 68
EXTRACT o o o 69
FILE,FFILE 69
FILL, FILLBOX o oo 71
FIND, FINDUP, FUP. 72
FLOW . . . 73
FORWARDo o o 74
GET. 75
HELP 76
HEXTYPE o 77
HISTUTIL o o 77
HITo 80
IMMEDIATE. 81
INIUTIL o 81
INPUT . . . oo o 82
JOIN . . . o 82
KEDIT 83
KHELP 85
LEFT 86

LESS 87

LOCATE . . o oo 88
LOCK. © o oo 93
LOWERCASE o oo 93
LPREFIX . . o o o oo e 94
MACRO . . o o 95
MACROS. . . o o o 96
MARK . . oo 97
MERGE. . .« oo 99
MODIFY . . o oo 100
MORE. . . o oo 101
MOVE. .« o oo 102
MSG. o o 103
NEXT . o oo e e 104
NFIND, NFINDUP,NFUPo oo 104
NOMSG . © o oo 105
OEMTOANSI. . o o 106
OVERLAY . . . o oo 106
OVERLAYBOX. . . . o oo 107
POPUP . . . o oo 107
PRESERVE . . . o o 108
PRINT. .\ o oo e e e e 109
PURGE . . . o oo 111
PUT,PUTD . . o o o oo e e 112
QUERY . . o oo 113
QUIT,QQUIT. . . o oo 114
READV . . o oo 114
RECOVER . . . o oo 117
REDO . . oo e 118
REFRESH. oo 118
REGUTIL . .« o o oo o e e 119
RENAME . . o o oo 121
REPEAT. . . o oot e 121
REPLACE. . . . o o 123
RESET . o o o oo 123
RESTORE. . « . o oo 124
RGTLEFT. . o\ o oot e 125

RIGHT 125

RIGHTADJUST. o o .. 126

SAVE,SSAVE. 127
SCHANGE 128
SET 129
SHIFT o 129
SHOWDLG 130
SORT 131
SOS . . . 133
SPLIT o 138
SPLTIOIN. o o 139
STATUS.o o o 140
SYNEX oo 140
TAG 140
TEXT . . . 141
TFIND. 142
TOP . . . 143
UNDO. 143
UNLOCK oo oo 143
UP. . 144
UPPERCASE o o 144
WINDOW. 145
WINEXEC 146
WINHELP. 147
WMSG . ..o 148
XEDIT. . . . o 148
& e 148
Y e 149
S e e e e e e e e e e e e e e e e e e 150
Chapter 4. The SETCommand. 151
SETALT 154
SETARBCHAR 155
SETARROW o 158
SETAUTOCOLOR. 158
SETAUTOEXIT 160
SET AUTOINDENT 160
SETAUTOSAVE 161

SET AUTOSCROLL 162

SETBACKUP 163

SETBEEP. 164
SETBOUNDMARK 164
SETCASE 166
SETCLOCK 168
SETCMDLINE 168
SETCOLMARK 169
SETCOLOR 170
SETCOLORING 172
SETCURLINE o o ... 175
SETCURRBOX 176
SETCURSORSIZE. 177
SET CURSORTYPE 178
SETDEBUGGING 178
SETDEFEXT. o .. 179
SET DEFPROFILE 180
SETDEFSORT 181
SET DIRFORMAT 182
SET DISPLAY 183
SETDOCSIZING. o 184
SETDRAG o o 185
SETECOLOR. 186
SETEOFIN 189
SETEOFOUT. 189
SETEOLIN o .. 190
SETEOLOUT. 191
SETFCASE. 192
SET FILEID, FMODE, FPATH, FNAME, FEXT, FTYPE . . . 192
SETFORMAT 195
SETHELPDIR 196
SETHEX 196
SETHEXDISPLAY., 197
SET HIGHLIGHT. 198
SETIDLINE 199
SETIMPMACRO. 199
SETINISAVE. o o 200
SET INITIALDIR. 201

SET INITIALDOCSIZE 203

SET INITIALFRAMESIZE. 204

SET INITIALINSERT 205
SET INITIALWIDTH. 206
SETINPUTMODE 206
SETINSERTMODE 208
SETINSTANCE 208
SETINTERFACE. 209
SET INTERNATIONAL 211
SETKEYSTYLE, 213
SETLASTOP o . 214
SETLINEFLAG 215
SETLINEND oo .. 216
SETLOCKING 217
SETLRECL. o .. 218
SETMACROPATH. 219
SETMARGINS. o oo 221
SETMARKSTYLE. 222
SETMONITOR. 223
SETMOUSEBEEP 224
SETMSGLINE 224
SETMSGMODE 225
SETNEWLINES 226
SETNOVALUE. 227
SETNUMBER 227
SETOFPW o 228
SETOPENFILTER 229
SETPARSER 230
SETPATH. 232
SETPCOLOR. 233
SETPOINT o . 235
SETPREFIX 236
SET PREFIXWIDTH 239
SET PRINTCOLORING 239
SETPRINTER 240
SET PRINTPROFILE. 242
SETQUICKFIND. 243
SETRANGE 244

SET RECENTFILES 245

SETRECFM 245

SETREPROFILE. 246
SETREGSAVE 247
SETRESERVED 248
SET RIGHTCTRL 249
SETSCALE. 249
SETSCOPE. 250
SETSCREEN. 251
SETSCROLLBAR 253
SETSELECT 253
SETSHADOW o 254
SETSHARING 255
SET STATUSLINE 256
SETSTAY. 257
SETSTREAM 257
SETSYNONYM 258
SETTABLINE 260
SETTABS. 261
SETTABSAVE o 262
SETTABSIN 263
SETTABSOUT 264
SET THIGHLIGHT 265
SETTIMECHECK 265
SETTOFEOF, 266
SETTOOLBAR. 267
SETTOOLBUTTON 267
SETTOOLSET o .. 272
SETTRAILING. 274
SET TRANSLATEIN, TRANSLATEOUT 275
SETTRUNC 275
SETUNDOING., 276
SET VARBLANK. 277
SETVERIFY o 277
SETWINMARGIN 279
SETWORD. 280
SET WORDWRAP 281
SETWRAP 281

SETZONE 282

Chapter 5. QUERY and EXTRACT 284
S5.1QUERY. 284

5.2 EXTRACT and Implied EXTRACTs 285

5.3 QUERY and EXTRACT Operands 287

Chapter 6. MacroReference 329
6.1 Program Structure, 329
6.2Tokens 330

6.3 Symbols and Variables 331

6.4 Assignments 333

6.5 Operators and Expressions. 333

6.6 Commands 338

6.7 Keyword Instructions 339
6.8Functions. 349

6.8.1 Built-in Functions 351

6.8.2 Notes on I/O Functions 375

6.8.3 Boolean Functions 377

6.9 The PARSE Instruction. 381

6.10 Conditions. e 386

6.11 KEXXand REXX. 388

Chapter 7. Built-In Macro Handling. 390
TLOVEIVIEW o v o e o s e e 390

7.2 Keyboard Macros 390

7.3 Toolbar Macros. 394

74 MenuMacros. 395

7.5Mouse Macros e 395

Chapter 8. KEDIT Language Definition Files. 397
8.1 Loading KLD Files. 397
82KLDFileFormat. 398

Chapter 9. Error Messages and Return Codes 410
9.1 Error Messages. 410
92ReturnCodes. 429

Index i i it e 431

10

Chapter 1. Introduction

1.1 Overview of Documentation

This is the second of two volumes of documentation for KEDIT for Windows, the
KEDIT for Windows Reference Manual. The first volume is the KEDIT for Windows
User's Guide.

This Reference Manual has nine chapters:

e Chapter 1, “Introduction”

e Chapter 2, “Invoking KEDIT”

e Chapter 3, “KEDIT Commands”

e Chapter 4, “The SET Command”

o Chapter 5, “QUERY and EXTRACT”

e Chapter 6, “Macro Reference”

e Chapter 7, “Built-in Macro Handling”

e Chapter 8, “KEDIT Language Definition Files”

e Chapter 9, “Error Messages and Return Codes”

The complete details of KEDIT commands and options, including separate chapters on
initialization options, SET options, and the QUERY and EXTRACT commands, can be
found in this Reference Manual.

The User’s Guide has 12 chapters and two appendices:

e Chapter 1, “Introduction”

e Chapter 2, “Getting Started”

e Chapter 3, “Using KEDIT for Windows”

e Chapter 4, “Keyboard and Mouse™

e Chapter 5, “Menus and Toolbars”

e Chapter 6, “Targets”

e Chapter 7, “The Prefix Area”

e Chapter 8, “Selective Line Editing and Highlighting”

Overview of Documentation 11

c
o
=
Q
=}
©
(e)
S
=
=

Chapter 9, “Tailoring KEDIT”
Chapter 10, “Using Macros™

Chapter 11, “Sample Macros”
Chapter 12, “File Processing”
Appendix A, “XEDIT Compatibility”

Appendix B, “Glossary”

If you are just starting with KEDIT, you should first work with the User’s Guide. After
you have gained some experience with KEDIT, you will most often use this Reference
Manual.

1.2 Syntax Conventions

Many KEDIT commands and options can be abbreviated. For example, the
DEFINE command can be entered as DEF, DEFI, DEFIN, or DEFINE. The short-
est legal abbreviation for a command is known as the command’s minimal trunca-
tion. The minimal truncation for DEFINE is DEF. Minimal truncations will be
indicated in the section where commands and their options are discussed by show-
ing the minimal truncation in uppercase and the rest of the command’s name in
lowercase. So the DEFINE command is shown as

DEFine

When you have a choice between two options, the options will be separated by a
vertical bar (°’]””). For example, the commands that allow you to set something ON
or OFF will show ON and OFF like this:

ON | OFF

Optional operands are given in brackets, and operands for which you must substi-
tute an appropriate value are given in italics. For example, the ADD command
(which has A as its minimal truncation) can take a number # as its operand or can
have no operands, in which case one line is added to your file. This is shown as

Add [n]

Be sure not to actually enter the brackets and vertical bars that appear in descrip-
tions of command syntax. They are not part of the actual command and are only
used to help describe the command. While uppercase and lowercase are used in
command descriptions to indicate minimal truncations, you can actually enter
commands in any combination of uppercase and lowercase.

In examples where it is important to indicate the presence of a specific number of
blanks (for example, in the description of the JOIN command), the manual some-
times uses the symbol “_” to represent a blank.

12

Chapter 1. Introduction

e When a complete indication of the syntax of a command according to the conven-
tions given here would be too complicated, a simplified version of the syntax is
given and the text explains the details.

e Menu items and toolbar buttons are referred to by using initial capital letters on the
words involved. For example, the text refers to the Edit Find dialog box and the

Find Next toolbar button.

c
o
=
Q
=}
©
(e)
S
=
=

Syntax Conventions 13

Chapter 2. Invoking KEDIT

2.1 Running KEDITW32.EXE

Editing a file

Examples

To use KEDIT for Windows, you need to run KEDITW32.EXE module. You normally
do this by double-clicking on the KEDIT for Windows program icon. But you can also
run KEDIT via the Windows Start menu, or you can enter the command yourself from
within a Command Prompt window.

The KEDITW32 command is usually issued with no parameters or options. When this
happens, KEDIT for Windows starts by displaying a new file called UNTITLED.I.
You then either add text to this file or, more often, use File Open to select some existing
file to edit.

It is also possible to have KEDIT for Windows start by editing one or more files speci-
fied on the command line or to start by displaying a directory listing in a DIR.DIR file.
And you can also specify command line options that control certain aspects of the
upcoming editing session.

Here are the different forms of the KEDITW32 command:

KEDITW32 [fileid ...] [(options [)]]

KEDITW32 Tells Windows to load in and execute the KEDITW32.EXE module.

fileid ... Tells KEDIT the name of the file or files that you want to edit. If you
don’t specify a fileid, KEDIT will start by editing a new file called
UNTITLED.1.

options Lets you specify special initialization options, discussed in
Section 2.2, “KEDIT Initialization Options”, that will affect this
KEDIT session. A left parenthesis must separate the fileid specifica-
tion from the options specifications, which can optionally be fol-
lowed by a right parenthesis.

KEDITW32

Start KEDIT for Windows. Since you specified no fileid, KEDIT will begin by editing a
new file called UNTITLED.1.

KEDITW32 TEST.C
Start KEDIT for Windows, telling it that you want to edit the file TEST.C.
KEDITW32 DATALl.TXT DATA2.TXT

Start KEDIT for Windows, telling it that you want to edit the files DATA1.TXT and
DATA2.TXT.

14

Chapter 2. Invoking KEDIT

KEDITW32 C:\TEST*.TXT

Start KEDIT for Windows, telling it that you want to edit all files in the C:\TEST direc-
tory with an extension of .TXT.

KEDITW32 TARGET.TXT (PROFILE ALTPROF

Start KEDIT for Windows, telling it that you want to edit the file TARGET.TXT and
that, instead of automatically executing your WINPROF.KEX file it should use
ALTPROF.KEX as your profile.

Viewing a KEDITW32 DIR [filespec ...] [(options [)]]
directory

KEDITW32 Tells Windows to load in and execute the KEDITW32.EXE module.

DIR Tells KEDIT that you want to start out with a directory display.
KEDIT will display the directory listing in a file called DIR.DIR,
just as it does when you issue the KEDIT DIR command.

filespec ... Specifies the files to be included in the directory display. File specifi-
cations can use the usual wildcard characters, asterisk (““*’*) and
question mark (““?”). If no filespec is given, KEDIT lists all files in
the current directory, as discussed in the first example below.

options Lets you specify initialization options, as discussed in Section 2.2,
“KEDIT Initialization Options”.

=
a
|
X
=)
=
4
)
>
=

Examples KEDITW32 DIR

Start KEDIT with a directory listing of all files in the current directory. (When KEDIT
for Windows starts up, the current directory is normally your Windows Documents or
My Documents folder. If you invoke KEDIT via a desktop shortcut, you can override
this by specifying a different “Start In” directory in the shortcut’s Properties dialog box.
SET INITIALDIR also affects KEDIT for Windows’ initial current directory.)

KEDITW32 DIR *.C *.H

Start KEDIT with a directory listing of all files in the current directory that have .C or
.H as their extension.

KEDITW32 DIR D:*.* (PROFILE DIRPROF

Start KEDIT with a directory listing of all files in the root directory of the D: drive, and
tell KEDIT that instead of automatically executing your WINPROF.KEX file, it should
use DIRPROF.KEX as your profile.

Running KEDITW32.EXE 15

2.2 KEDIT Initialization Options

COLumn m

The options that you specify on the KEDITW or KEDITW32 command line used to
start a KEDIT for Windows session are known as initialization options, because their
primary use is to control some aspects of how KEDIT initializes itself at the start of an
editing session. For example, there is a NOREG option that tells KEDIT not to process
configuration information saved in the Windows registry, and a NOPROFILE option
that tells KEDIT to bypass execution of your profile.

Several of the options discussed here can also be used from within a KEDIT for Win-
dows session, when you use the KEDIT command to add additional files to the ring.
For example, if REPROFILE ON is in effect, KEDIT normally re-executes your profile
whenever a new file is added to the ring, but you can override this by using the
NOPROFILE option on the KEDIT command line used to add an additional file to the
ring.

The initialization options that you can specify are:

The COLUMN option tells KEDIT that, as soon as the file is loaded, the cursor should
be moved into the file area to the specified column of the current line. The current line
is initially set to the line specified via the LINE option, or to the Top-of-File line if the
LINE option is not used. An example:

KEDITW32 SAMPLE.FIL (LINE 62 COLUMN 12

This tells KEDIT to begin editing SAMPLE.FIL, and to start with line 62 as the current
line, with the cursor positioned in column 12 of that line.

Line and column values can optionally be enclosed in double-quotes. For example:

KEDITW32 SAMPLE.FIL (LINE "62" COLUMN "12"

DEFPROFile fileid The DEFPROFILE option lets you change the fileid of the default profile to something

other than WINPROF.KEX, or lets you give a drive and path specification for
WINPROF.KEX, thereby avoiding a path search. With REPROFILE ON, this default
profile may be re-executed many times during a KEDIT session, whenever a new file is
added to the ring.

An example:
KEDITW32 TEST.FIL (DEFPROFILE C:\MACROS\MYPROF.KEX

If you specify the DEFPROFILE option on the command line, it overrides any
DEFPROFILE value previously saved in the Windows registry.

FRAMEsize MINimized|MAXimized[NORMal|RECALL The FRAMESIZE option lets you specify that

KEDIT should start with a minimized frame window, a maximized frame window, a
normal (non-minimized, non-maximized) frame window, or whatever size frame win-

16

Chapter 2. Invoking KEDIT

dow was in effect at the end of the last KEDIT for Windows session. If the
FRAMESIZE option is not specified, KEDIT sizes the frame window according to the
value of the INITTALFRAMESIZE option saved in the Windows registry which has
RECALL as its default.

An example:

KEDITW32 TEST.FIL (FRAMESIZE MAX

INSTANCE SINGLE|MULTIPLE Use the INSTANCE option to specify whether, if another instance of
KEDIT for Windows is already running when you try to invoke KEDIT, a new instance
of KEDIT for Windows should be started. With INSTANCE SINGLE, the existing in-
stance is activated, with any files that you specified on the command line added to the
existing instance’s ring of files, and no new instance is started. With INSTANCE
MULTIPLE, a new instance is started and multiple copies of KEDIT for Windows will
be running simultaneously.

-
If the INSTANCE option is not specified on the command line, KEDIT uses the value a
of SET INSTANCE that is saved in the Windows registry; this defaults to INSTANCE v
SINGLE. o
=
An example: %
>
c

KEDITW32 ANOTHER.CPY (INSTANCE MULTIPLE

LINE n The LINE option tells KEDIT that, as soon as the file is loaded, the specified line of the
file should become the current line.

An example:
KEDITW32 SAMPLE.FIL (LINE 62

This tells KEDIT to begin editing SAMPLE.FIL, and to start with line 62 as the current
line.

The LINE option does not affect the cursor position; the cursor is left on the command
line and is not automatically moved to the current line. However, you can use the
COLUMN option to move the cursor to a specified column of the current line.

Line and column values can optionally be enclosed in double-quotes. For example:

KEDITW32 SAMPLE.FIL (LINE "62"

LOCK The LOCK option tells KEDIT to lock the file you edit, so that no other programs can
access the file until you have finished editing it. The LOCK option forces the file to be
locked, even if LOCKING OFF is in effect.

KEDIT Initialization Options 17

MACROPath ON|OFF|envvar]dirlist The MACROPATH option can be used to control which directo-

NEW

NODEFEXT

NOFILEMENU

NOINI

NOLOCK

ries KEDIT looks in when it searches for macros. By default, KEDIT searches the cur-
rent directory and all directories specified in the PATH environment variable. Then it
looks in the “KEDIT Macros” subdirectory of your Windows Documents or My Docu-
ments folder, the directory from which KEDIT for Windows was loaded, and the USER
and SAMPLES subdirectories of that directory. See the discussion of SET
MACROPATH for a description of the values that you can specify for the
MACROPATH option.

If you specify the MACROPATH option on the KEDITW32 command line, it overrides
any MACROPATH value saved in the Windows registry.

An example:

KEDITW32 TEST.FIL (MACROPATH KEXPATH

KEDIT normally looks for the file that you want to edit on disk, reading it in if it exists,
and editing a new file by that name only if no existing copy of the file can be found.
Use the NEW option to tell KEDIT not to bother looking for your file on disk, because
you want to edit a new file by that name regardless of whether the file already exists.
KEDIT does not look in the current directory for your file and does not do a path search
for your file, but instead adds an empty file with the specified fileid to the ring.

The NODEFEXT option tells KEDIT to ignore the current setting of DEFEXT when
determining a fileid, and to act as if DEFEXT OFF were in effect. NODEFEXT is
always in effect for the first file added to the ring. The NODEFEXT option is provided
for use on the KEDIT command line used to add additional files to the ring or move
within the ring. It is used mainly in macros that work with fileids that might not include
extensions.

When you finish editing a file, KEDIT normally adds its fileid to the list of
recently-edited files displayed at the bottom of the File menu. Use the NOFILEMENU
option to prevent a file (for example, a work file used temporarily by a KEDIT macro)
from being added to the list of recently-edited files.

The NOINI does the same thing as the NOREG option; for details see the description
below of the NOREG option.

(KEDIT for Windows now stores its configuration information in the Windows regis-
try, but KEDIT for Windows 1.5 and earlier stored this information in the
KEDITW.INI file. So NOREG is the newer name for this option, but for compatibility
reasons NOINI remains available.)

The NOLOCK option tells KEDIT not to lock the file you edit. If LOCKING ON is in
effect, you can use the NOLOCK option to override it for a particular file.

18

Chapter 2. Invoking KEDIT

NOMsg The NOMSG option causes MSGMODE OFF to be put into effect for the file being
added to the ring. This is a rarely used option, provided mainly for XEDIT

compatibility.

NOPROFile The NOPROFILE option suppresses execution of your profile. It affects only the files
currently being added to the ring, and has no effect on files added to the ring later in
your KEDIT session.

NOREG The NOREG option suppresses KEDIT’s processing of settings previously saved in the Win-

dows registry. KEDIT uses built-in default values for all of its SET options, and does not use the
values saved the registry via Options Save Settings. KEDIT also uses default values for its win-
dow positions, fonts, etc., and does not load information from the registry on recently-edited
files, commands, and search strings.

When the NOREG option is used KEDIT puts REGSAVE NOSTATE NOHISTORY into effect,
so that the existing state and history information in the Windows registry will not be overwritten
at the end of your KEDIT session.

If you use the NOREG option, the information on saved settings displayed by the Options Status
and Options Save Settings dialog box will be based on KEDIT’s default settings and not on your
actual saved settings, since in this case KEDIT does not process the saved settings.

=
a
|
X
=)
=
x
)
>
=

The NOREG option is primarily used when KEDIT is not behaving as you expect and you want
to determine whether the unexpected behavior is caused by some value saved in the registry or is
instead KEDIT’s default behavior. Note that even with the NOREG option in effect, KEDIT will
still execute your profile unless you also specify the NOPROFILE option.

The NOREG option does the same thing as the NOINI option, an older option that remains avail-
able for compatibility with previous versions of KEDIT.

PATH ON|OFF|envvar]dirlist The PATH option can be used to control which directories KEDIT looks in
when it searches for files you want to edit. By default, KEDIT searches the current di-
rectory and all directories specified in the PATH environment variable. Then it looks in
the “KEDIT Macros” subdirectory of your Windows Documents or My Documents
folder, the directory from which KEDIT for Windows was loaded, and the USER and
SAMPLES subdirectories of that directory. See the discussion of SET PATH for a de-
scription of the values that you can specify for the PATH option.

If you specify the PATH option on the KEDITW32 command line, it overrides any
PATH value saved in the Windows registry.

An example:

KEDITW32 TEST.FIL (PATH EDITPATH

KEDIT Initialization Options 19

PROFDEBUG

PROFile fileid

UNTITLED

Width n

Notes

The PROFDEBUG option helps you debug problems with your KEDIT profile by run-
ning your profile with the KEXX debugger active. It does this by internally issuing the
command DEBUG WINPROF.KEX instead of the command MACRO
WINPROF.KEX to run your KEDIT profile. This turns on the debugging window and
runs your profile with interactive tracing in effect.

The PROFILE option tells KEDIT not to run the default profile macro (controlled by
the DEFPROFILE option and usually WINPROF.KEX) but instead to run the specified
profile. Unlike the DEFPROFILE option, the PROFILE option only affects the profile
for the files currently being added to the ring, and does not affect the profile to be used
when additional files are added to the ring later in your editing session.

An example:
KEDITW32 TEST.FIL (PROFILE ALTPROF

The UNTITLED option tells KEDIT that you want to edit a new, untitled file, whose
file name and extension are of the form UNTITLED.n.

If the UNTITLED option is used, the command line involved cannot specify a fileid,
since KEDIT automatically generates a new UNTITLED.# fileid.

If no fileid is specified on the command used to start a KEDIT session, the UNTITLED
option is assumed and need not be explicitly specified; this is why KEDIT for Windows
automatically starts with a file called UNTITLED.1 if invoked with no fileid. The
UNTITLED option is also used by the macro that handles the File New menu item.

The WIDTH option, whose value can range from 1024 to 999999, controls the length
of the longest line that KEDIT can read in or process. The default value for WIDTH is
10000, meaning that you can edit files with lines up to 10000 characters long; any lines
that are longer are automatically split when KEDIT reads them in. To usefully edit files
with longer lines, you will need use to a larger WIDTH value.

If you frequently need to edit files with lines longer than 10000 characters long, you
can issue the SET INITIALWIDTH command within a KEDIT session; this value will
be automatically saved in the Windows registry and will determine the WIDTH value
put into effect by default in future KEDIT sessions. If you specify the WIDTH option
on the command line used to invoke KEDIT for Windows, it overrides any
INITIALWIDTH value saved in the Windows registry.

The WIDTH value is established during KEDIT initialization, and cannot be changed
in the middle of a KEDIT session.

An example:

KEDITW32 (WIDTH 32000

e Several of these options—PROFILE, NOPROFILE, LINE, COLUMN, PROF-
DEBUG, LOCK, NOLOCK, NEW, NODEFEXT, NOFILEMENU, UNTITLED,
and NOMSG—can also be given from within KEDIT for Windows when you is-
sue the KEDIT command to add additional files to the ring. These options let you

20

Chapter 2. Invoking KEDIT

specify the profile to be executed, etc., for the newly-added file. You can also use
the PROFILE, NOPROFILE, LINE, COLUMN, PROFDEBUG, and NOMSG op-
tions with the DIR, DIRAPPEND, and MACROS commands, since these com-
mands can also cause a file to be added to the ring. Because of the special
processing done internally by these commands, the other options are not relevant.

e Most of these options are rarely used, and KEDIT for Windows is usually invoked
without any options. Initialization options are most often used to override
KEDIT’s normal behavior during a particular editing session. For example, you
could use the WIDTH option to change the maximum line length for a particular
editing session, or use the DEFPROFILE option to change the default profile from
WINPROF.KEX to some other fileid for a particular editing session. But to make
changes to the maximum line length or default profile that would affect all future
editing sessions, you would instead issue the SET INITIALWIDTH or SET
DEFPROFILE commands from within KEDIT. If you then save their new values
in the Windows registry via Options Save Settings, the saved settings will affect all
future editing sessions. (Options Save Settings is required for SET DEFPROFILE;
the registry is updated automatically for SET INITIALWIDTH and for a few other
options.)

e Several of the initialization options affect behavior that cannot be controlled
directly from your profile because the processing involved takes place before
KEDIT runs your profile. For example, KEDIT must determine the WIDTH value
before your profile is executed so that it can set up some of the memory buffers that
it needs to use while processing your profile. Similarly, the decision on what pro-
file to run for the first file added to the ring must obviously be made before your
profile can be executed, so any SET DEFPROFILE commands in your profile can
only affect the default profile used for future files added to the ring, not the profile
used for the first file added to the ring. (SET INITIALWIDTH or SET
DEFPROFILE commands issued in a previous session and saved in the Windows
registry would, however, affect the first file added to the ring in the current
session.)

=
a
|
X
=)
=
4
)
>
=

e You can also specify initialization options through the environment variable
KEDITW. During initialization, KEDIT for Windows looks for this environment
variable and processes any options it contains.

SET KEDITW=options

The KEDITW environment variable is rarely used. Since it affects all KEDIT for
Windows sessions and cannot be changed without first exiting Windows, it is only
useful for options that you want in effect for all KEDIT sessions. But this type of
option is usually controlled through the KEDIT SET command. For example, if
you always want to use a WIDTH value of 32000 instead of the default of 10000,
you can issue the command SET INITIALWIDTH 32000 from within KEDIT;
this value will then be saved in the Windows registry and will take effect in all
future KEDIT sessions.

e Multiple options can be specified with the KEDITW environment variable or on
the command line. For example,

KEDIT Initialization Options 21

Passing
arguments to
your profile

SET KEDITW=DEFPROF C:\MACROS\MYPROF WIDTH 32000
KEDITW PROG.PAS (PROFILE PASCAL LOCK

If you specify the same option twice or you give conflicting options, the option
specified last takes precedence. Options specified on the command line take prece-
dence over options specified via the KEDITW= environment variable.

When KEDIT runs your profile (either at the start of an editing session or when
REPROFILE ON is in effect and an additional file is being added to the ring), it passes
an argument string to your profile. This string consists of the name of the file being
edited (including its full path specification) and any options that you specify on the
command line, including the left parenthesis, optional right parenthesis, and any text
that follows the right parenthesis. Your profile can use the ARG(1) function or the
PARSE ARG instruction to access this information.

Any text that follows the optional right parenthesis on the command line is passed to
your profile but is otherwise ignored by KEDIT. You can take advantage of this to pass
parameters of your own to your profile. For example, consider the command line

KEDITW32 TEST.C (PROFILE SPECIAL) USER PARM

Your profile (in this case, the PROFILE option would cause the profile SPECIAL.KEX
to run) could use the following to get at the parameter information passed to it:

parse arg fileid . '(' options ')' extra

This would set three variables. The variable fileid would get the fileid involved, includ-
ing the full drive and path specification that KEDIT will use to edit the file. The
variable options would get any initialization options specified, in this case
“PROFILE SPECIAL”. The variable extra would get the text that follows the right
parenthesis, in this case “ USER PARM”. Your profile could then make decisions based
on the values of these variables.

2.3 Initialization Processing

Single and
multiple
instances

This section describes some of the processing done during KEDIT initialization, so that
you can better understand the relationship between KEDIT’s initialization options,
KEDIT’s section of the Windows registry, and your profile.

When KEDIT for Windows is loaded, it checks to see if another instance of KEDIT for
Windows is already executing. If not, KEDIT continues to initialize in the normal way.
But if another instance is active, KEDIT needs to determine whether INSTANCE
SINGLE should be in effect (in which case the existing instance of KEDIT will be acti-
vated and the new instance of KEDIT will terminate) or whether INSTANCE
MULTIPLE should be in effect (in which case the new instance of KEDIT will con-
tinue, running simultaneously with the existing instance).

If the INSTANCE SINGLE or INSTANCE MULTIPLE initialization option has been
specified, KEDIT puts the specified value into effect. If not, and if the NOREG and
NOINT initialization options have not been specified, KEDIT checks the Windows reg-
istry to see if it contains a saved setting of INSTANCE MULTIPLE, and if so puts

22

Chapter 2. Invoking KEDIT

Registry

Initialization
options

Profile
processing

INSTANCE MULTIPLE into effect. Otherwise, KEDIT puts the default of
INSTANCE SINGLE into effect. KEDIT then acts accordingly, activating the existing
instance for INSTANCE SINGLE or continuing to initialize the new instance for
INSTANCE MULTIPLE.

Next, unless the NOREG or NOINI initialization options have been specified, KEDIT
reads information previously saved in KEDIT’s section of the Windows registry. Saved
settings from the registry are put into effect, overriding the default settings built into
KEDIT. KEDIT also processes the registry's status information (on KEDIT’s fonts,
window positions, etc.) and history information (KEDIT’s recently-edited files,
recently-issued commands, etc.).

At this point the initialization options (other than INSTANCE, NOREG, and NOINI,
which have already been processed) are put into effect. Some of these options override
the effect of KEDIT default settings or settings loaded from the Windows registry. For
example, the WIDTH initialization option overrides any INITIALWIDTH setting
loaded from the registry, and the PATH and MACROPATH initialization options over-
ride PATH and MACROPATH settings loaded from the registry.

KEDIT next searches for the initial file to be edited, if necessary doing a path search
controlled by the PATH value, to locate the file. Then, unless the NOPROFILE option
has been specified, KEDIT runs your profile.

If you have not used the PROFILE initialization option to specify the name of the pro-
file to execute, KEDIT uses as the name of your profile the value of DEFPROFILE,
which defaults to WINPROF.KEX. KEDIT looks for your profile in the current direc-
tory of the current drive. If KEDIT can’t find it there, it then does a path search, con-
trolled by the MACROPATH value, for your profile. Finally, it looks in the “KEDIT
Macros” subdirectory of your Windows Documents or My Documents folder, the
directory from which KEDIT for Windows was loaded, and the USER and SAMPLES
subdirectories of that directory. If your profile still can't be found, KEDIT assumes that
it doesn't exist.

Note that KEDIT begins to execute your profile after it has processed settings saved in
the Windows registry, has processed any initialization options, and has determined
which file will be edited, but before it has loaded the file into memory. This means that
your profile can make decisions based on the fileid involved, that SET commands
issued from your profile override the values of settings loaded from the registry, and
that your profile can issue commands, like SET TABSIN and SET EOFIN, that affect
the handling of your file during the loading process.

If your profile issues any command that depends on your file being loaded (such as a
LOCATE or CHANGE command), KEDIT loads your file before processing the com-
mand. Otherwise, KEDIT loads your file after completion of your profile. (Exceptions
to this include the SET command, the EXTRACT command, implied EXTRACT func-
tions, and Boolean functions, which are processed as they are encountered in your pro-
file, and do not force loading of your file. This can affect the information they return.
For example, SIZE.1() will return 0 if issued before your file is loaded, regardless of
the size of your file. On the other hand, items like FEXT.1() don’t depend on your file
being loaded and can be usefully examined early in your profile.)

Initialization Processing 23

=
a
|
X
=)
=
4
)
>
=

You can force KEDIT to load your file at any point in your profile by issuing a com-
mand like LOCATE 0. (LOCATE 0 is useful because it does not change the current line
location, which is usually set to the top-of-file line when a file is loaded but can be set
elsewhere if the LINE initialization option is used.)

Here is a full list of the commands that can be issued from your profile without forcing
the loading of your file: SET, EXTRACT, DEFINE, CHDIR, CHDRIVE, CMSG,
COMMAND, DEBUG, DMSG, DOS, DOSNOWAIT, DOSQUIET, EDITV, EMSG,
ERASE, EXTRACT, HELP, HIT, IMMEDIATE, LEFT, MACRO, MSG, NOMSG,
PRESERVE, PURGE, QQUIT, QUERY, QUIT, RENAME, RESTORE, RGTLEFT,
RIGHT, SET, SHOWDLG, SYNEX, WINDOW, WINEXEC, WINHELP, WMSG, =,
and ?.

The positioning done by the LINE and COLUMN initialization options takes place
immediately after the file is loaded, and before KEDIT process any commands in your
profile that operate on the contents of your file.

2.4 Editing Additional Files

Initialization
options

Profile
processing

The previous section described the initialization processing done by KEDIT when the
first file is added to the ring at the start of an editing session. From then on, whenever a
file is added to the ring, similar but somewhat simpler processing takes place.

There is no need to worry about how many instances of KEDIT are active, since the
additional file will be edited by the current instance of KEDIT. KEDIT keeps a copy of
the saved settings from the Windows registry in memory throughout the editing ses-
sion, so KEDIT does not need to re-read these settings when a new file is added to the
ring.

KEDIT does not re-process the initialization options set via the KEDITW= environ-
ment variable, but KEDIT does process any initialization options present on the
KEDIT command line used to add the additional file to the ring. Only the PROFILE,
NOPROFILE, PROFDEBUG, LOCK, NOLOCK, NEW, NODEFEXT,
NOFILEMENU, UNTITLED, and NOMSG options are valid at this point.

When a file is added to the ring, KEDIT needs to initialize all of its File level settings,
as well as the View level settings for your initial view of the file. How this is done
depends on whether your profile will be re-executed, which in turn depends on the
value of SET REPROFILE.

If REPROFILE ON is in effect, or if the PROFILE initialization option is specified,
KEDIT first initializes the File and View level settings according to the saved settings
in the Windows registry. (If you specified the NOREG or NOINI when invoking
KEDIT, KEDIT instead uses its built-in default values and does not use the saved set-
tings from the registry). KEDIT then runs your profile, which may then make changes
to these settings.

If REPROFILE OFF is in effect, your profile will not be re-executed. KEDIT copies
most of the File and View level settings from the current file to the newly-added file.

24

Chapter 2. Invoking KEDIT

(ALT, LRECL, RECFM, DISPLAY, SCOPE, TRUNC, VERIFY, and ZONE are excep-
tions to this; their initial defaults are used.)

Notes .

If you specify multiple files at a time on the KEDIT command line used to add ad-
ditional files to the ring after a KEDIT session has started, the processing de-
scribed in this section takes place repeatedly, once for each file added to the ring.

If you specify multiple files at a time on the command line used to invoke KEDIT
for Windows, the full KEDIT initialization processing described in the preceding
section takes place for the first of those files and the processing described in this
section takes place for the rest of those files.

Editing Additional Files

25

=
a
|
X
=)
=
4
)
>
=

Chapter 3. KEDIT Commands

This chapter gives detailed information on all KEDIT commands, with the exception of
the SET, QUERY, and EXTRACT commands. Full documentation on the SET com-
mand is in Chapter 4, “The SET Command”, and details of the QUERY and EXTRACT
commands are in Chapter 5, “QUERY and EXTRACT”.

ADD

Format

Description

See also

Examples

Add [n]

The ADD command adds # blank lines to your file. If z is not given, one line is added.

The blank lines are added below the focus line. The first blank line added becomes the
new focus line and the cursor is positioned in the left margin column of this line.

SOS LINEADD

ADD

Add one blank line below the focus line. (You can also press function key F2 to add one
line to your file.)

ADD 5

Add five blank lines below the focus line.

ALERT

Format

Description

ALERT /prompt/ [options]

where options can be:

EDITfield [/initial/]

TITLE /title/

OK | OKCANCEL | YESNO | YESNOCANCEL

DEFButton n
ICONExclamation|ICONInformation|ICONQuestion|ICONStop
FIXEDfont

PASSWORD

Use the ALERT command within KEDIT macros to display dialog boxes that present
error messages or messages of special importance to users of the macro. The
more-frequently-used DIALOG command is used for normal dialog boxes.

26

Chapter 3. KEDIT Commands

See also

Examples

See the DIALOG command for a full discussion of the options involved. The ALERT
command and the DIALOG command take the same operands and behave identically,
with these exceptions:

e Unless you explicitly specify a different type of icon, the ICONSTOP (stop sign)
icon is displayed when you use the ALERT command.

e IfBEEP ON is in effect, the speaker will beep when an ALERT dialog box is dis-
played.

e The results from ALERT are returned in the macro variables ALERT.0, ALERT.1,

and ALERT.2. The DIALOG command instead uses DIALOG.0, DIALOG.1, and
DIALOG.2.

DIALOG, POPUP

ALERT /Invalid name specified/ TITLE /Error/

ALERT /Option invalid; continue ?/ YESNO DEFBUTTON 2

ALL

Format

Description

ALL [target]

The ALL command causes KEDIT to search through your file for all lines containing
the specified target, using KEDIT’s selective line editing facilities to select these lines
for display. All other lines of your file are temporarily excluded from the display.

When you once again want to work with all lines of your file, you can issue the ALL
command with no operands, and all lines of your file will again be selected.

Note that you can also use the Edit Selective Editing dialog box to control the selective
line editing facility.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, gives a complete
introduction to the ALL command and to KEDIT’s selective line editing facilities.

After completion of the ALL command with a target operand, the first selected line
becomes the focus line, and KEDIT puts SCOPE DISPLAY into effect. The ALL com-
mand gives lines that match the specified zarget a selection level of 1, gives lines that
don’t match a selection level of 0, and sets DISPLAY to 1 1 so that only matching lines
will be selected for display. With SCOPE DISPLAY, lines that are excluded from your
display are also excluded from processing by all KEDIT commands except FILE,
SAVE, and SORT. If you put SCOPE ALL into effect, KEDIT commands operate on all
lines, even lines that are excluded from the display.

ALL

27

Commands

See also

Examples

If SHADOW ON (the default) is in effect, a shadow line appears on your display wher-
ever lines have been excluded, indicating how many lines are excluded. With
SHADOW OFF, excluded lines are not represented at all on your display.

The ALL command with no operands resets the selection level of all lines in the file to
0, and then sets DISPLAY to 0 0, so that all lines of the file are selected for display. ALL
with no operands does not change the focus line location.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, LESS, MORE,
TAG, SET DISPLAY, SET SCOPE, SET SELECT, SET SHADOW, QUERY
NBSCOPE

ALL /telephone/

All lines of your file containing the string “telephone” are selected for display; all
other lines are excluded. The first line of your file containing “telephone’” becomes the
focus line. (If your file does not contain “‘telephone”, KEDIT issues an error message
and takes no further action.)

ALL /upper/ | /lower/
All lines of your file containing “upper” or “lower” are selected for display.
ALL

Issuing the ALL command with no operands causes all lines of the file to be selected for
display, effectively canceling the effect of a previous ALL command that caused lines
to be excluded.

ALL BLANK
DELETE *
ALL

In this example, all blank lines are deleted from a file. The first ALL command selects
all blank lines in the file for display and further processing and makes the first selected
line the focus line. The DELETE command then deletes all selected lines (in this case,
all blank lines) from the file. The second ALL command then causes all lines remaining
in the file to once again be selected.

ALL BLOCK

This is handled as a special case. All lines in the currently defined block are selected,
and all other lines in the file are excluded.

ALTER

Format

Description

ALter charl char2 [target [n [m]]]

The ALTER command is similar to the CHANGE command, but rather than changing
one string of characters to another, it changes one character, charl, to another, char?.

28

Chapter 3. KEDIT Commands

See also

Examples

Either or both of the characters can be special characters not represented on the PC’s
keyboard. To understand this description of the ALTER command, you should first
read the description of the CHANGE command. The target, n, and m operands work in
the same way as they do with the CHANGE command.

With the ALTER command, occurrences of char! (the first character that you specify)
are changed to char?2 (the second character that you specify). You can specify charl
and char? in either of two ways. If the character appears on a key on the keyboard, you
can simply enter it. For example, to change an “A” into a ““B”” you could enter

ALTER A B

You can also specify charl and char? by giving the character codes for the characters
involved. This allows you to easily work with special characters not on the PC’s key-
board. You enter the two- or three-digit decimal value of the code for the character you
want. For example, to change a formfeed character (character code 12) to a tab charac-
ter (character code 9), you could enter

ALTER 12 09
The two methods can be mixed:
ALTER 09 +

This example would change a tab character into a plus sign. (KEDIT requires “09”’ and
not simply “9”” in these examples so that it can distinguish between the tab character,
which has character code 9, and the character “9”’, which has character code 57.)

When issued from a macro, the ALTER command sets the macro variable ALTER.O to
2, returns the number of occurrences changed in ALTER.1, and returns the number of
lines changed in ALTER.2.

CHANGE

ALTER 09 32 ALL *

Change all occurrences of tab characters (character code 9) throughout the entire file to
blanks (character code 32).

ALTER + 12 :15 *

Change all occurrences of “+”, in all lines from the focus line up to but not including
line 15, to formfeed characters (character code 12).

ANSITOOEM

Format

Description

ANSITOOEM [target]

Use the ANSITOOEM command to convert text in a specified portion of your file from
the ANSI character set to the OEM character set.

ANSITOOEM

29

Commands

See also

Examples

All text within the specified target area that falls within the current ZONE columns is
converted. If the target area is a box block, its entire contents are converted, regardless
of the ZONE settings.

OEMTOANSI, User’s Guide Section 3.7, “Character Sets”

ANSITOOEM ALL

Convert all lines of the file from ANSI to OEM.

BACKWARD

Format

Description

See also

Examples

BAckward [n|*|HALF|m Lines]

The BACKWARD command causes KEDIT to scroll the current window backward,
towards the top of your file.

BAckward
KEDIT scrolls one window backward in your file. This command is normally as-
signed to the Page Up key.

BAckward n
KEDIT scrolls » windows backward in your file, as if you had pressed the Page Up
key n times.

BAckward *
KEDIT scrolls backward all the way to the top of your file, making the top-of-file
line become the focus line.

BAckward HALF
KEDIT scrolls one half-window backward in your file.

BAckward m Lines
KEDIT scrolls backward m lines in your file.

You can also move forward and backward in your file by using the mouse to manipulate
the vertical scroll bar.

FORWARD

BACKWARD 2

KEDIT scrolls backward two windows in your file, as if you had pressed the Page Up
key twice.

BACKWARD 4 LINES

KEDIT scrolls four lines backward in your file.

30

Chapter 3. KEDIT Commands

BOTTOM

Format Bottom

Description The BOTTOM command makes the last line of the file become the focus line. With
INTERFACE CUA in effect, you can also press Ctrl+End to get to the end of your file.
With INTERFACE CLASSIC you can instead press Ctrl+Page Down.

See also TOP

CANCEL

Format CANCEL

Description The CANCEL command causes KEDIT to internally issue QUIT commands for all
files in the ring. Any files that have been changed since their last SAVE will remain in
the ring, since QUIT only affects files that have not been changed.

See also QUIT, QQUIT

CAPPEND

Format

Description

CAppend [text]

The CAPPEND command (““‘column append”) sets the focus column to be one charac-
ter beyond the last character of the focus line and then appends any text that you specify
to the focus line, beginning at the focus column.

Commands

For example, if the focus line consisted of
Hello

and you entered the command
CA__there.

the focus line would be changed to

Hello there.

The focus column would be positioned at the blank between “Hello” and ““there”.

Note that in the above example, the “CA” is followed by two blanks. The first blank
following the command is ignored, but any additional blanks (in this case there is one)
are appended to your text. Had you issued the command with only one blank

CAPPEND

31

Examples

CA_there.

no blanks would have been appended after the ““0”” of ““Hello’” and the focus line would
look like this:

Hellothere.

If CAPPEND is entered with no operands, no change is made to the focus line, but the
focus column is set just beyond the last character of the line.

CAPPEND can be used in connection with the REPEAT command to append the same
text to the end of a group of lines.
CAPPEND, .

A period is added after the last nonblank character of the focus line. The focus column
is set to the column with the period.

CAPPEND__ABCDEF

Two blanks have been entered after CAPPEND. A blank and the letters “ABCDEF”
are placed at the end of the focus line, and the column pointer is set to point to the blank.

CDELETE

Format

Description

See also

Examples

CDelete [column-target]

The CDELETE command (““‘column delete”) deletes text, starting at the focus column
and continuing through the column indicated by the column target operand. (If no
operand is given, only the character at the focus column position is deleted.)

Column targets, discussed in detail in User’s Guide Chapter 6, “Targets”, are a special
type of target used only with the CDELETE and CLOCATE commands.

If the column target that you specify is on the focus line, only characters on the focus
line are deleted. If the column target is not located on the focus line (you specified a
string column target, STREAM ON was in effect, and KEDIT had to search beyond the
focus line to find the string) characters on two or more lines are deleted. Any lines on
which all characters are deleted are simply deleted from your file. If only some charac-
ters on a line are deleted, the line is not deleted from your file, but the required charac-
ters are removed from the line.

After the deletion, the last line on which characters were deleted becomes the focus line
and the focus column’s location is unchanged.

SET STREAM

CDELETE 2

The character at the focus column and the character following it are deleted.

32

Chapter 3. KEDIT Commands

CDELETE -3

The character at the focus column and the two characters preceding it are deleted.

CDELETE *

All characters on the focus line, starting from the character at the focus column, are
deleted.

:1

CL :73
CDELETE *
REPEAT *

This sequence of commands would move you to line 1 of the file and make column 73
become the focus column. Then it would go through the file, removing all characters in
the file located at or to the right of column 73.

CDELETE /Hello/

All characters from the character at the focus column up to (but not including) the “H”’
in the next occurrence of ““Hello” are deleted. If STREAM OFF is in effect, the occur-
rence of “Hello”” must be in the focus line or an error will result.

CENTER

Format

Description

See also

Examples

CEnter [target]

Text in the specified target area is centered within the current margins.

You can use CENTER BLOCK to center line blocks, box blocks, and one-line stream
blocks. Box blocks and one-line stream blocks are given special handling: KEDIT cen-
ters the text within the block boundaries, and text outside the block is not affected. You
cannot center a multi-line stream block.

LEFTADJUST, RIGHTADJUST, SET MARGINS

CENTER

Text in the focus line is centered within the current margins. This is the default assign-
ment for Shift+Ctrl+C.

CENTER ALL

All text in the file is centered within the current margins.

CENTER

33

Commands

CFIRST, CLAST

Format

Description

CFirst
CLAst

The CFIRST command (“‘column first””) makes the left zone column become the focus
column.

The CLAST command (““‘column last’”) makes the right zone column become the focus
column.

CHANGE

Format

Description

Change /stringl/string2/ [target [n [m]]]

Use the CHANGE command to change occurrences of one string to another. Note that
the Edit Replace dialog box provides a simpler but somewhat less powerful way to
make such changes.

The CHANGE command causes KEDIT to search your file for occurrences of stringl
and to change them to string2. KEDIT examines all lines in the zarget area and changes
the first n occurrences of string [in each line to string2. (An additional operand, m, lets
you specify that KEDIT start with the mth occurrence of string/ rather than with the
first occurrence.) If no target is given, KEDIT only searches the focus line. If # is not
given, only the first occurrence of string/ in each line is changed to s#ring2. You may
enter an asterisk (““*’’) instead of a number to indicate that all occurrences of string/
on a given line should be changed to string2. For example,

CHANGE /Hello/Goodbye/ 10 *

This example tells KEDIT to change all occurrences of “Hello” in the focus line and
the nine lines following it, for a total of ten lines, to “Goodbye™.

String Il and string?2 are set off by delimiter characters, which are normally slash charac-
ters (““/”’). However, any special character (characters other than letters, numbers, and
blanks) can be used as the delimiter character. The only restriction is that the delimiter
character cannot appear anywhere within string! or string?2.

If stringl is longer than string2, the line of text involved will be shortened by the
change. If stringl is shorter than string2, the line will be lengthened by the change. If
the resulting line would extend beyond the truncation column, all characters pushed
beyond the truncation column will be lost.

When searching a line for text that matches string!, KEDIT is affected by the settings
of ARBCHAR, CASE, and ZONE. The description of SET HEX discusses the hexa-
decimal and decimal notation you can use for stringl and string2 if HEX ON is in
effect.

34

Chapter 3. KEDIT Commands

WORD, PREFIX, and SUFFIX (which can be truncated to “W”’, “P”’, and ““S”’) can
precede /stringl/, just as they can with string targets, to indicate that the occurrences of
stringl that you want to change must occur at word boundaries (or, for PREFIX or
SUFFIX, be preceded or followed by word boundaries). For example,

CHANGE WORD /The/Some/ 1 *

would change any occurrences of the word “The” on the focus line, but would not
change occurrences of the word “These”.

You can also precede stringl with REGEXP (which can be truncated to “R”’). This
allows you to use regular expression notation in stringl and can use references to
tagged regular expressions in string2. For example,

CHANGE R /ABC{[0-9]}XYZ/&ls&l/ ALL *

would change all occurrences in your file of “ABC” followed by a digit followed by
“XYZ” to two occurrences of that digit. So “ABC5XYZ” would become “55.
KEDIT’s regular expression support is described in detail in User’s Guide Chapter 6,
“Targets”.

If STAY ON is in effect, the line that is the focus line when you enter the CHANGE
command remains the focus line when the CHANGE command has completed. If
STAY OFF is in effect, the last line scanned becomes the new focus line after the
CHANGE command completes.

You can make the CHANGE command operate within the currently-defined block by
using BLOCK as the target operand. The CHANGE command will operate within the
portions of a line or stream block that are within the current zones. Box blocks are
given special handling: KEDIT looks for string! within the boundaries of the box
block, regardless of the zone settings, and does not shift text in or out of the box while
making changes.

If you issue the CHANGE command with no operands, KEDIT re-executes the last
CHANGE command issued from the command line.

When issued from a macro, the CHANGE command sets the macro variable
CHANGE.O to 3, returns the number of occurrences changed in CHANGE.1, returns
the number of lines changed in CHANGE.2, and returns the number of lines truncated
(because the changed text would have extended beyond the truncation column) in
CHANGE.3.

See also ALTER, COUNT, SCHANGE, SET ARBCHAR, SET CASE
Examples CHANGE /A/B/* *
Changes all occurrences of the letter ““A’ to the letter ““B”” in all lines from the focus
line through the bottom of the file.
CHANGE /A/B/ALL *
Changes all occurrences, in all lines of your file, of the letter ““A’ to the letter “B”".
CHANGE 35

Commands

CHANGE /1234/5678/
Changes the first occurrence of ““1234” in the focus line to “5678”.
CHANGE /87 years ago/Four score and seven years ago/

Changes the first occurrence of ““87 years ago” in the focus line to “Four score and
seven years ago’’.

CHANGE ;A/B;C/D; 1 *

Changes all occurrences of ““A/B” in the focus line to “C/D”. Note that you could not
use ““/” as a delimiter here, since string ! and string2 both contain slashes. A semicolon
(*;”) was used instead.

CHANGE /large/small/ PARA 2 3

“PARA” indicates that changes are to occur in the focus paragraph. The ““2” indicates
that at most two occurrences per line of “large” are to be affected. The ““3”* indicates
that changes are to start with the third occurrence of ““large” on each line. So this com-
mand changes the third and fourth occurrences of “large” to “small” on each line of
the focus paragraph.

CHANGE

Since no operand is given here, KEDIT re-executes the last CHANGE command issued
from the command line.

CHDIR, CHDRIVE

Format

Description

CHDir [d:]path
CHDRive d[:]

Use the CHDIR command to make a different directory become the current directory. If
both a drive and directory are specified, KEDIT changes both the current drive and the
current directory.

You can use CHDIR or its minimal truncation, CHD, to change to a new current direc-
tory from within KEDIT. CD, which is often used for this purpose from the DOS com-
mand line, cannot be used, because KEDIT treats CD as an abbreviation of the
CDELETE command. Another way to change the current directory from within
KEDIT is to use the File Directory dialog box.

The current directory is used within KEDIT for several purposes. For example, when
you use File New to begin editing an untitled file, the current directory is used as the
path specification for that file. When you use the DOS command to shell to an
MS-DOS command session, that session inherits KEDIT’s current directory. And
when you issue the KEDIT command and do not give a path specification for the file
you want to edit, KEDIT begins its search in the current directory. Note that the CHDIR

36

Chapter 3. KEDIT Commands

See also

Examples

command does not affect the default directory for the File Open dialog box, which
KEDIT keeps separate track of.

CHDIR =

is handled as a special case; the drive and directory of the current file become your cur-
rent drive and directory.

Use the CHDRIVE command to make a different drive become the current drive; what-
ever current directory is already in effect for that drive will become KEDIT’s current
directory.

You can use the QUERY DIRECTORY command to determine the current drive and
directory, or to determine the current directory of a specified drive.

SET INITIALDIR

CHDIR \PROJECT

Makes the \PROJECT directory of the current drive become the current directory.
CHDIR E:\PROJECT

Makes E: the current drive and makes E:\PROJECT the current directory.

CHDIR "E:\My Project"

Makes E: the current drive and makes E:\My Project the current directory. Note that
directory names containing blanks must be enclosed in double quotes.

CHDIR =

If you are editing, for example, C\TEST\NOTES.TXT, then the C: drive becomes the
current drive and C:\\TEST becomes the current directory.

CHDRIVE D:

Makes the D: drive become the current drive; the D: drive’s current directory becomes
your new current directory.

CHDIR \\SERVER\PROJECTS\TEST

This makes the directory W\SERVER\PROJECTS\TEST, accessed using a UNC (Uni-
versal Naming Convention) name, become the current directory. Note that when a
UNC directory is the current directory, there is no current drive.

CHDIR, CHDRIVE 37

Commands

CINSERT

Format

Description

See also

Examples

CInsert text

The CINSERT command (“‘column insert”) inserts the text you specify into the focus
line, beginning at the focus column location. Text that was at or to the right of the focus
column location is shifted to the right to make room for the inserted text.

A single blank separates CINSERT from the text that you want inserted. [f CINSERT is
followed by more than one blank, all blanks after the first are taken to be part of the text
that you are inserting. KEDIT inserts the text that you enter, from the character after the
blank following CINSERT through the end of the command string, including any trail-
ing blanks.

Here is an example of the CINSERT command. Assume the focus line looks like this:
ABCDEJKLM

If you issue

CLOCATE :6

the focus column will be at the “J”” in column 6 of the focus line. If you then issue
CINSERT FGHI

KEDIT will insert “FGHI”, starting at column 6 and pushing “JKLM” to the right,
yielding

ABCDEFGHIJKLM

The CINSERT command does not change the focus column or focus line location. Any
characters that would be inserted beyond the truncation column, or that would be
shifted beyond the truncation column by the insertion, are truncated.

CREPLACE, COVERLAY

CINSERT__Hello

Here, the “CINSERT” is followed by two blanks, so the second blank becomes part of
the text to be inserted. KEDIT inserts a blank followed by “Hello” into the focus line,
starting at the focus column location.

CI X
KEDIT inserts an “X’* into the focus line, starting at the focus column location.
CI X_.

KEDIT inserts an “X”* followed by two blanks, starting at the focus column location.

38

Chapter 3. KEDIT Commands

CLIPBOARD

Format CLIPboard COPY|CUT |PASTE
CLIPboard APPEND CUT|COPY
CLIPboard PUT text
CLIPboard APPEND PUT text
CLIPboard CLEAR

Description The CLIPBOARD command moves data to or from the Windows clipboard. It is used
mainly in the macros that handle the clipboard related items on the Edit menu, and in
their toolbar and keyboard equivalents.

CLIPboard COPY
If the cursor is on the command line, the contents of the command line selection
are copied to the clipboard, replacing any previous contents of the clipboard. If
there is no command line selection, KEDIT will instead copy the currently marked
block to the clipboard. Command line selections are possible only if INTERFACE
CUA is in effect.

If the cursor is in the file area, the contents of the currently marked block are cop-
ied to the clipboard, replacing the previous contents of the clipboard. An error
message is displayed if there is no block marked in the current file.

The Edit Copy menu item, the Copy to Clipboard toolbar button, Ctrl+Delete, and
(if INTERFACE CUA is in effect) Ctrl+C all issue the CLIPBOARD COPY com-
mand.

CLIPboard CUT
This does the same thing as CLIPBOARD COPY (that is, it copies the contents of
a marked block or command line selection to the clipboard), and then it deletes the
data involved from your file or from the command line.

The Edit Cut menu item, the Cut to Clipboard toolbar button, Shift+Del, and (if
INTERFACE CUA is in effect) Ctrl+X all issue the CLIPBOARD CUT command.

CLIPboard PASTE
If the cursor is on the command line, data from the clipboard is copied to the
KEDIT command line at the cursor position, replacing any existing command line
selection. You can only paste a single line of text from the clipboard to the com-
mand line. If there are multiple lines of text in the clipboard, attempts to paste to
the command line will cause an error message. Any tab characters in data pasted to
the command line are changed to blanks.

Commands

If the cursor is in the file area, data from the clipboard is copied into your file. If
INTERFACE CUA is in effect and you have just marked an anchored block (that
is, marked a block with the mouse or with Shift+cursor-pad-key), KEDIT first de-
letes the block, then positions the cursor at the location of the deleted block, and
then inserts the clipboard’s contents at that location. Otherwise, KEDIT inserts the
marked block at the cursor position.

CLIPBOARD 39

If the clipboard data came from a KEDIT stream block, from a KEDIT command
line selection, or from some application other than KEDIT for Windows, it is in-
serted into your file at the cursor position as a stream of text. If the data came from
a KEDIT box block, it is inserted at the cursor position as a rectangular section of
text. If the data came from a KEDIT line block, it is inserted below the cursor line
as a group of new lines.

Tab characters in clipboard data pasted into your file from other applications are
expanded to blanks. If TABSIN OFF is not in effect, KEDIT does this according to
the current TABSIN column settings; otherwise KEDIT uses the current SET
TABS columns.

The Edit Paste menu item, the Paste from Clipboard toolbar button, Shift+Ins, and
Ctrl+V all issue the CLIPBOARD PASTE command.

CLIPboard APPEND CUT
CLIPboard APPEND COPY

If there is no text in the clipboard, these commands have the same effect as CLIP-
BOARD CUT and CLIPBOARD COPY. Otherwise, these commands append the
contents of the current selection to the existing clipboard text.

If text is already in the clipboard and it does not end in a new line sequence (a car-
riage return and a linefeed), these characters are added to the existing clipboard
text before the contents of the selection are appended.

CLIPboard PUT text
CLIPboard APPEND PUT text

CLIPBOARD PUT provides a way to directly set the contents of the clipboard
from within a KEDIT macro.

The specified text replaces, or is appended to, any existing text in the clipboard.

For CLIPBOARD APPEND PUT, if text is already in the clipboard and it does not
end in a new line sequence (a carriage return and a linefeed), these characters are
added to the existing clipboard text before the new text is appended.

CLIPboard CLEAR
The clipboard is emptied of any data that it contains.

CLOCATE

Format

Description

CLocate column-target

Use the CLOCATE command (“column locate’) to locate a column target. KEDIT
changes the focus column (and in some situations the focus line) so that it is positioned
at the column target that you specify.

Column targets, discussed in detail in User’s Guide Chapter 6, “Targets”, are a special
type of target used only with the CDELETE and CLOCATE commands.

40

Chapter 3. KEDIT Commands

Examples

If you issue the CLOCATE command with no operands, KEDIT will re-execute the last
CLOCATE command issued from the command line, searching again for the same col-
umn target.

Operation of the CLOCATE command is affected by the settings of ZONE, CASE,
ARBCHAR, VARBLANK, HEX, WRAP, STAY, and STREAM. If THIGHLIGHT
ON is in effect, as it is by default, KEDIT will highlight strings found by CLOCATE on
your display.

CL 1

The focus column moves one column to the right of its current position.

CL :20

The focus column moves to column 20.

CL *

The focus column moves one column beyond the right zone column.

CL /ABC/

The focus column moves to the first character of the next occurrence of “ABC”. If
STREAM OFF is in effect, this occurrence must be on the focus line. If STREAM ON
is in effect and the occurrence is not on the focus line, the focus line location also
changes.

CL ~/X/
The next column that does not contain an “X”’ becomes the focus column.
CL -/Hello/

KEDIT searches the focus line, starting one column to the left of the focus column, for
the string ““Hello”. If ““Hello” is not found by the time the search reaches the left zone
column, and if STREAM ON is in effect, KEDIT searches the lines preceding the focus
line, from right to left.

CMATCH

Format

Description

CMATCH [OUTER| INNER]

Use the CMATCH (“column match’’) command to find a parenthesis, brace, or bracket
that matches the character in the focus column. When you work with programming lan-
guages like C that make frequent use of balanced pairs of braces and parentheses, the
CMATCH command can help you verify that matching braces and parentheses are
properly positioned.

CMATCH is most useful when assigned to a key or to a toolbar button, so that if you
press the key with the cursor positioned on, for example, a left parenthesis, the cursor

CMATCH

41

Commands

will move to the matching right parenthesis. By default, the CMATCH command is
assigned to Shift+F3.

If the character at the focus columnisa “{” or ““}*’, the CMATCH command moves the
focus column to the matching ““}” or ““{*’. The same thing happens with “(*“ and)",
with “[” and “]”, and with “<’* and “>".

If you are working in a file with syntax coloring enabled and you are using a parser that
defines matching items like parentheses, the CMATCH command will properly handle
nested pairs of matching items and will skip over text in quotes or in comments.

If syntax coloring is not enabled, or if the active parser does not handle the item at the
focus column, CMATCH will still handle nested pairs of parentheses, braces, and
brackets, but will not properly handle parentheses, braces, and brackets inside com-
ments or quotes.

CMATCH can also handle matching keywords that are defined in a syntax coloring
parser. For example, in a KEXX macro containing the following:

if a = 5 then do
j =17
do I =1 to 10
say i*j
end
end

you can place the cursor on the DO at the end of the first line and press Shift+F3 to
move the cursor to the corresponding END in the last line.

The OUTER and INNER operands control what happens with matching items for
which the syntax coloring parser has defined beginning, middle, and end elements.
With CMATCH OUTER and CMATCH with no operands, the cursor will move
between the beginning and end elements. With CMATCH INNER, the cursor will
move to the next beginning, middle, or end element.

For example, in the following C code each of #if, #elif, #else, and #endif are high-
lighted by the syntax coloring facility:

#if defined(a)
x =17;

#elif defined(b)
x =19;

f#else
x = 20;

#endif

If the cursor is positioned on any of these items, CMATCH OUTER and CMATCH
with no operands will move the cursor to the next outer element. If the cursor is on #if,
#elif, or #else, it will move to #endif. If the cursor is on #endif, it will cycle back to #if.

With CMATCH INNER, the cursor will stop at inner items as well as outer items, mov-
ing from #if to #elif to #else to #endif and back to #if again.

42

Chapter 3. KEDIT Commands

CMSG

Format

Description

See also

Examples

CMSG [text]

The CMSG (“command line message’”) command, used primarily in macros, displays
the specified text on the command line.

DMSG, EMSG, MSG, WMSG

CMSG modify zone

KEDIT displays “modify zone” on the command line.

COMMAND

Format

Description

See also

Examples

COMMAND command

KEDIT usually checks each command issued from the command line to see if you have
used the SET SYNONYM command to redefine its behavior. If so, KEDIT processes
the command as specified in the synonym definition. The COMMAND command
allows you to bypass this synonym processing, so that the command is executed exactly
as you specified it, and any synonym for the command is ignored.

COMMAND is useful mainly when issued from the command line, because the normal
action for commands issued from macros is to bypass synonym processing. When you
want synonym processing to apply to a command issued from within a macro, you must
specifically request it via the SYNEX command.

The effect of the COMMAND command is similar to the effect of preserving the status
of SYNONYM, setting SYNONYM OFF, issuing the desired command, and restoring
the status of SYNONYM.

SYNEX, SET SYNONYM

COMMAND DELETE 3

KEDIT directly executes the DELETE 3 command, regardless of whether you have
defined a synonym for the DELETE command.

COMMAND

43

Commands

COMPRESS

Format

Description

COMPress [target]

The COMPRESS command compresses strings of one or more blanks in your text,
replacing them with tab characters. If you issue the COMPRESS command with no
operands, the focus line is compressed. Otherwise, all lines in the target area are com-
pressed. After the compression, the focus line location is unchanged if STAY ON (the
default) is in effect; otherwise, the last line compressed becomes the new focus line.

To compress a line, the COMPRESS command looks at each tab column in the line (as
set with the SET TABS command). Any string of one or more blanks leading up to the
tab column is replaced by a single tab character (character code 9). For example,
assume that you have issued

SET TABS 1 6 11 16

and that the focus line looks like this (with each pair of characters starting in a tab
position):

AB CDh EF GH

Compressing the line yields the following (with tab characters shown here as plus signs
(“+7’)):
AB+CD+EF+GH

The COMPRESS command can be useful in combination with the EXPAND com-
mand, which expands lines by replacing tab characters with strings of blanks extending
to the next tab position. For example, if you had a 20-line table with entries lined up in
columns 1, 6, 11, 16 and wanted to readjust the table entries to start in columns 1, 10,
20, 30 you could first issue

SET TABS 1 6 11 16

and then compress the table with

COMPRESS 20

Then you would set up tab positions for the new table:
SET TABS 1 10 20 30

and finally expand the tab characters created by the COMPRESS command according
to the new tab positions:

EXPAND 20
In the above example, expanding the sample line using tab positions 1, 10, 20, 30 yields
AB CD EF GH

Compressing a line of text that contains no tab characters and then, without changing
the tab settings, immediately expanding it restores the line to its original state.

44

Chapter 3. KEDIT Commands

See also

Examples

The COMPRESS and EXPAND commands are relatively rarely used. More frequently
used are the SET TABSIN and SET TABSOUT commands, which control whether
KEDIT automatically expands tab characters in a file when it reads the file in from disk
and compresses them when it writes the file out to disk.

EXPAND, SET TABS, SET TABSIN, SET TABSOUT

COMPRESS BLOCK

All lines in the currently marked line block are compressed according to the current tab
settings.

COMPRESS :12

All lines from the focus line to line 12 (but not including line 12) are compressed
according to the current tab settings.

COPY

Format

Description

See also

COpy targetl target2
COpy BLOCK

Use the COPY command to copy text from one location to another.

There are two forms of the command:

COpy targetl target2
All text in the target area specified by target! is copied, with the copied text placed
immediately after the line specified by target2. With this form of the command, the
target area specified by target! cannot be a box or stream block and text can only
be copied within the current file, and not from one file in the ring to another.

COpy BLOCK
This form of the COPY command copies all text in the currently marked block.
The block can be in the current file or in another file, allowing you to copy text
from one file to another. If the block is a line block, text is copied after the focus
line. If the block is a box or stream block, text is copied to the left of the text at the
focus column position. The block mark moves with the copied text; the old copy of
the block is no longer marked.

COPY BLOCK is assigned by default to Alt+C and Alt+K. Alt+K copies the block
but leaves the copy marked. Alt+C copies the block, and then uses the RESET
command to unmark the block.

You can also copy blocks by using the Copy button on the default bottom toolbar,
by using Ctrl+mouse button 1 to drag and drop the block, and by using the Edit
menu to copy the block to the clipboard and then paste it to a new location.

MOVE

COPY

45

Commands

Examples

In the following examples, assume that line 4 is the focus line.

COPY :12 /ABC/

Lines 4 through 11 are copied following the next line containing “ABC”".
COPY 6 :15

Lines 4 through 9 of the current file (a total of six lines) are copied following line 15 of
the current file.

COPY BLOCK -*

A copy of all lines in the currently marked block is placed following the top-of-file line.
This form of the command works only if there is a line block marked in the current file.

COPY BLOCK

If the currently marked block is a line block, KEDIT copies its contents following line 4
of the file. If the block is a box or stream block, KEDIT copies the block to the left of
the focus column position.

COUNT

Format

Description

COUnt /string/ [target]

Use the COUNT command to count the number of occurrences of a given string in the
specified target area of your file. (If no farget is specified, KEDIT counts the occur-
rences of string in the focus line.)

The string that you search for is specified in the same way as the string you search for
with the CHANGE command. Slash (““/””) characters are normally used to delimit
strings, but you can use any special character that does not appear within the string.

You can make the COUNT command operate within the currently-defined block by
using BLOCK as the target operand. The COUNT command will operate within the
portions of a line or stream block that are within the current zones, and will operate
within the entire area of a box block, regardless of the zone columns.

If the target area is a box block, KEDIT counts all occurrences of string within the
boundaries of the block. Otherwise, KEDIT counts all occurrences of s#ring within the
current ZONE settings.

The search for occurrences of string is also affected by the settings of ARBCHAR,
CASE, and HEX, in the same way that these settings affect the search for the string!
operand of the CHANGE command.

When the COUNT command completes, it displays a message giving the number of
occurrences of the string that were found and the number of lines examined that con-
tained occurrences of the string. If STAY OFF is in effect, the last line examined by the

46

Chapter 3. KEDIT Commands

Examples

COUNT command becomes the focus line. With STAY ON, the focus line location is
not affected by the COUNT command.

COUNT with no operands reissues the last COUNT command issued from the com-
mand line.

When issued from a macro, the COUNT command sets the macro variable COUNT.0
to 2, returns the number of occurrences counted in COUNT.1, and returns the number
of lines containing at least one occurrence in COUNT.2.

COUNT /a/

[T

KEDIT counts the number of occurrences of the letter ““a” in the focus line. Depending

[T

on the setting of the third operand of SET CASE, only lowercase “a”s or both lower-

[IP S 2]

case and uppercase “a’’s are counted.

COUNT /Mozart/ ALL

KEDIT counts all occurrences of “Mozart” in your file.
NOMSG COUNT /Mozart/ ALL

This command would be useful if issued from within a macro. Preceding the COUNT
command with NOMSG will suppress any messages to the screen, but the macro vari-
able COUNT.1 will be set to the number of occurrences of “Mozart™ in your file, and
COUNT.2 will be set to the number of lines involved.

COVERLAY

Format

Description

COVerlay text

The COVERLAY command (“column overlay’’) overlays the text in the focus line,
starting at the focus column, with the text you specify.

A single blank separates COVERLAY from the “overlay text” that will overlay data in
the focus line. Wherever there is a blank in the overlay text, the corresponding charac-
ter in the focus line is not changed. Wherever there is an underscore character (") in
the overlay text, the corresponding character in the focus line is replaced by a blank.
All other characters in the overlay text replace the corresponding characters in the
focus line.

Assume that the focus column is at column 1 of your text and that the focus line looks
like this:

ABCDEFGHIJ
If you then enter the command
COV 12_456_89

the focus line will be changed to

COVERLAY

47

Commands

See also

Examples

12 456G89J

T3]

There is no way to put underscore characters (
them converted to blanks in the focus line.

) into the overlay text without having

The CREPLACE command does the same thing as the COVERLAY command, except
that all characters in the text you specify with CREPLACE are placed into the focus
line, without the special behavior that blanks and underscores have when used with the
COVERLAY command.

You can use the COVERLAY command in connection with the REPEAT command to
overlay text in a group of lines.

CINSERT, CREPLACE, OVERLAY

Assume that the focus column is column 1.
COVERLAY | I I I

This command would put bars in columns 1, 4, 7, and 10 of the focus line and leave the
other characters of the focus line unchanged. The COVERLAY command, used in con-
nection with the REPEAT command, can be used to help draw boxes and sidebars next
to and around existing text.

CREPLACE

Format CReplace text

Description The CREPLACE command (““‘column replace”) replaces characters in the focus line,
starting at the focus column location, with the specified fext.
For example, assume that the focus line is:
To be or has to be
If you issue the command
CL :10
the focus column will be at the ““h” of ““has”, which is in column 10. If you then issue
CREPLACE not
the “not” will be placed in columns 10 through 12, replacing “has”:
To be or not to be
KEDIT replaces characters in the focus line with the text given with the CREPLACE
command, from the character after the blank that follows “CREPLACE” through the
end of the command string, which may contain trailing blanks.

48 Chapter 3. KEDIT Commands

The CREPLACE command does not change the focus column or focus line location.

See also CINSERT, COVERLAY

Examples CREPLACE 1234
KEDIT replaces text, starting at the focus column, with “1234”.
CREPLACE ABC__

KEDIT replaces text, starting at the focus column, with “ABC” followed by two
blanks.

CURSOR

Format CURsor Screen line [col]
CURsor Screen UP|DOWN |LEFT |RIGHT
CURsor [Escreen] line [col]
CURsor [Escreen] UP|DOWN|LEFT|RIGHT
CURsor CMdline [col]
CURsor Column
CURsor File line [col]
CURsor Home
CURsor REVERT

Description The CURSOR command, used mainly within macros, positions the cursor within the
current window. (Use SOS TABCMDF or SOS TABCMDB to move the cursor to a
different window.)

Commands

CURsor Screen line [col]

Positions the cursor at a specific line and col of the document window; the upper
left corner of the document window is line 1 column 1. If the specified position is
not valid for the cursor (for example, the cursor would move to a reserved line or
beyond the boundary of the window), an error occurs. Line and col can be speci-
fied as an absolute number or as an equal sign (““=""), where a number indicates the
line or column to which the cursor should move, and an equal sign indicates that
the line or column position of the cursor should not change.

CURsor Screen UP|DOWN |LEFT|RIGHT
Moves the cursor one row or column in the indicated direction. If you try to move
UP or DOWN past the highest or lowest possible line of the document window, the
cursor wraps to the lowest or highest possible line. If you try to move LEFT or
RIGHT past the edge of the document window, the cursor moves to the first char-
acter on the next line or to the last character on the previous line.

CURSOR 49

CURsor [Escreen] line [col]

For CURSOR ESCREEN, /ine and col are specified as absolute numbers or as
equal signs, in the same way as they are for CURSOR SCREEN, but the lines and
columns are numbered differently: The command line is line 0. The first line of the
document window that can contain a file line is line 1, the second line of the docu-
ment window that can contain a file line is line 2, etc. (That s, the ID line, tab line,
scale line, etc., are not counted in the numbering.) Ifthe line or column specified is
beyond the boundary of the document window, the line or column number is ad-
justed to the document window boundary. If the line that the cursor would end up
on is above the top-of-file line or below the end-of-file line, the cursor is moved to
the top-of-file line or end-of-file line. Column numbering starts with the first col-
umn of the document window that can contain text and ends with the last column
that can contain text; the prefix area is not counted.

CURsor [Escreen] UP|DOWN |LEFT|RIGHT
Moves the cursor one row or column in the indicated direction, possibly causing
vertical or horizontal scrolling if you try to move the cursor beyond the boundary
of the file area.

CURsor CMdline [col]
Moves the cursor to the specified column of the command line. If co/ is omitted,
the cursor moves to column 1 of the command line.

CURsor Column
Moves the cursor to the column pointer column of the focus line.

CURsor File line [col]
Moves the cursor to the specified /ine and col of the file. If the line and column of
the file that you specify are not currently displayed in the document window,
KEDIT will not scroll the window to bring them into view. Instead, an error will
occur.

CURsor Home
Moves the cursor to the first column of the command line if you issue it when the
cursor is not on the command line. If you issue it when the cursor is on the com-
mand line, the cursor moves to the line (and, if possible, column) of the file that the
cursor was on when the cursor was last in the file area. If the line of the file in-
volved is no longer in the document window, the cursor moves to the current line.
CURSOR HOME is assigned by default to Shift+F12.

CURsor REVERT

Ararely-used operation used to make CUA scrolling conventions work out in mac-
ros like the default Del and Bksp macros. If INTERFACE CUA is in effect, the
cursor retains its position in the file when you use the scroll bars to scroll the file,
and the cursor may scroll out of the document window. When this happens, the
next non-scroll bar action normally forces the cursor back into the window at the
nearest visible location in the file. CURSOR REVERT instead forces the file to be
repositioned in the document window as it was before scrolling began, with the
cursor in its original position, undoing the effect of the scrolling. KEDIT internally
issues CURSOR REVERT commands before execution of the TEXT, EXTEND,
and CLIPBOARD commands.

50

Chapter 3. KEDIT Commands

See also

Examples

SOS

CURSOR SCREEN 8 7

The cursor moves to line 8 and column 7 of the document window, where the upper left
corner of the document window is line 1 column 1. An error occurs if this is not a valid
cursor position.

CURSOR ESCREEN 8 7
CURSOR 8 7

These are equivalent, and move the cursor to the eighth line of the window that can
contain a line of your file, and to the seventh column of the file area.

CURSOR ESCREEN = 9
CURSOR = 9

These are equivalent, and move the cursor to the ninth column of the file area of what-
ever line the cursor is on.

CURSOR FILE 29 44

This moves the cursor to line 29, column 44 of your file. If line 29, column 44 of your
file is not displayed in the current window, an error occurs.

DEBUG

Format

Description

DEBUG [/tracesetting] macroname |[text]
DEBUG START macroname
DEBUG STOP macroname

The DEBUG command lets you control which KEXX macros have tracing in effect
when they begin execution. This lets you trace the execution of a KEXX macro that is
not working properly without the need to edit the text of the macro to insert (and then
later remove) TRACE instructions.

DEBUG [/tracesetting] macroname [text]

This form of the DEBUG command is like the MACRO command, in that you
specify the name of a macro to run (macroname) and an optional argument string
(text) to pass to the macro. The difference is that the debugging window will be
turned on if it is off and tracing will be in effect when execution of the macro be-
gins. KEDIT will use the initial fracesetting that you can optionally specify, or it
will use the default trace setting controlled by SET DEBUGGING (which is nor-
mally +R, for interactive tracing of all clauses and expression results).

DEBUG START macroname
It is sometimes difficult to issue the DEBUG command for a macro that is not
working correctly. For example, if you have a macro assigned to Alt+A that only
fails if that key is pressed with the cursor on the current line, moving the cursor to

DEBUG

51

Commands

See also

Examples

the command line to issue DEBUG ALT+A will not work. The second form of the
DEBUG command can be used to deal with this problem.

Macroname must be an in-memory macro, and it is added to an internal list main-
tained by KEDIT. Whenever that macro begins execution, the trace setting con-
trolled by SET DEBUGGING (normally +R) will be put into effect.

Using our example, if Alt+A is failing only when it is pressed with the cursor on
the current line, you could issue the command

DEBUG START ALT+A

Then you can move the cursor to the current line and press Alt+A. The ALT+A
macro will then run with the debugger active.

DEBUG STOP macroname
Cancels the effect of DEBUG START. In our example, when you no longer want
to trace execution of ALT+A, you can enter the command

DEBUG STOP ALT+A
User’s Guide Section 10.4, “Debugging KEXX Macros”, PROFDEBUG initialization
option, MACRO, SET DEBUGGING, KEXX TRACE instruction
DEBUG COUNTER

If the debugging window is not already on, KEDIT turns it on. Then KEDIT puts the
level of tracing defined by SET DEBUGGING (which normally specifies +R, for inter-
active tracing of clauses and results) into effect and runs the macro COUNTER.

DEBUG /+I COUNTER

If the debugging window is not already on, KEDIT turns it on. Then KEDIT puts a trac-
ing level of +I (which means interactive tracing of clauses and all intermediate and final
expression results) into effect and runs the macro COUNTER.

DEBUG START F5

KEDIT adds the F5 macro to an internal list of macros that will run with the level of
tracing specified by SET DEBUGGING (normally +R) in effect. Whenever F5 is
pressed, assuming the debugging window is on, KEDIT will trace it as it executes.

52

Chapter 3. KEDIT Commands

DEFINE

Format

Description

DEFine macroname macrodefinition
DEFine macroname
DEFine fileid

Use the DEFINE command to give KEDIT the definitions of in-memory macros. The
macros can then be executed via the MACRO command or, when the name of a macro
corresponds to KEDIT’s name for a key on your keyboard, by pressing that key.

DEFine macroname macrodefinition
This form of the DEFINE command tells KEDIT to define a macro called
macroname and to assign to it the specified macrodefinition. This method is useful
only for short macros whose definition can fit completely on a single line.

DEFine macroname
When you give a macroname but no definition for it, KEDIT displays the current
definition of macroname, which should be the name of an in-memory macro. This
form of the DEFINE command is provided as a shorthand equivalent for the
QUERY MACRO command.

DEFine fileid
With this form of the DEFINE command KEDIT loads macro definitions, which
may be many lines long, into memory from the disk file specified by fileid.

If fileid has an extension of .KML, the file can contain the names and definitions of
many macros. The file must be in KEDIT Macro Library format, which is dis-
cussed in User’s Guide Chapter 10, “Using Macros”. KEDIT searches for . KML
files in the same places that it searches for .KEX files, which are discussed next.

If fileid has an extension of .KEX (or any extension other than .KML), the file
must contain the definition of a single macro, with the filename component of the
specified fileid taken as the name of the macro being defined.

If the macro is not in memory, KEDIT reads the macro in from a disk file. If fileid
contains a drive or path specification, KEDIT reads the macro from the specified
drive or directory. Otherwise, KEDIT looks for the macro in your current direc-
tory. If this fails, KEDIT looks in any directories that you have specified via SET
MACROPATH. Finally, it looks in the “KEDIT Macros” subdirectory of your
Windows Documents or My Documents folder, the directory from which KEDIT
for Windows was loaded, and the USER and SAMPLES subdirectories of that di-
rectory. If the macro still cannot be located, an error message is issued and the
MACRO command fails.

As discussed in User’s Guide Section 10.2.3, “Storing Your Macros”, we normally
recommend that macros that you create be kept in the “KEDIT Macros” subdirec-
tory of your Windows Documents folder (which is sometimes known as the My
Documents folder).

DEFINE

53

Commands

See also

Examples

User’s Guide Chapter 10, “Using Macros”, MACRO, MACROS, PURGE, SET
MACROPATH

DEFINE Fl1 do I = 1 to 20; 'input' I; end

This DEFINE command assigns to the F1 key a macro that inputs the numbers from 1
through 20 into your file.

"DEFINE F1 do I = 1 to 20; 'input' I; end"

This is how the DEFINE command from the first example might look if you included it
in your PROFILE.KEX file. Since in this case the DEFINE command is a literal string
contained in a macro, it should be enclosed in quotes, and since the string contains sin-
gle quotes, double quotes are used.

DEFINE ESCAPE 'QUIT'

This defines a macro called ESCAPE which simply issues a QUIT command. Note that
ESCAPE is not the name of a KEDIT key. You may have intended to assign this macro
to the “escape” key on the keyboard, but ESC is the correct name to use for that key, so
the escape key would not have been redefined. (See Chapter 7, “Built-in Macro
Handling”, for a discussion of the key names used by KEDIT.) This type of mistake
can sometimes lead to confusion, because while ESCAPE is not the name of any
KEDIT key, you have issued a valid DEFINE command for a macro called ESCAPE
that could be run with the command MACRO ESCAPE.

DEFINE RETRY

Since only a macro name is specified here, but no definition is given for it, KEDIT dis-
plays the current definition of a macro called RETRY.

DEFINE KEYS.KML

KEDIT assumes that KEYS.KML is a file in KEDIT Macro Library format, and loads
into memory all the definitions the file contains.

DEFINE RETRY.KEX

KEDIT defines an in-memory macro called RETRY, reading its definition from the file
RETRY.KEX.

DELETE

Format

Description

DELete [target]

Use the DELETE command to remove text from the file you are editing. All text in the
specified farget area is deleted. If you don’t specify a target, only the focus line is
deleted.

By default, Alt+D issues the related SOS LINEDEL command, which deletes one line
from your file. The default Alt+G definition, as well as the Delete button on the bottom

54

Chapter 3. KEDIT Commands

See also

Examples

toolbar, issues the DELETE BLOCK command to delete the currently marked block. If
INTERFACE CUA is in effect, you can also delete a block by pressing the Del key
immediately after marking the block with the mouse. If you unintentionally delete too
much text from your file, you can use KEDIT’s undo facility to try to recover it.

SOS LINEDEL

DELETE

Deletes the focus line.

DELETE 5

Deletes the focus line and the four lines following it, for a total of five lines.
DELETE *

Deletes all lines from the focus line through the end of the file.

DELETE ALL

Deletes all lines of the file.

DIALOG

Format

Description

DIALOG /prompt/ [options]
where options can be:

EDITfield [/initial/]

TITLE /title/

OK | OKCANCEL | YESNO | YESNOCANCEL

DEFButton n
ICONExclamation|ICONInformation|ICONQuestion|ICONStop
FIXEDfont

PASSWORD

Commands

Use the DIALOG command within KEDIT macros to display a simple dialog box that
presents messages to, and optionally obtains input from, the user of the macro.

Here is how the DIALOG command might appear in a macro:
'DIALOG /Enter Employee Number:/ TITLE /Run Payroll/ EDITFIELD'

The resulting dialog box would look like this:

DIALOG

55

= Hun Payroll

Enter Employee Humber:

| 119 I | Cancel I

There are five areas in the dialog box that you can control:

An optional title field, specified by the TITLE operand of the DIALOG command,
is displayed on the border at the top of the dialog box.

A prompt, specified as the first operand to the dialog command, is always dis-
played. You can use it to prompt a user for input or simply to display a message to
the user.

An optional edit field, controlled by the EDITFIELD option of the DIALOG com-
mand, allows the user of your macro to enter data.

Mouse- and keyboard-selectable buttons, which can display choices like Yes/No
or OK/Cancel, are used to end display of the dialog box. (When the EDITFIELD
option is used, as it is in our example, OK and Cancel buttons are automatically
supplied.)

A bitmapped icon, such as a question mark, can be displayed as part of the dialog
box.

Here is a description of each of the possible operands for the DIALOG command. The
/prompt/ operand is required; all of the others are optional.

/prompt/

The specified prompt text, which must be enclosed in delimiters, is displayed in
the prompt field of the dialog box. If the text of the prompt is too wide for a dialog
box, KEDIT automatically wraps the text across multiple lines, splitting it at word
boundaries. KEDIT also starts a new line wherever the prompt contains a carriage
return (character code 13), a linefeed (character code 10), or a carriage
return-linefeed pair.

TITLE /title/

The specified title, which must be enclosed in delimiters, is displayed on the bor-
der at the top of the dialog box.

EDITfield [/initial/]

The EDITFIELD option tells KEDIT to display an editable field in the dialog box,
so the user can enter a line of input for your macro. You can optionally specify, in
delimiters, text to be used as the initial contents of the edit field. When the DIA-

56

Chapter 3. KEDIT Commands

See also

LOG command completes, the contents of the edit field are returned to your macro
in the variable DIALOG.1.

OK | OKCANCEL | YESNO | YESNOCANCEL
These options control which buttons are displayed at the bottom of the dialog box:
“OK”’; both “OK”” and “Cancel’’; both “Yes” and “No”’; or “Yes”, “No”’, and
“Cancel”. The default, unless the EDITFIELD option is present, is OK. If
EDITFIELD is present, OKCANCEL is the default and the only allowed choice.
When the DIALOG command completes, the text of the button used to close the
dialog box is returned, in uppercase, in the variable DIALOG.2.

DEFButton n
DEFBUTTON, which defaults to 1 (for the leftmost button), controls which of the
buttons at the bottom of the dialog box is initially highlighted and is returned in the
variable DIALOG:.2 if the user of the macro does not select some other button.

ICONExclamation| ICONInformation| ICONQuestion|
ICONStop

These options control what icon appears in the dialog box.

By default, if the YESNO or YESNOCANCEL options are used, a question mark
is displayed. Otherwise, the default action is to display no icon.

FIXEDfont
The prompt text is normally displayed in a proportional font; the FIXEDFONT
option causes it to display in a fixed-pitch font. FIXEDFONT is useful if there are
multiple lines of text in the prompt and you want certain columns of the text to line
up.

PASSWORD
PASSWORD causes data entered into the resulting dialog box to be masked, so
that potentially sensitive data is not visible on the screen. The PASSWORD

operand is only valid when the EDITFIELD operand is also used, and it must come
after the EDITFIELD operand.

DIALOG returns its results through macro variables, much as the EXTRACT com-
mand does. Three variables are set:

dialog.0 2

dialog.1 The contents of the edit field when the dialog box was closed, or the
null string if no edit field was displayed.

dialog.2 The text, in uppercase, of the button selected when the dialog box
was closed.

User’s Guide Chapter 11, “Sample Macros”, ALERT, POPUP, READV, SHOWDLG

DIALOG

57

Commands

DIRAPPEND

Format

Description

DIR [filespec ...]
DIRAppend [filespec ...]

The KEDIT DIR command is similar to the DOS DIR command. When you issue the
DIR command, KEDIT creates a file in the PC’s memory containing directory informa-
tion about the files you specify. This file, called DIR.DIR, becomes the current file.
The file is normally never written to disk. Instead, you work with the directory
information and then press function key F3 to QUIT from the file to remove it from
memory. Ifyou use File Close to close a DIR.DIR file, it is removed from memory but
not written to disk even if it has been modified.

If you issue the DIR command with no filespec operand, KEDIT lists information for
all files in the current directory. Otherwise, filespec gives the file name and extension,
and optionally drive and path specifier, of the files you are interested in. Asterisks
(“*”) and question marks (“?°”) act as wildcard characters, as they do for DIR com-
mands issued from the Windows command prompt. As shown in an example below, the
DIR command can process more than one filespec at a time.

KEDIT sorts the contents of the DIR.DIR file into alphabetical order based on the name
and extension of the files involved. You can use the SET DEFSORT command to
change this default sort order. You can also re-sort a DIR.DIR file into a different order
by using the DIRSORT command.

You can use the SET DIRFORMAT command to control how many columns of the
DIR.DIR file are set aside for the file name and for the file extension. By default,
KEDIT sets aside 30 columns for the file name and 10 columns for the file extension.

With the default of FCASE ASIS in effect, fileid components in lowercase or in mixed
case are displayed as is, but fileid components that are entirely in uppercase are dis-
played in lowercase, since this is generally easier to read.

Note that the maximum file size that the DIR command will display is 2**32-1 (that is,
4294967295), regardless of the actual size of very large files.

With the default key definitions, you can edit one of the files listed in the DIR.DIR file
by placing the cursor on the line describing the file you want to edit and pressing
Alt+X.

If you place the cursor on a line in the DIR.DIR file that describes a directory, as
opposed to a file, Alt+X will replace the contents of the DIR.DIR file with a listing of
the specified directory. While Alt+X lets you move down in the directory tree,
Shift+Ctrl+X lets you move up in the tree. Shift+Ctrl+X replaces the contents of
DIR.DIR with a listing of the parent directory of the file described on the cursor line.

You can also use the mouse to work with the DIR.DIR file. Double clicking button 1 on
a line in a DIR.DIR file works like Alt+X does: if the line describes a file, KEDIT
begins editing the file; if the line describes a directory, KEDIT gives you a listing of the
directory. The Parent Directory button on the DIR.DIR toolbar works like

58

Chapter 3. KEDIT Commands

See also

Examples

Shift+Ctrl+X, giving you a listing of a parent directory. Other DIR.DIR toolbar buttons
let you sort a directory file by name, extension, size, or date.

If DIR.DIR is already in the ring when you issue the DIR command (because of a DIR
command issued earlier in your KEDIT session) its contents will be replaced.

The DIRAPPEND command does exactly the same thing as the DIR command, except
that if DIR.DIR is already in the ring when you issue the DIRAPPEND command,
KEDIT does not replace its contents but instead adds information about the files you
specify to the existing contents of DIR.DIR and then re-sorts the entire file in the order
specified by SET DEFSORT.

Since DIR and DIRAPPEND can cause a file (DIR.DIR) to be added to the ring, the
PROFILE, NOPROFILE, PROFDEBUG, and NOMSG options, as discussed in
Chapter 2, “Invoking KEDIT”, can also be given with these commands.

DIRSORT, SET DEFSORT, SET DIRFORMAT

DIR

A directory listing of your current directory is placed in a file in memory called
DIR.DIR, which becomes the current file.

DIR D:X*.PAS

A directory listing of all files in the current directory of your D: drive whose name starts
with “X”” and whose extension is .PAS is placed in DIR.DIR.

DIR \

A directory listing of all files in the root directory of the current drive is placed in
DIR.DIR.

DIR *.C * . H * . ASM

A directory listing of all files in the current directory with an extension of .C, .H, or
.ASM is placed in DIR.DIR.

DIRAPPEND *.COM

A directory listing of all files in the current directory with an extension of .COM is
added to DIR.DIR, which is then re-sorted in the order specified by SET DIRSORT.

DIRSORT

Format

Description

DIRSORT [Date|Extension|Name|Path|Size ...]

The DIRSORT command lets you re-sort the contents of the DIR.DIR file based on the
fields you specify. (The DIR command puts a directory listing into a file called
DIR.DIR. It then sorts the listing in the order specified by the SET DEFSORT

DIRSORT

59

Commands

See also

command; by default the sort is done according to the name and extension of the files
listed.)

The DIRSORT command is valid only if issued while the current file is the DIR.DIR
file or is some other file with an extension of .DIR.

DIRSORT Date
Sorts DIR.DIR according to the date and time of each file, with the newest files
listed first.

DIRSORT Extension
Puts DIR.DIR into alphabetical order according to the file extension.

DIRSORT Name
Puts DIR.DIR into alphabetical order according to the file name.

DIRSORT Path
Puts DIR.DIR into alphabetical order according to the drive and subdirectory of
each file.

DIRSORT Size
Orders DIR.DIR according to the size of each file, with the largest files listed first.

These operands can be combined. For example,

DIRSORT EXTENSION SIZE

sorts DIR.DIR according to file extension and, if several files have the same extension,
sorts these by size.

The toolbar for DIR.DIR files provides buttons that use the DIRSORT command to sort
your file by file name, file extension, size and date.

DIR, DIRAPPEND, SET DEFSORT

DMSG

Format DMSG [text]

Description The DMSG (“debug message’) command displays the specified fext in the debugging
window. The command has no effect if DEBUGGING OFF is in effect.
The DMSG command is supplied as a macro debugging aid. You can display debug-
ging information in the debugging window while your macro is executing to avoid
interference with the normal KEDIT display.

See also DEBUG, MSG, SET DEBUGGING

60 Chapter 3. KEDIT Commands

Examples DMSG Entering outer loop

If DEBUGGING ON is in effect, KEDIT displays ”Entering outer loop” in the debug-
ging window.

DOS, DOSNOWAIT, DOSQUIET

Format DOS [command]
DOSNowait command
DOSQuiet command

Description Use KEDIT’s DOS command to run DOS commands from within KEDIT. You can run
utilities, compilers, and most other DOS programs. After your commands have exe-
cuted, you return to KEDIT and can resume editing where you left off.

The DOS command with no operands opens a DOS window and passes control to it,
with KEDIT’s window temporarily removed from your display. You remain in DOS,
able to issue any number of DOS commands, until you return to KEDIT by issuing the
EXIT command.

When you have a single command to execute, you can enter the command as an oper-
and to KEDIT’s DOS command. KEDIT executes the command in a DOS window.
After the command has completed, press any key to return from the DOS window to
KEDIT.

Using the DOSNOWAIT and DOSQUIET commands is similar to using the DOS com-
mand and specifying the command that you want to execute. The three commands dif-
fer in how they handle the DOS window that they create:

e When you issue the DOS command and specify an operand as a command to be
passed to DOS, the DOS window created to run the command displays the mes-
sage “Press any key to continue” upon completion of the command and does not
return control to KEDIT until you press a key. This ensures that you can see any
output from that command before the DOS window disappears. KEDIT’s window
is removed from your display while the DOS window is active.

e The DOSNOWAIT command creates a DOS window and runs the command that
you specify. KEDIT’s window is removed from your display while the DOS win-
dow is active. But after the command completes, the DOS window disappears and
control immediately returns to KEDIT, without waiting for you to press a key.

Commands

e The DOSQUIET command creates the DOS window as a minimized window, so
that you normally do not see any output from your command even as it is execut-
ing. While the command is executing, KEDIT’s window will remain on your
screen but KEDIT will be waiting for the command to complete. If KEDIT re-
ceives any keystrokes or mouse clicks while the command is executing, it will re-
store the DOS window to its normal size on your display. When the command
finishes executing, the DOS window is closed and control returns to KEDIT.

DOS, DOSNOWAIT, DOSQUIET 61

EXITCODE

Use the WINEXEC command, and not the DOS, DOSNOWAIT, or DOSQUIET com-
mands, to start another Windows program from within KEDIT. These commands can
start other Windows programs, but only by first creating a DOS command window, and
the WINEXEC command avoids this extra overhead.

The command string that KEDIT passes to DOS can be up to 4096 characters long, but
because of certain parameters that KEDIT itself must include in this command string,
the practical limit for the length of the command you issue via DOS, DOSNOWAIT, or
DOSQUIET is approximately 4000 characters.

When issued from within a macro the DOS and DOSQUIET commands, along with
the WINEXEC WAIT command, return information about the exit code set by the com-
mand that was executed. (DOSNOWAIT and WINEXEC NOWAIT do not return an
exit code.) The exit code is only returned if the DOS/DOSQUIET/WINEXEC WAIT
command itself gets a return code of 0 (that is, it sets the macro variable RC to 0).

The exit code is a 32-bit value that is returned in the following macro variables:

exitcode.0 3
exitcode.l The exit code from the command, as a signed decimal number
exitcode.2 The exit code from the command, as an unsigned decimal number

exitcode.3 The exitcode fromthe command, as a character string containing the
8 hexadecimal digits of the 32-bit exit code

For example, if you use the DOS command to start a command shell and you exit from
that command shell by typing “EXIT -2”, the following variables would be set:

exitcode.0 3

exitcode.1l -2

exitcode.2 4294967294

exitcode.3 FFFFFFFE

If you start a DOS command prompt and close the command prompt window by
double-clicking on its close button, or if you use Ctrl+C to interrupt a command that

does not have its own handler for Ctrl+C, the exit code returned will be C000013A,
which indicates an unhandled exception, yielding

exitcode.0 3
exitcode.l -1073741510
exitcode.2 3221225786

exitcode.3 CO000013A

62

Chapter 3. KEDIT Commands

See also

Examples

Note that exitcode.l and exitcode.2 in this example, along with exitcode.2 in the pre-
ceding example, are 10-digit values that are subject to rounding if you do arithmetic
operations on them with the default NUMERIC DIGITS value of 9 in effect.

WINEXEC

DOS TYPE ABC.TXT

The command TYPE ABC.TXT will be executed in a Command Prompt window.
After the TYPE command completes, the results will remain displayed in the DOS win-
dow until you press any key. You will then return to your KEDIT session.

DOSQ MKDIR \TEMP

MKDIR \TEMP will execute in a minimized DOS window, and KEDIT’s window will
remain on the display while it executes. When the command has completed, the mini-
mized DOS session will end immediately, without waiting for you to press a key. The
DOSQUIET command is useful for execution of commands like MKDIR, which usu-
ally generate no output.

DOS

Shells to a Command Prompt window, where you can issue a series of commands. To
return to KEDIT, issue the EXIT command.

DOWN

Format

Description

See also

Examples

Down [n]

The line 7 lines below the focus line becomes the new focus line. If z is not specified,
the line one line below the focus line becomes the focus line.

The NEXT command and the LOCATE command with a relative line number target

perform the same function as the DOWN command.

UPpP

DOWN

The line that is one line below the focus line becomes the new focus line.

DOWN 4

The line that is four lines below the focus line becomes the new focus line.

DOWN

63

Commands

DUPLICATE

Format

Description

Examples

DUPlicate [n [target]]

Use the DUPLICATE command to duplicate one line or a group of lines # times. If no
target is given, the focus line is duplicated. If a target is given, all lines in the target
area are duplicated » times. If n is not specified, the focus line is duplicated once.

The first line added to the file by the duplication process becomes the new focus line.

The DUPLICATE command is assigned by default to function key F8 and to Alt+=.

DUP

The focus line is duplicated once. The newly-added line is inserted below the focus line
and becomes the new focus line.

DUPLICATE 6

Duplicate the focus line six times.

DUP 4 6

The focus line and the five lines after it, for a total of six lines, are duplicated four times.
DUP 2 BLOCK

The currently marked line block is duplicated twice.

64

Chapter 3. KEDIT Commands

EDITV

Format EDITV GET varnamel [varname2 ...]
EDITV PUT varnamel [varname2 ...]
EDITV SET varnamel value [varname2 value ...]
EDITV SETL varname value
EDITV LIST [varnamel ...]

EDITV GETF varnamel [varname2 ...]

EDITV PUTF varnamel [varname2 ...]

EDITV SETF varnamel value [varname2 value ...]
EDITV SETLF varname value

EDITV SETFL varname value

EDITV LISTF [varnamel ...]

Description You may occasionally have a set of macros, executed at different times during a KEDIT
session, that need to share information. The variables normally used within KEDIT
macros (that is, KEXX variables) don’t help in this situation, because they are local to
the macro and their values are not retained after the macro finishes executing. The
EDITV command, designed for use mainly from within KEDIT macros, provides a
solution to this problem, allowing values determined in one KEDIT macro to be
accessed by KEDIT macros that you run later. EDITV manipulates two classes of
variables:

e Edit variables, which are global to the editor and retain their values throughout a
KEDIT session.

e Multiple sets of file variables, one set for each file in the ring. File variables are
specific to a particular file and retain their values until you remove the file from the
ring with a FILE or QUIT command.

Commands

The EDITV command sets, retrieves, or lists these variables.

EDITV SET, which you can use either from within a KEDIT macro or from the com-
mand line, takes one or more pairs of variable names and values and for each pair
assigns the specified edit variable the specified value. Variable names and values are
separated by blanks, and the values therefore cannot contain blanks. For example,

EDITV SET X 17
sets the edit variable X to ““17”’, while
EDITV SET X 17 Y 19 Z

sets the edit variable X to “17°, Y to “19”, and Z to a null string.

EDITV 65

EDITV SETL takes the name of an edit variable and assigns to it a given value, which
can contain blanks. For example,

EDITV SETL S This is a sentence.

sets the edit variable S to the string “This is a sentence.”

EDITV PUT provides a direct method for assigning the values of one or more KEXX
macro variables to edit variables of the same name. For example, consider the follow-
ing KEDIT macro:

A 18 * 2
B 'Hello'
'EDITV PUT A B'

The first line sets the macro variable A to “36”” and the second line sets the macro vari-
able B to ““Hello”’. The third line then sets the edit variable A to have the same value as
the macro variable A, which is ““36”, and sets the edit variable B to have the same value
as the macro variable B, which is “Hello”. After the macro has finished, the macro
variables A and B are gone, but the edit variables A and B remain, and can be accessed
by subsequent EDITV commands.

EDITV GET does the opposite of what EDITV PUT does. It is used within a KEDIT
macro to set the values of one or more macro variables to the values of edit variables of
the same name. For example, assume that the macro in the above example had been run,
and then the following macro was run:

'EDITV GET A B'
'INPUT' A B

This macro would retrieve the values of edit variables A and B, placing these values
into the macro variables A and B. The macro would then input the text “36 Hello™ into
your file.

Note that EDITV GET and EDITV PUT are valid only when used within KEDIT mac-
ros, and cannot be used from the command line. Note also that variable names referred
to when you use EDITV GET or EDITV PUT should normally appear within quoted
strings; otherwise, the names of the variables may not be properly passed to the EDITV
command.

EDITV LIST displays the values of one or more edit variables or (if no variable names
are given) of all edit variables with non-null values.

If you attempt to GET or LIST the value of an edit variable that has not been assigned a
value, a null string is returned.

EDITV GETF, EDITV PUTF, EDITV SETF, EDITV SETLF, EDITV SETFL, and
EDITV LISTF follow the above pattern, except that instead of working with edit vari-
ables, they work with the file variables associated with the current file. There are multi-
ple sets of file variables, one set for each file in the ring. (EDITV SETLF and EDITV
SETFL both do the same thing; they are analogous to EDITV SETL.)

66

Chapter 3. KEDIT Commands

EMSG

Commands

Format EMSG [text]

Description The EMSG (““error message’’) command, used mainly in macros, displays the speci-
fied text on the message line as an error message. If BEEP is ON, the EMSG command
also causes the PC’s speaker to BEEP.

See also ALERT, CMSG, DMSG, MSG, WMSG

Examples EMSG No block currently marked
KEDIT displays “No block currently marked” on the message line and, if BEEP is ON,
the speaker beeps.

ERASE

Format ERASE fileid

Description KEDIT’s ERASE command is similar to the DOS ERASE command. You give the file
specification for the file you want erased from a disk. This involves the file name,
extension, and optionally the drive and path specification. The specified file is erased
from your disk.
The KEDIT ERASE command erases files on disk and has no effect on the copies in the
PC’s memory of files currently being edited. It is less powerful than the DOS ERASE
command, because it does not accept wildcard characters (““**“ and *’?”). You can use
KEDIT’s DOS command to issue the “real” DOS ERASE command.

See also DOS, RENAME

Examples ERASE C:ABC.PAS

The file ABC.PAS, in the current directory of the C: drive, is erased.
ERASE \SONGS\MUSIC.BAS

The file MUSIC.BAS, in the \SONGS directory of the current drive, is erased.

ERASE

67

EXPAND

Format

Description

See also

Examples

EXPand [target]

The EXPAND command expands tab characters in your text into strings of blanks. If
you use the EXPAND command with no operands, KEDIT expands the tab characters
in the focus line. Otherwise, KEDIT expands the tab characters in all lines of the speci-
fied target area.

To expand a line, the EXPAND command goes through the line looking for tab charac-
ters (character code 9). Whenever a tab character is encountered, it is replaced by a
string of blanks extending to the next tab position (as set by the SET TABS command).

After the expansion, the focus line location is unchanged if STAY ON (the default) is in
effect; otherwise, the last line expanded becomes the new focus line.

The EXPAND command is most often used in connection with the COMPRESS com-
mand. An example of compression and expansion is given in the discussion of the
COMPRESS command.

The COMPRESS and EXPAND commands are rarely used. More frequently used are
the SET TABSIN and SET TABSOUT commands, which control whether KEDIT
automatically expands tab characters in a file to blanks when reading the file in from
disk and compresses blanks to tabs when writing the file out to disk.

COMPRESS, SET TABS, SET TABSIN, SET TABSOUT

EXPAND ALL

All tab characters in all lines in the file are expanded according to the current tab
settings.

EXPAND 2

Tab characters in the focus line and the line below it, for a total of two lines, are
expanded according to the current tab settings.

EXTEND

Format

Description

EXTEND command

EXTEND is a specialized command used mainly in the macros assigned to Shift+cur-
sor-pad-keys that let you extend selections when INTERFACE CUA is in effect.

68

Chapter 3. KEDIT Commands

The EXTEND command extends the selection from its current anchor point (or, if there
is no current selection, from the cursor position) to a new location. To determine the
new location, KEDIT executes the command, the selection is extended to the position
occupied by the cursor after the command completes. For example,

EXTEND SOS CRIGHT CRIGHT

would execute the command SOS CRIGHT CRIGHT, which would move the cursor
two characters to the right. So an existing selection would be extended two characters
to the right or, if there were no existing selection, a two-character selection would be
marked.

IfEXTEND is issued when INTERFACE CUA is not in effect, or when the cursor is in
the prefix area, EXTEND executes the specified command but takes no other action. If
the cursor is on the command line when you issue the EXTEND command, a command
line selection is marked or extended; if the cursor is in the file area, a non-persistent
stream block is marked or extended.

EXTRACT

Format

Description

EXTract /operand/

The EXTRACT command, valid only when issued from a macro, provides one method
for a KEDIT macro to extract information from KEDIT. KEDIT returns information to
your macro by setting the values of variables within your macro.

EXTRACT is fully discussed in Chapter 5, “QUERY and EXTRACT”.

FILE, FFILE

Format

Description

FILE [fileid]
FFile [fileid]

Use the FILE command when you have finished editing the current file and you want
KEDIT to write the edited version of the file to disk. KEDIT writes the file to disk using
the fileid that you specify, removes the file from memory, and (if you are editing multi-
ple files) makes the previous file in the ring become the current file.

You will normally issue the FILE command without specifying the optional fileid oper-
and. In this case, the file will be written to disk under its current fileid. The current
fileid is displayed on the title bar of the file’s document window and, unless you have
changed it with the SET FILEID command, is the fileid you originally used when you
started editing the file with the KEDIT command. If you use the optional fileid operand,
you can make use of the various shortcuts for specifying it discussed in connection with
the SET FILEID command.

FILE, FFILE

69

Commands

See also

Examples

There is one case where the fileid operand is not optional. If you use the FILE command
on an untitled file (the UNTITLED.n files used when you start KEDIT without
specifying a fileid or use the File New menu item), you must tell KEDIT the fileid to use
for the disk file that is created.

Using the File command is similar to using the File Close menu item on a modified file
and, when prompted, specifying that the file should be saved. Note that the File Close
menu item removes unmodified files from memory without writing them to disk, while
the FILE command always writes a file to disk, even if it has not been modified.

Like the more-frequently-used FILE command, the FFILE command writes the current
file to disk and then removes the current file from the ring. The difference between the
commands is that there are two situations in which the FILE command will give you an
error, to warn you that you may be inadvertently overwriting some data, while the
FFILE command will write your file to disk regardless of the possible problem.

The first situation occurs when you begin editing a file with one fileid, but then want to
write it to disk with a new fileid. If a file with the new fileid already exists, the FILE
command gives you an error message, because you may not intend to overwrite the
existing file.

A second situation occurs if some other process on your system, or some other user on
your network, has changed the file you are editing during your editing session. KEDIT
tries to determine if the file has changed by looking at the time the file was last updated
and seeing if this has changed since you began editing the file (or last saved it to disk).
If TIMECHECK ON, the default, is in effect, the FILE command gives you an error
message if you attempt to write to a file whose timestamp has unexpectedly changed.

In both of these cases, you can use the FFILE command instead of the FILE command
to indicate to KEDIT that you are aware of the situation and that you still want to write
your file to disk.

SAVE, SSAVE, QUIT, QQUIT, SET BACKUP, SET TIMECHECK

In these examples, assume you are editing a file called A:\PROG\SAMP.PAS and that
the current default drive is C, with C:\MAIN as the current directory.
FILE

KEDIT would write the file to disk under the name A:\PROG\SAMP.PAS and then
remove it from the ring.

FILE A:\
KEDIT would write the file to A:\\SAMP.PAS and then remove it from the ring.
FILE =.CAL

KEDIT would write the file to disk under the name A:\PROG\SAMP.CAL and then
remove it from the ring.

70

Chapter 3. KEDIT Commands

FILE C:

Since you are specifying a different drive for the file, but do not specify a directory,
KEDIT uses the current directory of the new drive. KEDIT would write the file to
C:\MAIN\SAMP.PAS and then remove it from the ring.

FILE SAMP3.PAS

KEDIT would write the file to A:\PROG\SAMP3.PAS (since you didn’t specify a drive
or path, the file’s existing drive and path are used) and then remove it from the ring.

FILE \TEST\

KEDIT would write the file to A\TEST\SAMP.PAS (the A:\TEST directory must
already exist) and then remove it from the ring.

FILL, FILLBOX

Format

Description

Examples

FILL [char]
FILLbox [char]

The FILL command, assigned by default to Ctrl+I (and, with INTERFACE CLASSIC,
to Alt+F) fills a block with copies of the specified character, overwriting the original
contents of the block. If no block is marked in the current file, FILL gives you an error.
If no char is specified, KEDIT fills the block with blanks.

The FILL command fills the entire contents of a box or stream block, from column 1 to
the truncation column, with the specified character. With line blocks, FILL operates
between from the left zone column to the right zone column.

FILLBOX does the same thing as FILL and exists for compatibility with older versions
of KEDIT, in which the fill operation could only be performed on box blocks.

The Actions Fill dialog box or the Fill Block button on the bottom toolbar can also be
used to fill a block with copies of the specified character.

If HEX ON is in effect, you can use hexadecimal or decimal notation to specify the fill
character.

FILL
KEDIT replaces the contents of the currently marked block with blanks.
FILL x

KEDIT fills the currently marked block with copies of the letter “x”’.

FILL, FILLBOX

71

Commands

FILL X'03'

Assuming that HEX ON is in effect, KEDIT fills the currently marked block with cop-
ies of the character with character code 3.

FIND, FINDUP, FUP

Format

Description

See also

Examples

Find text
FINDUp text
FUp text

The FIND command searches forward through your file for a line that starts (in column
1) with the fext that you specify. That line becomes the new focus line. The search
starts with the line below the focus line and continues until the desired text is found or
the end-of-file line is reached (wrapping to the top of the file if WRAP is ON).

FINDUP (which can also be given as FUP) does the same thing as the FIND command,
except that KEDIT searches upward for the desired line, beginning with the line above
the focus line.

These commands are included in KEDIT mainly for compatibility with XEDIT. The
TFIND command is a more general command that is preferable in most situations.

KEDIT remembers the last operand used whenever the FIND, FINDUP, NFIND, or
NFINDUP commands are issued from the command line and, if you later issue one of
these commands with no operands, this remembered operand” is reused.

If CASE IGNORE is in effect, an alphabetic character in the search text will match
either its uppercase or lowercase equivalent. Blanks in the search text act as wild card
characters, matching any single character, blank or nonblank, in your file. Underscore
() characters in the search text match blanks in your file.

LOCATE, NFIND, NFINDUP, TFIND

FINDUP ABC

The next line that begins with “ABC”” becomes the focus line.

FIND__ABC

Here, FIND is followed by two blanks. The first blank separates the command FIND
from the text to be searched for. The second blank is the first character of the text to be
searched for. Since a blank matches any character in your file, this command will
search for a line with any character in column 1 and “ABC” in columns 2 through 4.

72

Chapter 3. KEDIT Commands

FIND ABC DEF

This command searches for a line that has “ABC” in columns 1 through 3 and “DEF”
in columns 5 through 7, with any character in column 4.

FLOW

Format

Description

Notes

See also

FLOW [target]

The FLOW command reformats the text in a portion of your file. FLOW with no
operands (which is assigned by default to Shift+Ctrl+F and, with INTERFACE
CLASSIC, to Ctrl+F) reformats the text in the focus paragraph. FLOW with a target
operand reformats the text in all paragraphs in the target area.

The FLOW command adjusts the text within a paragraph so that all lines of the para-
graph start at the left margin column (except for the first line of the paragraph, which
starts at the paragraph indent column), and all lines of the paragraph contain as much
text as will fit between the left and right margins. (The left and right margins and the
paragraph indent column are set with the SET MARGINS command.)

The SET FORMAT command affects other aspects of FLOW’s behavior: whether
paragraphs are right-justified (by sprinkling extra blanks between words on each line to
force each line of the paragraph to end in the right margin column), how KEDIT deter-
mines where new paragraphs begin, and whether KEDIT places two blanks or one
blank at the end of each sentence that it reformats.

When the FLOW command finishes, the line below the last line processed by the
FLOW command becomes the focus line.

e Be careful not to use the FLOW command in a file that does not contain a docu-
ment divided into paragraphs. For example, if you issue the FLOW command in a
data file or computer program, the FLOW command could reformat all of the text
in the file into one large paragraph. (You could use the undo facility to try to re-
cover from this.)

e You should also be careful when using the FLOW command with a target operand.
KEDIT will interpret all text in the target area as belonging to a paragraph, and re-
format it accordingly, which is inappropriate if the target area includes titles,
headings, etc.

e The FLOW command works by deleting all of the lines of the paragraph involved,
and inserting the reformatted lines into the file in their place. Any text in the origi-
nal paragraph beyond the truncation column is lost, as are any line names associ-
ated with the lines of the original paragraph.

User’s Guide Section 3.11, “Word Processing Facilities”, SET FORMAT, SET
MARGINS

FLOW

73

Commands

Examples

FLOW

This command is normally assigned to Shift+Ctrl+F. KEDIT reformats the paragraph
in which the focus line is located.

FLOW ALL

KEDIT assumes that your file consists of a number of paragraphs that need to be refor-
matted, and KEDIT reformats all of them.

FORWARD

Format FOrward [n|*|HALF|m Lines]
Description The FORWARD command causes KEDIT to scroll the current window forward in your
file.
FOrward
KEDIT scrolls one window forward in your file. This command is normally as-
signed to the Page Down key.
FOrward n
KEDIT scrolls n windows forward in your file, as if you had pressed the Page
Down key n times.
FOrward *
KEDIT scrolls forward all the way to the end of your file, making the end-of-file
line become the focus line.
FOrward HALF
KEDIT scrolls one half-window forward in your file.
FOrward m Lines
KEDIT scrolls forward m lines in your file.
You can also move forward and backward in your file by using the mouse to manipulate
the vertical scroll bar.
See also BACKWARD
Examples FORWARD 2
KEDIT scrolls forward two windows in your file, as if you had pressed the Page Down
key twice.
FORWARD 8 LINES
KEDIT scrolls eight lines forward in your file.
74 Chapter 3. KEDIT Commands

GET

Format

Description

See also

Examples

GET [fileid [fromline [forlines]]]

The GET command reads lines from the disk file you specify and inserts them into the

file you are editing, below the focus line. The last line inserted becomes the new focus

line. You can insert an entire disk file or, by using the optional fromline and forlines

operands, you can insert any desired portion of a disk file.

fileid
The first operand of the GET command is the fileid of the disk file to be inserted.
The disk file is not itself changed in any way; only a copy of its contents is inserted.
If no path is specified, KEDIT looks in the current directory of the specified drive.
If both drive and path are omitted, KEDIT looks in the current directory of the cur-
rent drive and then, depending on the value of your PATH setting, does a path
search for the file, and then looks in the “KEDIT Macros” subdirectory of your
Windows Documents or My Documents folder, in the directory from which
KEDIT was loaded, and in the USER and SAMPLES subdirectories of that
directory.

The shortcuts for specifying a fileid that are discussed in connection with the SET
FILEID command can also be used with the GET command.

fromline
Fromline is a numeric operand that tells KEDIT which line of the disk file is the
first line you want inserted. If this operand is not given, the forlines operand can-
not be given either, and the entire contents of the disk file, starting from line 1, are
inserted into the current file.

forlines
Forlines tells KEDIT how many lines are to be inserted. If forlines is a number,
that number of lines is inserted. If forlines is omitted or given as an asterisk (“*””),
all lines starting from fromline through the end of the disk file are inserted.

GET with no operands is used to read in from disk the temporary file that the PUT com-
mand creates when you issue the PUT command without giving a fileid.

The GET command is affected by the settings of EOLIN, EOFIN, TABSIN, and
TRANSLATEIN.

PUT, PUTD

GET A:ABC.TXT

KEDIT inserts all of ABC.TXT from the current directory of the A: drive into the cur-
rent file below the focus line. After completion of the operation, the last line inserted
becomes the new focus line.

GET

75

Commands

GET A:ABC.TXT 12 1
Line 12 of A:ABC.TXT is inserted.

GET A:ABC.TXT 12
GET A:ABC.TXT 12 *

In both cases, KEDIT inserts text from A:ABC.TXT into the current file, starting from
line 12 and continuing until it reaches the end of A:ABC.TXT.

GET A:\RW\ABC.TXT 1 15

The first fifteen lines of A:\RW\ABC.TXT are inserted into the current file.

HELP

Format

Description

Examples

HELP [topic]

Use the HELP command to display the KEDIT for Windows Help file.
HELP with no operands shows the table of contents for the Help file.

HELP topic shows the Help information for the specified topic. If help for the topic
cannot be found, the Help program’s Search dialog box is displayed, so that you can
view the list of available Help topics.

The topics that you specify can include KEDIT commands, SET options, QUERY and
EXTRACT operands, Boolean functions, KEXX instructions, and built-in KEXX
functions. You can also get help for KEDIT error messages by specifying the error mes-
sage number.

HELP

Display the table of contents for the KEDIT for Windows HELP file.

HELP CHANGE
HELP C

Display Help for the CHANGE command --- the Help command lets you specify legal
truncations of the commands you want help for.

HELP SET WRAP
HELP WRAP
HELP SET WR

Display help for the SET WRAP command.

HELP QUERY ARBCHAR
HELP Q ARBCHAR

Display help for QUERY ARBCHAR.

76

Chapter 3. KEDIT Commands

HELP 2
HELP ERROR 2

Display help for KEDIT error message number 2.

HELP SUBSTR
HELP SUBSTR()

Display Help for the KEXX SUBSTR built-in function.

HELP SEARCH
HELP INDEX
HELP CONTENTS

You can also display the Search, Index, or Contents panes of the Help file. (Help Con-
tents is equivalent to Help with no operands.)

See also SET HELPDIR
HEXTYPE
Format HEXType
Description The HEXTYPE command lets you see the internal character codes for the characters in
the focus line.
For each character, KEDIT displays the decimal value of the code for the character, the
hexadecimal value of the code for the character, and the character itself. The decimal
and hexadecimal codes for a character are displayed vertically, directly above the *
character itself. ©
c
©
See also SET HEXDISPLAY, SET VERIFY E
o
o
HISTUTIL
Format HISTUTIL CLEAR MEMORY |REGISTRY type|ALL
HISTUTIL GET MEMORY |REGISTRY type
HISTUTIL INFO type
HISTUTIL RELOAD type|ALL
HISTUTIL SAVE type|ALL
Description HISTUTIL is a specialized command that can be used to query and manipulate the his-
tory information (recently-edited files, recent commands, etc.) that KEDIT maintains.
The type of history information involved can be any of the following:
HISTUTIL 77

CMDLINE Command line history

DEBUGGER KEXX debugger history

DIALOG DIALOG/ALERT command EDITFIELD history
DIRECTORY File Directory dialog history

FIND Edit Find dialog, Quickfind, Find field of Edit Replace
RECENTFILES File menu list of recently-edited files

REPLACEWITH Replace With field of Edit Replace dialog

SELECTIVEEDITING Edit Selective Editing history

The different forms of the HISTUTIL command work as follows:

HISTUTIL HISTUTIL CLEAR MEMORY|REGISTRY #ype|ALL
CLEAR
Deletes all history of the specified type, or of ALL types, from either MEMORY or the
REGISTRY.
HISTUTIL CLEAR REGISTRY ALL is equivalent to REGUTIL CLEAR HISTORY.
HISTUTIL GET HISTUTIL GET MEMORY|REGISTRY #pe
Valid only within macros. Retrieves the history values of the specified type, either from
MEMORY or from the REGISTRY, setting the following variables:
HISTUTIL.O n, where n is the number of history items of the type in-
volved retrieved from memory or from the registry.
HISTUTIL. i For =1 to n, holds the value of the ith item from the re-
quested history list. The higher numbered items are the
ones most recently added to the list.
HISTUTIL INFO HISTUTIL INFO gpe
Valid only within macros. Returns information about a #ype of history list by setting
these macro variables:
HISTUTIL.O 5
HISTUTIL.1 The type involved, in the mixed case used as the name of
the section within the registry where KEDIT saves its his-
tory.
HISTUTIL.2 Number of history items of this type currently saved in
memory by KEDIT.
HISTUTIL.3 Maximum number of history items of this type that
KEDIT will save.
HISTUTIL.4 Maximum length, in characters, of individual history
items of this type that KEDIT will save.
78 Chapter 3. KEDIT Commands

HISTUTIL.5 Prefix characters placed in front of values of this type
saved by KEDIT. This is 3 for FIND and 0 for all other
types; the notes below discuss the FIND prefix bytes.

For example, the results for HISTUTIL INFO CMDLINE might be:

HISTUTIL.O 5
HISTUTIL.1 “Cmdline” (quotes aren't part of the value returned)
HISTUTIL.2 92

HISTUTIL.3 100

HISTUTIL.4 1000

HISTUTIL.5 0

HISTUTIL HISTUTIL RELOAD #ype|ALL
RELOAD

Replaces the current in-memory history of the specified #ype, or of ALL types, with the
history information of the type involved that is currently stored in the registry.

HISTUTIL HISTUTIL SAVE type|ALL

SAVE
Saves the current in-memory history of the specified type, or of ALL types, to the regis-
try, replacing whatever history information of the type involved was previously in the

registry.
HISTUTIL SAVE ALL is equivalent to REGUTIL SAVE HISTORY.

Notes e The HISTUTIL command depends to a larger extent than most KEDIT commands
do on the KEDIT’s internal implementation details, and is therefore more likely
than most KEDIT commands are to be subject to incompatible changes in future
versions of KEDIT. You should not develop macros that depend on the use of the
HISTUTIL command unless you are aware of and are comfortable with this
possibility.

Commands

e KEDIT uses various undocumented heuristics, subject to change between versions
of KEDIT, to maintain the information in its history lists. For example, duplicate
items in different history lists are automatically deleted under different conditions.
And the contents of some history lists can be affected by other KEDIT commands;
the Find history list, for example, is in some circumstances affected by LOCATE
command targets.

e With the default of REGSAVE STATE HISTORY in effect, KEDIT will automati-
cally update the history information in the Windows registry at the end of your
KEDIT session, overriding the changes made to the registry by any HISTUTIL
CLEAR|SAVE REGISTRY commands earlier in the session. If you want to avoid
this, you can put REGSAVE STATENOSTATE NOHISTORY into effect.

e In the Find history list, each search string is preceded by three prefix characters
which depend on the options selected in the Edit Find dialog box. The first prefix

HISTUTIL 79

See also

character used with FIND is ‘¢’ or * * depending on the Match Case option, the
second is ‘w’or *_’depending on the Find Whole Words Only option, and the third

3

is ‘r’ or *_’ depending on the Regular Expression option.

REGUTIL

HIT

Format

Description

See also

Examples

HIT macronamel [macronameZ2 ...]

The HIT command adds the macros you specify to an internal “HIT queue”. Whenever
KEDIT needs to process a key, it first looks to see if any macros are in the HIT queue. If
there are, KEDIT doesn’t actually read a key from the keyboard and process the macro
assigned to that key. Instead, KEDIT processes the next macro in the HIT queue. If the
HIT queue is empty, KEDIT reads from the keyboard. You can specify multiple macros
in one or more HIT commands; the HIT queue can hold the names of up to twelve mac-
ros. The macros must be in-memory macros.

The HIT command is used mainly in macros and is included in KEDIT for compatibil-
ity with earlier versions of KEDIT, where it was useful for getting around some of the
limitations of the key redefinition facilities. Most situations where the HIT command
was used in the past are best handled now with the MACRO command.

The difference between using the MACRO command to cause a macro to be executed
and using the HIT command to cause a macro to be executed is this: When you issue the
MACRO command, the specified macro is immediately executed, and is effectively
called as a subroutine. When you issue the HIT command, the current macro continues
to run, and the HIT macro is not executed immediately, but is instead executed later,
when KEDIT next needs keyboard input. Also, unlike the MACRO command, the HIT
command requires that the macro be an in-memory macro; HIT will not look on disk
for a macro in a .KEX file.

KEDIT does not look in the HIT queue when you use the READV or DIALOG com-
mands, or when processing PULL instructions issued from macros, and HIT queue
entries have no effect on the results of the QUERY LASTKEY command.

MACRO

HIT F2 XYZ

The next time KEDIT needs keyboard input, it processes the F2 macro as if you had
pressed the F2 key, and then processes the macro XYZ, which must be an in-memory
macro.

80

Chapter 3. KEDIT Commands

IMMEDIATE

Format

Description

See also

Examples

IMMediate macrodefinition

The IMMEDIATE command allows you to enter the text of a one-line macro on the
KEDIT command line and have the macro immediately executed by KEDIT. This is
useful when you want to run an “on-the-fly”” macro in a special situation, or when you
want to try a short test macro to experiment with features of KEDIT macros.

Macros run via the IMMEDIATE command follow the same rules as any other KEDIT
macro. The macro can contain more than one clause, with the individual clauses sepa-
rated by semicolons.

User’s Guide Chapter 10, “Using Macros”, DEFINE, MACRO, KEXX INTERPRET
instruction

IMMEDIATE say 1234 * 5.67

KEDIT multiplies 1234 by 5.67 and displays the result, 6996.78.

IMMEDIATE do I = 3 to size.l() by 3; ':'I; 'uppercase'; end

Uppercases every third line of your file.

INIUTIL

Format

Description

See also

INIUTIL SAVE |CLEAR STATE|HISTory|SETTINGS
INIUTIL SAVE SET option

INIUTIL CONVERT SETTINGS

INIUTIL BACKUP CONFIG|HISTory

INIUTIL GET CONFIG|HISTORY section name

The INIUTIL does the same thing as the REGUTIL command. See the description of
the REGUTIL command for a full description of the operands involved.

(KEDIT for Windows now stores its configuration information in the Windows regis-
try, but KEDIT for Windows 1.5 and earlier stored this information in the
KEDITW.INI file. So REGUTIL is the newer name for this command, but for compati-
bility reasons INIUTIL remains available.)

HISTUTIL, REGUTIL, SET REGSAVE

INIUTIL

81

Commands

INPUT

Format

Description

See also

Examples

Input [text]

The INPUT command causes the line of fext that you specify to be added to your file
after the focus line. The newly-added line becomes the new focus line.

If no text is specified (the command line consists only of the word “INPUT””), KEDIT
adds a blank line to your file after the focus line, and makes the blank line become the
new focus line. What KEDIT does then depends on the setting of INPUTMODE. With
INPUTMODE OFF, the default, the cursor is positioned in the left margin column of
the newly-added line. With INPUTMODE LINE or INPUTMODE FULL, KEDIT
enters Input Mode, as discussed in the description of SET INPUTMODE. You leave
Input Mode by pressing the Home key.

REPLACE, SET INPUTMODE

I Hello there.
Aline consisting of ““Hello there.” is added to your file, becoming the new focus line.
INPUT

A blank line is added to your file. This line becomes the focus line. Depending on the
setting of INPUTMODE, you may enter KEDIT’s Input Mode.

JOIN

Format

Description

Join [ALigned]

The JOIN command joins two lines together into a single line. The JOIN command is
usually issued from a macro assigned to a key. (It is assigned to Alt+J by default.) Text
from the line below the focus line is joined to the focus line starting at the focus column,
overlaying any text at or to the right of the focus column.

When you issue the JOIN command with no operands, text starting at column one of
the line below the focus line is joined to the focus line. JOIN ALIGNED (which Alt+]J
normally uses) adjusts for the fact that the two lines involved may be indented from col-
umn one, and that you usually want the JOIN operation to ignore leading blanks that are
present solely because of indentation. JOIN ALIGNED therefore looks at how many
leading blanks the focus line has, and ignores up to that many leading blanks in the line
below the focus line. (See the example below for an illustration of the difference
between JOIN and JOIN ALIGNED.)

If the line that results from the join operation would be too long (that is, if the line
would extend beyond the truncation column), KEDIT issues an error message and does
not carry out the join.

82

Chapter 3. KEDIT Commands

See also

Examples

The JOIN command does not affect the position of the focus line or focus column.
SPLIT, SPLTJOIN

Assume that the focus line and the line below it have the following contents, with the
first nonblank character of each line in column 5 and the cursor positioned at the
asterisk:

First line’s text_*
Next line’s text

[EFTRTT—

JOIN would join all of the second line, including the leading blanks, yielding

First line’s text Next line’s text

[ErTRT— e e

Since the first line is indented by four columns, JOIN ALIGNED would ignore the four
blanks at the start of the second line, resulting in

First line’s text_Next line’s text

KEDIT

Format

Description

Kedit [fileid ...] [(options [)]]

Use the KEDIT command to begin editing one or more additional files. (A command
called XEDIT, which performs exactly the same functions as the KEDIT command, is
also available.)

You will usually specify the fileid of the file you want to edit. If your fileid contains
both a drive and path specification, KEDIT looks only there for the file. If no path is
specified, KEDIT looks in the current directory of the specified drive. If both drive and
path are omitted, KEDIT looks in the default directory of the current drive, then does a
path search controlled by the SET PATH option. Then it looks in the “KEDIT Macros”
subdirectory of your Windows Documents or My Documents folder, in the directory
from which KEDIT was loaded, and in the USER and SAMPLES subdirectories of that
directory. The shortcuts for specifying a fileid that are discussed in connection with the
SET FILEID command can also be used with the KEDIT command.

If a file with the specified fileid is already being edited (that is, it is already in the ring of
files being edited), that file becomes the current file. If there is no file with the speci-
fied fileid in the ring, the file is read in from disk and made the current file. If no file
with that fileid exists even on disk, KEDIT adds an empty file with the given fileid to
the ring and makes it the current file.

Note that using the KEDIT command and specifying a fileid is very similar to using the
File Open dialog box to begin editing a file.

You can add more than one file to the ring at a time by specifying more than one fileid
operand or by using wildcard characters in the fileid specification. Asterisks ("*") and
question marks ("?") in a fileid act as wildcard characters, just as they do when you

KEDIT

83

Commands

issue DIR commands in KEDIT or from the Windows command prompt. Note that you
are limited to a maximum of 500 files in the ring, and that since KEDIT loads all of the
files you are editing into memory, loading a large number of files at once may be time
consuming and may use up a significant amount of memory. If KEDIT is loading a set
of files and encounters an error while loading one of those files, the KEDIT command
is aborted and the remaining files are not processed.

If you issue the KEDIT command with no fileid operand, but you do specify the
UNTITLED option

KEDIT (UNTITLED

KEDIT adds a new untitled file (UNTITLED.n) to the ring. This is equivalent to using
the File New menu item.

If you issue the KEDIT command with no operands at all (this is the default definition
for Shift+F4), the next file in the ring becomes the current file. If there is only one file in
the ring, the KEDIT command issued with no operands has no effect. (You can use the
QUERY RING command to see a list of all files in the ring.)

I3

If you issue the KEDIT command with a minus sign (“-*) as an operand
KEDIT -

the preceding file in the ring will become the current file.

You can also use the mouse to cycle through the ring of files you are editing. You can
use the Next File button on the toolbar to move to the next file in the ring, and the Previ-
ous File button to move to the previous file in the ring.

When you issue the KEDIT command with the fileid operand to add a file to the ring,
you can specify the PROFILE, NOPROFILE, PROFDEBUG, LOCK, NOLOCK,
NOREG, NOINI, NOMSG, NEW, NODEFEXT, UNTITLED, and NOFILEMENU
options for the command in the same way as discussed in Chapter 2, “Invoking
KEDIT”.

See also Section 2.4, “Editing Additional Files”, User’s Guide Section 3.5, “Editing Multiple
Files”, SET FILEID

Examples Assume you are currently editing two files, A:\ABC.DEF and A:\XYZ.XYZ, and that
A\ABC.DEF is the current file.
KEDIT
This would make A:\XYZ.XYZ, the next file in the ring, become the current file.
KEDIT
This would cause KEDIT to wrap around to the beginning of the ring again, making
A\ABC.DEF become the current file.

84 Chapter 3. KEDIT Commands

KEDIT C:\HELLO.TXT

Since C:\HELLO.TXT is not currently in the ring, KEDIT will read it in from disk,
adding it to the ring and making it the current file. If C\HELLO.TXT does not exist,
KEDIT adds an empty file with that fileid to the ring.

KEDIT A:\ABC.DEF
This makes A:\\ABC.DEF, which is already in the ring, become the current file.
KEDIT D:\FITNESS\WALK.TXT D:\FITNESS\RUN.TXT

KEDIT adds the files DAFITNESS\WALK.TXT and D:\FITNESS\RUN.TXT to the
ring.

KEDIT "D:\FITNESS\Go for a swim.TXT"

KEDIT adds the file “D:\FITNESS\Go for a swim. TXT”’ to the ring. Note that fileids
that contain blanks must be enclosed in double quotes.

KEDIT D:\FITNESS*.TXT

KEDIT adds to the ring all files in the D:\FITNESS directory that have a file extension
of TXT.

KEDIT \\SERVER\DISKC\BICYCLE.TXT

KEDIT adds the file \SERVER\DISKC\BICYCLE.TXT to the ring. This example
uses @ UNC (Universal Naming Convention) name to specify a file located on a net-
work server.

KHELP

Format

Description

See also

KHELP |[topic]

Use the KHELP command to display the KEDIT for Windows Help file. The KHELP
command does the same thing as the HELP command; it is included in KEDIT for Win-
dows mainly for compatibility with earlier versions of KEDIT. See the description of
the HELP command for further details.

HELP

KHELP

85

Commands

LEFT

Format

Description

See also

LEft [n|HALF]

The LEFT command scrolls your view of the file n columns to the left. The LEFT com-
mand does not affect the contents of your file; it only affects which columns of your file
are displayed in the document window.

LEFT with no operands scrolls one column to the left. LEFT HALF scrolls half the
width of the document window to the left.

For example, assume that you have issued the command

SET VERIFY 40 *

so that columns 40 through 119 of your file are visible in a window 80 columns wide.
Using the LEFT and RIGHT commands, you can scroll left or right.

LEFT 10

would scroll 10 columns to the left, showing you columns 30 through 109 of your file.

LEFT 20

would then scroll an additional 20 columns to the left, showing you columns 10
through 89 of your file. (If you go far enough to the left, it is possible to have “imagi-
nary”’ columns to the left of column 1 displayed. This is generally not useful, and is
allowed only because it lets KEDIT handle certain situations involving multiple pairs
of VERIFY columns consistently.)

The LEFT and RIGHT commands affect the value of VERSHIFT. VERSHIFT is a
number that represents the number of columns that your view has been scrolled to the
left or right of the columns specified by the VERIFY setting. For example, after the
commands LEFT 10 and LEFT 20, VERSHIFT will be -30, since you have scrolled a
total of 30 columns to the left. If you then issued a RIGHT 65 command, VERSHIFT
would be set to 35 (that is, -30 + 65). (You can QUERY VERSHIFT, but you cannot
directly set it. Its value is controlled by the LEFT and RIGHT commands, and by the
RGTLEFT command. KEDIT’s AUTOSCROLL facility also adjusts the value of
VERSHIFT.) The commands LEFT 0 and RIGHT 0 are special cases. They reset the
value of VERSHIFT to 0. It is also reset to 0 whenever you issue a SET VERIFY
command.

You can also scroll left and right in your file by using the mouse to manipulate the hori-
zontal scroll bar.

RGTLEFT, RIGHT, SET VERIFY

86

Chapter 3. KEDIT Commands

LEFTADJUST

Format

Description

See also

Examples

LEFTAdjust [target]

Text in the target area is left-adjusted, with the leftmost nonblank character of each line
moved to the left margin column.

You can use LEFTADJUST BLOCK, or the Leftadjust Block button on the bottom
toolbar, to left-adjust line blocks, box blocks, and one-line stream blocks. Box blocks
and one-line stream blocks are given special handling: KEDIT left-adjusts the text
within the block boundaries, and text outside the block is not affected. You cannot
left-adjust a multi-line stream block.

CENTER, RIGHTADJUST, SET MARGINS

LEFTADJUST
The focus line is left-adjusted. This is the default assignment for Ctrl+L.
LEFTA 12

KEDIT left-adjusts the text in the focus line and the eleven lines following it, for a total
of twelve lines.

LESS

Format

Description

LESS target
LESS TAG target

After you use the ALL command or the Edit Selective Editing dialog box to select a
subset of the lines in your file for display, you may decide that you want to work with a
smaller subset of your file. The first form of the LESS command, LESS farget, lets you
do this, removing from display all lines matching the specified target.

Similarly, after you use the TAG command to highlight a subset of the lines in your file,
you can use the second form of the LESS command, LESS TAG target, to turn off high-
lighting for all lines that match the specified target.

A companion command to the LESS command is the MORE command, which lets you
select or highlight more lines rather than fewer lines.

The LESS command works by manipulating the selection levels or tag bits of the lines
in your file. Here are some of the details, which can be ignored by most users of the
LESS command.

LESS

87

Commands

See also

Examples

LESS target checks whether either of DISPLAY 0 1 or DISPLAY 1 1 is in effect. If so,
it assumes that you have previously issued the ALL command to set the selection level
of' some lines to 1, and it resets the selection level of all lines matching the specified tar-
get to 0. Otherwise, LESS puts DISPLAY 1 1 into effect, sets the selection level of all
lines that match the target to 0, and sets the selection level of all other lines to 1.

LESS TAG target checks whether HIGHLIGHT TAGGED is in effect. If so, it assumes
that you have already used the TAG command to highlight some of the lines in your
file, and turns the tag bit off for all lines that match the specified target. f HIGHLIGHT
TAGGED is not in effect, LESS puts it into effect, turns off the tag bit for all lines that
match the target, and turns it on for all other lines.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, TAG,
MORE

ALL /ABC/
LESS /DEF/

In this example, you first issue the ALL command to display only the lines in your file
that contain the string “ABC”’. If it then turns out that many of the lines with “ABC”’
also contain “DEF”, and that these lines are not really of interest to you, you can use
the LESS command in the example to remove them from display.

TAG /ABC/
LESS TAG /DEF/

In this example, you first issue the TAG command to highlight the lines in your file
containing “ABC”. If many of the highlighted lines also contain “DEF”, and these
lines are not of interest to you, you can use the LESS command to turn off their
highlighting.

LOCATE

Format

Description

[Locate] target

Use the LOCATE command to make the specified target line become the new focus
line. Targets are fully described in User’s Guide Chapter 6, “Targets”, and are summa-
rized below. You can also search for text by using the Edit Find dialog box.

The word “LOCATE” is optional in most cases, and you can normally specify targets
without actually entering “LOCATE”. So the following pairs of commands are
equivalent:

/Fred/
LOCATE /Fred/

Both of these look for the next line containing “Fred”.

88

Chapter 3. KEDIT Commands

See also

Examples

: 20
L :20

Both of these move to line 20 of your file.

10
LOCATE 10

Both of these move down 10 lines in your file.

An exception comes with targets that begin with an alphabetic character. For example,
to locate the next altered line, you can use “LOCATE ALTERED” or can abbreviate it
to “L ALTERED”, but cannot use simply “ALTERED”.

When using the LOCATE command (with or without actually using the word
LOCATE), you can immediately follow the target specification with another KEDIT
command that is to be carried out after the target line has been made the focus line. For
example,

LOCATE :4 DELETE 3

This tells KEDIT to make line 4 of your file the focus line and then delete three lines
(lines 4 through 6). A more complicated example would be

-* /abc/ -2 add

This tells KEDIT to make the top-of-file line the focus line, then search from there for
the string ““abc”, then go up two lines and then add a blank line to the file.

Operation of the LOCATE command is affected by the settings of ZONE, CASE,
ARBCHAR, VARBLANK, HEX, WRAP, and STAY. If THIGHLIGHT ON is in
effect, as it is by default, KEDIT will highlight strings found by LOCATE on your
display.

If you issue the LOCATE command with no operands, KEDIT re-executes the last
LOCATE command that you issued from the command line. By default, Shift+F1 is set
to issue a LOCATE command with no operands. This allows you to, for example,
locate the line containing some string, make some changes to the line, and then press
Shift+F1 to locate the next occurrence of the string.

User’s Guide Chapter 6, “Targets”, CLOCATE, FIND, TFIND, SET THIGHLIGHT

/abc/
LOCATE /abc/

These two commands are equivalent. Both tell KEDIT to move the focus line pointer to
the next line containing “abc™.

-4
LOCATE :4

These two commands are equivalent. Both tell KEDIT to move the focus line pointer to
line 4 of the file.

LOCATE

89

Commands

Target
summary

LOCATE ,abc/def,
,abc/def,

These two are also equivalent. Both tell KEDIT to make the next line in the file contain-
ing the string “abc/def” become the focus line. Since the string target contains a slash
(*/”), which is the usual string delimiter, you have to use some other special character
as the delimiter (in this case, a comma).

LOCATE WORD /Fred/

Locates the next line containing the word “Fred”. The word “LOCATE” is not
optional since the target specification begins with an alphabetic character.

Here is a summary of the types of targets available for use with LOCATE and with

other KEDIT commands that take targets as operands. See User’s Guide Chapter 6,

“Targets”, for more discussion of KEDIT targets.

o Absolute line number targets use a number preceded by a colon (““:””) and give the
line number of the target line.

:10 :30 :999

e Relative line number targets use a number, optionally preceded by a minus sign
("), and specify the number of lines below or above the focus line of the target
line. “*”” and “*-*” can be used to refer to the end-of-file line and the top-of-file
line.

18 -72 *

e Named line targets use a line name preceded by a period (*“.”) to refer to lines

given a name via the SET POINT command or the Actions Bookmark dialog.

.a .Xyz2

o String targets refer to a line by specifying some portion of the text contained in the
line. They can optionally be preceded by a minus sign (“-”’) to indicate that
KEDIT is to look backward in the file for the specified string.

/this week/ -/tomorrow/

String targets can be preceded by a tilde (“~”’) to indicate a negative string
search—a search for a line that does not contain the specified string.

~/yesterday/ -~/1776/

You can use logical operators to combine string targets. Use ampersands (“&”’) to
look for a line that contains each of two or more strings, and use vertical bars (“|”)
to look for a line that contains any of two or more strings.

/now/ & /never/ /easy/ | /hard/

You can precede a string target with WORD (which can be abbreviated to “W”’) to
indicate that the string must begin and end on a word boundary. PREFIX means
that the string must start on a word boundary and SUFFIX means that it must end
on a word boundary; these can be abbreviated to “P”” and “S”.

90

Chapter 3. KEDIT Commands

word /the/ prefix /un/

String target searches can be affected by the settings of ZONE, CASE,
ARBCHAR, VARBLANK, HEX, WRAP, and STAY.

You can precede a string target with REGEXP (which can be abbreviated to “R’”)
to indicate that the string target involved is specified using a regular expression.
Regular expressions are summarized below.

regexp /[a-z]+./

Line class targets refer to lines according to whether they are blank (BLAnk), ac-
cording to their selection level (SELect n [m]), or according to their flag bits
(NEW, CHAnged, TAGged, ALTered).

blank select 3 altered

Line class targets can be used with negation and with logical operators, and can be
combined with string targets.

~blank altered | /title/

Group targets refer to a group of lines, either ALL lines in the file, the currently
marked BLOCK, or all lines in the focus PARAgraph.

LOCATE

91

Commands

Regular

Here is a summary of the components of regular expressions:

expression
summary
Item Meaning
? Wildcard character — matches any single character
A Matches the beginning of a line
$ Matches the end of a line
[class] Definition of a character class — matches any character in class
Definition of a character unclass — matches characters not in
[~class]
class
X Parenthetical expressions — groups expressions together for
other operations
X* Minimal closure — matches shortest possible string of zero or
more occurrences of X
Y Minimal plus — matches shortest possible string of one or more
occurrences of X
X@ Maximal closure — matches longest possible string of zero or
more occurrences of X
X# Maximal plus — matches longest possible string of one or more
occurrences of X
X"n Power function — matches exactly n occurrences of X
~X Not function — succeeds only if X isn’t matched
(X1[X2]..) Alternation — matches X1 or, if X1 doesn’t match, matches X2,
etc.
letter Predefined expression
\x Escape sequence
\c Set cursor position/current column after Edit Find or CLOCATE
(X} Tagged expression — when X is matched the value is saved for
later reference
&n Reference to value of nth tagged expression
92 Chapter 3. KEDIT Commands

LOCK

Format

Description

See also

LOCK

Use the LOCK command to prevent other users on your network, or other processes on
your own computer, from accessing the disk copy of a file that you are currently
editing.

The LOCK command causes KEDIT to lock the current file. That is, KEDIT opens the
disk copy of the current file and keeps it open until the file is removed from the ring or
until the UNLOCK command is issued for the file.

Attempting to LOCK a file that is already locked causes an error message. If the cur-
rent file is locked, KEDIT displays ““Locked” on the status line. Additionally, if the
current file is locked and IDLINE ON is in effect, its fileid will be preceded on the
idline with an asterisk.

User’s Guide Chapter 12, “File Processing”, LOCK and NOLOCK initialization
options, UNLOCK, SET LOCKING, SET SHARING

LOWERCASE

Format

Description

See also

Examples

LOWercase [target]

Use the LOWERCASE command to convert uppercase characters in a specified por-
tion of your file to lowercase characters.

If you give no operands, the LOWERCASE command converts the focus line to lower-
case. Otherwise, all text within the specified target area that falls within the current
ZONE columns is converted. If the target area is a box block, its entire contents are
converted, regardless of the ZONE settings. If STAY OFF is in effect, the last line
lowercased becomes the focus line. Otherwise, the focus line location does not change.

With the default of INTERNATIONAL NOCASE in effect, LOWERCASE treats only
the 26 letters from “A’” to “Z” and from ‘‘a” to “z” as alphabetic. With
INTERNATIONAL CASE in effect the characters to be treated as alphabetic, and what
their uppercase equivalents are, are determined by your Windows language drivers.

Note that you can use Shift+F6, the Actions Lowercase menu item, or the Lowercase
Block button on the bottom toolbar to lowercase a block of text.

UPPERCASE, SET INTERNATIONAL

LOWERCASE

All uppercase characters in the focus line are converted to lowercase.

LOWERCASE

93

Commands

LOWERCASE 6

All uppercase characters in the focus line and in the five lines following it, for a total of
six lines, are converted to lowercase.

LPREFIX

Format

Description

See also

Examples

LPrefix [text]

The LPREFIX command places the fext that you specify into the prefix area of the
focus line and then processes all pending prefix commands.

The LPREFIX command is equivalent to your moving the cursor to the prefix area of
the focus line, typing the fext into the prefix area, and executing the SOS DOPREFIX
command (which is part of the definition of the F12 key under INTERFACE CUA and
of the Home key under INTERFACE CLASSIC). LPREFIX is useful from within mac-
ros that need to execute prefix commands. It also provides a way to enter and execute
prefix commands when the prefix area is turned off.

User’s Guide Chapter 9, “Tailoring KEDIT”, SET PREFIX

LPREFIX X

KEDIT places “X” into the prefix area of the focus line, and then executes this com-
mand, along with any other pending prefix commands. The X prefix command uses
KEDIT’s selective line editing facilities to exclude the focus line from the display.

LPREFIX DD

KEDIT places “DD” into the prefix area of the focus line, and then executes all pend-
ing prefix commands. If a matching DD prefix command is already pending, the speci-
fied block of lines will be deleted. Otherwise, the newly-entered DD command will
remain pending.

94

Chapter 3. KEDIT Commands

MACRO

Format

Description

See also

Examples

MACRO macroname [text]

The MACRO command causes KEDIT to run the KEXX language macro specified by
macroname. Any text after the macroname is passed to the macro as an argument.

If IMPMACRO ON is in effect, as it is by default, you do not usually need to issue the
MACRO command. Whenever KEDIT sees a command that it does not recognize it
will automatically look for a macro by that name. This ““implied macro” facility works
only for macros whose names consist entirely of alphabetic characters.

KEDIT keeps in memory the macros involved in the default key and mousebar assign-
ments, along with any macros that you have defined or loaded via the DEFINE com-
mand. If macroname specifies an in-memory macro, KEDIT can immediately run the
macro.

If the macro is not in memory, KEDIT reads the macro in from a disk file and runs it,
removing it from memory after it has completed execution. If macroname does not
include a file extension, KEDIT assumes that the macro is in a file with an extension of
KEX. If macroname contains a DOS drive or path specification, KEDIT reads the
macro from the specified drive or directory. Otherwise, KEDIT looks for the macro in
your current directory. If this fails, KEDIT looks in any directories that you have speci-
fied via SET MACROPATH. Finally, it looks in the “KEDIT Macros” subdirectory of
your Windows Documents or My Documents folder, in the directory from which
KEDIT was loaded, and in the USER and SAMPLES subdirectories of that directory.
If the macro still cannot be located, an error message is issued and the MACRO
command fails.

As discussed in User’s Guide Section 10.2.3, “Storing Your Macros”, we normally rec-
ommend that macros that you create be kept in the “KEDIT Macros” subdirectory of
your Windows Documents folder (which is sometimes known as the My Documents
folder).

User’s Guide Chapter 10, “Using Macros”, MACROPATH initialization option,
DEBUG, DEFINE, IMMEDIATE, SET IMPMACRO, SET MACROPATH

MACRO REVERT Hello

KEDIT tries to run an in-memory macro named REVERT. If none is found, KEDIT
looks on disk for REVERT.KEX. When the macro is run, “Hello” is passed to it as an
argument, which can be accessed via the ARG() function or PARSE ARG instruction.

MACRO F3

KEDIT tries to run an in-memory macro named F3. Since F3 is the name of a key, F3
will be found in memory. Issuing the command MACRO F3 is equivalent to pressing
the F3 key.

MACRO

95

Commands

MACRO D:\TEST

KEDIT runs the macro stored on disk in the file D:\TEST.KEX.

MACROS

Format

Description

See also

Examples

MACROS [ALL|CHANGED]
MACROS macronamel [macronameZ2 ...]

The MACROS command places the definitions of one or more of your in-memory
macros into a file named MACROS.KML, so that you can view the definitions, modify
them, and possibly save them to disk for future use.

Macro definitions are placed in MACROS.KML in the KEDIT Macro Library format
normally used with .KML files. [f MACROS.KML is already in the ring of files you are
editing, the MACROS command replaces its contents. Otherwise, MACROS.KML is
added to the ring. The file is created only in memory; use the FILE or SAVE commands
if you want to save it to disk.

MACROS ALL
MACROS

MACROS ALL (or MACROS with no operands) places the definitions of all
in-memory macros into MACROS.KML. (Default macro assignments for certain
keys with ““uninteresting”” definitions, like the 3 key if it simply enters a “3”, are
not included.)

MACROS CHANGED
Places the definitions of all macros that you have defined via the DEFINE com-
mand into MACROS.KML, but does not include KEDIT’s built-in default macro
definitions.

MACROS macronamel [macroname2 ...]
Places the definitions of the specified in-memory macros into MACROS.KML.

Since the MACROS command can cause a file (MACROS.KML) to be added to the
ring, the PROFILE, NOPROFILE, PROFDEBUG, NOREG, NOINI, and NOMSG
options, as discussed in Chapter 2, “Invoking KEDIT”, can also be used with the
MACROS command.

You can use QUERY MACRO macroname (or DEFINE macroname with no addi-
tional operands) to display the definition of a single macro in the message area. You can
use MODIFY MACRO macroname to place the definition of a single macro, which
must have a one line definition, on the command line for easy modification.

DEFINE

MACROS

Places the definitions of all in-memory macros into MACROS.KML.

96

Chapter 3. KEDIT Commands

MACROS F1 F2 F3 F4

Places the definitions of F1, F2, F3, and F4 into MACROS.KML.

MARK

Format

Description

MARK Line|Box|Stream [PERSISTent|SELection]
[Anchor |Word] [RESET]

MARK CMDline [SELection] Anchor|Word [RESET]

MARK Line [PERSISTent|SELection] [Anchor] ALL

MARK REANCHOR line [col]

MARK PERSISTent

The MARK command, used primarily within macros, marks the boundaries of a line,
box, or stream block. KEDIT has a number of commands that can operate on the
resulting marked block, allowing you to uppercase it, delete it, copy it to the clipboard,
etc.

MARK Line|Box|Stream
Marks the focus line as one edge of a line block, or marks the focus column as one
corner of a box or stream block.

You can only have one block marked at a time. If a block is marked in some file
other than the current file when you issue the MARK command, that block is reset.

By default, Alt+L issues the command MARK LINE, Alt+B issues the command
MARK BOX, and Alt+Z issues the command MARK STREAM. Since no other
operands are specified, these commands mark persistent, unanchored line, box, or
stream blocks.

PERSISTent|SELection

There are two types of blocks: persistent blocks and non-persistent blocks. Persis-
tent blocks remain marked until you explicitly unmark them. Non-persistent
blocks, which are usually referred to as “selections”, are unmarked as soon as the
cursor is repositioned. Use the PERSISTENT|SELECTION operand of the
MARK command to specify whether a persistent block or a selection is to be
marked; PERSISTENT is the default. Selections are available only when
INTERFACE CUA is in effect, and the SELECTION operand is invalid if
INTERFACE CLASSIC is in effect.

Anchor

The ANCHOR operand determines how an existing block changes size when a
new boundary is marked. For an unanchored block, the block will extend from the
focus line or column to the most distant existing boundary of the block. For an an-
chored block, the block extends from the focus line or column to a fixed “anchor”
position. Persistent blocks are by default unanchored but you can use the
ANCHOR operand to mark persistent anchored blocks. Selections are always an-
chored, so the ANCHOR option can be used for selections but is not necessary.

MARK

97

Commands

You can use the ANCHOR operand when you begin to mark a new block to indi-
cate that the initial boundary of the block is to be the block’s anchor.

You can then use the ANCHOR operand when you change the size of the block to
indicate that the block should extend from the focus line or column to the anchor. If
you use the ANCHOR operand when extending an existing block that does not
have an anchor, the beginning of the block becomes the anchor.

By default, blocks marked with the mouse or (if INTERFACE CUA is in effect)
with Shift+cursor-pad keys are anchored blocks while blocks marked with Alt+L,
Alt+B, and Alt+Z are unanchored blocks.

Word
The WORD operand is valid only with stream blocks and causes the MARK com-
mand to mark or extend blocks on a per-word basis. If the focus column contains a
nonblank character, the focus word and any trailing blanks are marked. If the focus
column contains a blank, the inter-word spaces are marked. Using the WORD op-
erand also causes the behavior associated with the ANCHOR operand to occur.

RESET
Causes any existing block to be reset, as if you had issued the RESET BLOCK
command, so that the MARK command will mark a new block.

Four additional forms of the MARK command are available:

MARK CMDline [SELection] Anchor|Word [RESET]

MARK CMDLINE, available only when INTERFACE CUA is in effect, marks a
command line selection. The SELECTION operand is optional but has no effect,
since persistent command line blocks are not available. Command line selections
are always anchored, and either the ANCHOR or WORD operand is required. If
no command line selection currently exists, or if the RESET operand is used, the
cursor position on the command line is marked as the start of a command line se-
lection. Otherwise, the existing command line selection is extended to the cursor
position.

MARK Line [PERSISTent|SELection] [Anchor] ALL
This form of the MARK command marks the entire file as a persistent line block
(the default) or as a line selection. If you use it to mark the file as a line selection
when the cursor is not already in the file area, the cursor is moved to the file area.

MARK REANCHOR line [col]
MARK REANCHOR extends an existing selection or persistent block to the line
and (for box and stream blocks) column of the file that you specify, and then makes
the block an anchored block, with the line and column to which the block was ex-
tended as the anchor.

MARK PERSISTent
MARK PERSISTENT changes a selection into a persistent block; it is used by the
macro that handles the Edit Make Persistent menu item.

Notes e The MARK command is rarely issued from the command line, but is instead most
often issued from within macros. In fact, most of the MARK command’s operands
exist only to help KEDIT’s default mouse and keyboard macros work smoothly. If

98 Chapter 3. KEDIT Commands

See also

Examples

you are making changes to KEDIT’s default behavior in this area, you may need to
use some of these operands. In more “run-of-the-mill” macros that need to mark
and then operate on some portion of a file, it is usually easiest to stick to MARK
LINE, MARK BOX, and MARK STREAM, issued with no other operands so that
they mark persistent, unanchored blocks,

e KEDIT will normally not let you have a zero-length selection, and considers a
zero-length selection as equivalent to having no selection at all. A command like
MARK STREAM SELECTION RESET would appear to create a selection ex-
tending from the cursor position to the cursor position, which would therefore be
zero bytes in size, but KEDIT internally unmarks such a selection as soon as it is
created. That is, after MARK STREAM SELECTION RESET, EXTRACT
/BLOCK/ will indicate that there is no block marked, and not that there is a
zero-length selection. An exception to this comes during the processing of mouse
clicks (that is, during the processing of BUTTON1DOWN, etc.), where it is useful
to create a zero-length selection that can then be extended by dragging the mouse.
Zero-length selections are, therefore, allowed during the processing of mouse ac-
tivity, but if a zero-length selection exists after the mouse button is released, it is
automatically reset.

EXTEND, RESET, QUERY BLOCK, SET DRAG

MARK BOX

Mark the focus column as one corner of a box block. If there is no existing block in the
current file, you will have a one-character box block. If there is an existing block, the
block will extend from the focus column to the farthest existing corner of the block.

MARK LINE ANCHOR RESET

Reset any existing block, mark the focus line as a one-line line block, and make that the
anchor for changes to the block.

MERGE

Format

Description

MErge targetl target2 [col]

The MERGE command takes one group of lines, from the current line up to (but not
including) the line specified by farget!, and merges it with another group of lines,
beginning at the line specified by target?.

Each line in the first group is merged into the corresponding line in the second group,
with column 1 of the line from the first group positioned in the column specified by the
col operand, which defaults to column 1. Nonblank text from the first line replaces the
corresponding text from the second line; where there is a blank column in the first line,
the corresponding position in the second line is left unchanged. So, for example,
merging the line

MERGE

929

Commands

Examples

AA_
with the line

BB

——

would produce
A_AB

After the merge operation is complete, the first group of lines (whose contents have
been merged with the second group) is deleted.

Assume that a file contains the following six lines, and that line 1 is the focus line:

Ann
Pat cycling

h ppy
Fred and Jim went swimming
Jane and Bob went jogging
Edna and Sam were sad

The command “MERGE 3 :4 10 would result in:

Fred and Ann went swimming
Jane and Pat went cycling
Edna and Sam were happy

with the first group of lines, lines 1 through 3, merged with the second group of lines,
starting in column 10 of line 4, and deleted from their original position in the file.

MODIFY

Format

Description

MODify option
MODify MACRO macroname

The MODIFY command displays the current value of one of the options that you can
SET. The value is displayed on the command line in the form of a SET command for the
option, allowing you to change the value by typing over it and then re-entering the
modified value of the SET option. The MODIFY command takes one operand, the
name of the option whose value you want to change. (The name of the option can be
abbreviated using the same minimal truncations that the corresponding SET command
allows.)

For compatibility with earlier versions of KEDIT, you can also use the MODIFY com-
mand with options that you can QUERY but cannot SET. For example, KEDIT allows
you to use MODIFY TIME, even though the SET TIME command that is placed on the
command line as a result is invalid.

100

Chapter 3. KEDIT Commands

See also

Examples

You can use a second form of the command, MODIFY MACRO macroname, to get the
definition of an in-memory macro, whose definition can only be one line long, in a
DEFINE command on the command line for easy modification.

STATUS, Chapter 4, “The SET Command”, Chapter 5, “QUERY and EXTRACT”

MODIFY BOUNDMARK

KEDIT will display current BOUNDMARK settings on the command line. You can
then overtype or otherwise edit these settings and enter the modified values.

MODIFY DIRECTORY

KEDIT displays the current directory on the command line. As an exception to the
usual behavior for the MODIFY command the current directory is preceded on the
command line by “CHDIR” and not “SET DIRECTORY”, because the CHDIR com-
mand is KEDIT’s closest equivalent to the non-existent SET DIRECTORY command.

MODIFY MACRO XYZ

KEDIT will display the current definition of XYZ, which must be a one-line in-mem-
ory macro, on the command line. You can then overtype or otherwise edit the
definition.

MORE

Format

Description

MORE target
MORE TAG target

After you use the ALL command or the Edit Selective Editing dialog box to select a
subset of the lines in your file for display, you may decide that you want to work with a
larger subset of your file. The first form of the MORE command, MORE target, lets
you do this, adding all lines that match the specified target to the set of selected lines.

Similarly, after you use the TAG command to highlight a subset of the lines in your file,
you can use the second form of the MORE command, MORE TAG farget, to turn on
highlighting for all lines that match the specified target.

A companion command to the MORE command is the LESS command, which lets you
select or highlight fewer lines rather than more lines.

The MORE command works by manipulating the selection levels or tag bits of the lines
in your file. Here are some of the details, which can be ignored by most users.

MORE farget checks whether either of DISPLAY 0 1 or DISPLAY 1 1 is in effect. If so,
MORE assumes that you have previously used the ALL command to select a subset of
the lines in your file, and MORE sets the selection levels of all lines that match the

MORE

101

Commands

See also

Examples

specified target to 1. Otherwise, issuing MORE target is equivalent to issuing ALL
target.

MORE TAG target checks whether HIGHLIGHT TAGGED is in effect. If so, it
assumes that you have already used the TAG command to highlight some of the lines in
your file, and turns the tag bit on for all lines that match the specified target. If HIGH-
LIGHT TAGGED is not in effect, issuing MORE TAG target is equivalent to issuing
TAG target.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, TAG, LESS

ALL /ABC/
MORE /DEF/

In this example, you first issue the ALL command to display only the lines in your file
that contain the string “ABC”. If it then turns out that you also want to see any lines
that contain “DEF”, you can use the MORE command in the example to add them to
the display.

TAG /ABC/
MORE TAG /DEF/

In this example, you first issue the TAG command to highlight the lines in your file
containing “ABC”. If you then decide that you would like to highlight lines with
“DEF” as well, you can use the MORE command in the example to highlight them.

MOVE

Format

Description

MOve targetl target2
MOve BLOCK

Use the MOVE command to move text from one location to another.
There are two forms of the command:

MOve targetl target2
All text in the target area specified by target! is moved, with the moved text placed
immediately after the line specified by farget2. With this form of the command, the
target area specified by target! cannot be a box or stream block. Text can only be
moved within the current file, and not from one file in the ring to another.

MOve BLOCK
This form of the MOVE command moves all text in the currently marked block.
The block can be in the current file or in another file, allowing you to move text
from one file to another. If the block is a line block, text is moved after the focus
line. If the block is a box or stream block, text is moved to the left of the text at the
focus column position. The block remains marked in its new position.

102

Chapter 3. KEDIT Commands

See also

Examples

MOVE BLOCK is assigned by default to Alt+M, which uses the RESET com-
mand to unmark the block after the move is complete.

You can also move blocks by using the Move button on the bottom toolbar, by us-
ing mouse button 1 to drag and drop the block, or by using the Edit menu to cut the
block to the clipboard and then paste it back at a new location.

COPY

In the following examples, assume that line 6 is the focus line.

MOVE :12 /ABC/

Lines 6 through 11 are moved following the next line containing “ABC”’.
MOVE 4 :88

Lines 6 through 9 (a total of four lines) of the current file are moved following line 88
of the current file.

MOVE BLOCK -*

All lines in the currently marked block, which must be a line block in the current file for
this form of the command, are moved following the top-of-file line.

MOVE BLOCK

If the currently marked block is a line block, KEDIT moves its contents following line
6 of the file. If the block is a box or stream block, KEDIT moves the block to the left of
the text at the focus column position.

MSG

Format

Description

See also

Examples

Commands

MSG [text]

The MSG (“‘message’”) command, displays the specified zext on the message line.

More commonly used in macros than the MSG command is the SAY instruction, which
also displays text on the KEDIT message line.

CMSG, DIALOG, DMSG, EMSG, WMSG, SET MSGLINE, KEXX SAY instruction

MSG Function complete

KEDIT displays “Function complete” on the message line.

MSG

103

NEXT

Format

Description

See also

Examples

Next [n]

The line 7 lines below the focus line becomes the new focus line. If n is not specified,
the line that is one line below the focus line becomes the focus line.

The DOWN command and the LOCATE command with a relative line number target
perform the same function as the NEXT command.

UP

NEXT
The line one line below the focus line becomes the new focus line.
NEXT 8

The line eight lines below the focus line becomes the new focus line.

NFIND, NFINDUP, NFUP

Format

Description

NFind text
NFINDUp text
NFUp text

The NFIND command searches forward through your file for a line that does nof start
(in column 1) with the text that you specify. That line becomes the new focus line. The
search starts with the line below the focus line and continues until the desired line is
found or the end-of-file line is reached (wrapping to the top of the file if WRAP is ON).

NFINDUP (which can also be given as NFUP) does the same thing as the NFIND com-
mand, except that KEDIT searches upward for the desired line, beginning with the line
above the focus line.

These commands are included in KEDIT mainly for compatibility with XEDIT. The
TFIND command is a more general command that is preferable in most situations.

KEDIT remembers the last operand used whenever the FIND, FINDUP, NFIND, or
NFINDUP commands are issued from the command line and, if you later issue one of
these commands with no operands, this remembered operand” is reused.

If CASE IGNORE is in effect, an alphabetic character in the search text will match
either its uppercase or lowercase equivalent. Blanks in the search text act as wild card
characters, matching any single character in your file. Underscore (““) characters in
the search text match blanks in your file.

104

Chapter 3. KEDIT Commands

See also

Examples

FIND, FINDUP, TFIND

NFIND ABC
The next line that does not begin with “ABC”” becomes the focus line.
NFINDUP ABC

The first line above the focus line that does not begin with “ABC’ becomes the new
focus line.

NFIND ABC DEF

This command searches for a line that does not contain “ABC” in columns 1 through 3
and “DEF” in columns 5 through 7.

NFIND ABC DEF

This searches for a line that does not have “ABC DEF” in columns 1 through 7.

NOMSG

Format

Description

See also

Examples

NOMSG command

NOMSG, used mainly in macros, takes as its operand the text of a command that you
would like KEDIT to execute with MSGMODE OFF in effect. KEDIT preserves the
MSGMODE setting, executes the specified command but does not display any mes-
sages generated by the command, and then restores the setting of MSGMODE. (Mes-
sages generated by the command, while not displayed, do affect the value returned by
QUERY LASTMSG.)

NOMSG is often useful within macros, since macros often need to issue commands
that may generate irrelevant messages. For example, you may need to issue a
CHANGE command from within a macro, but may not want KEDIT to display the
message giving the number of occurrences changed. Without the NOMSG command,
you would often need to save and restore the status of MSGMODE within macros,
which can cause problems if a macro that turned MSGMODE OFF terminates unex-
pectedly before turning MSGMODE back ON.

NOMSG initialization option, SET MSGMODE

NOMSG LOCATE /1234/

KEDIT executes the command LOCATE /1234/, but does not display any error mes-
sage if 1234 is not found. A macro that issues this command could then examine the
return code to determine if the command was successful.

NOMSG

105

Commands

OEMTOANSI

Format

Description

See also

Examples

OEMTOANSTI [target]

Use the OEMTOANSI command to convert text in a specified portion of your file from
the OEM character set to the ANSI character set.

All text within the specified target area that falls within the current ZONE columns is
converted. If the target area is a box block, its entire contents are converted, regardless
of the ZONE settings.

ANSITOOEM, User’s Guide Section 3.7, “Character Sets”

OEMTOANSI ALL

Convert all lines of the file from OEM to ANSI.

OVERLAY

Format

Description

See also

Overlay text

The OVERLAY command overlays the text in the focus line, starting in column 1, with
the text that you specify.

All text that you enter, starting with the character after the first blank following the
OVERLAY command, is taken as “overlay text” that will overlay data in the focus
line. Wherever there is a blank in the overlay text, the corresponding character in the
focus line is not changed. Wherever there is an underscore character (““_"") in the over-
lay text, the corresponding character in the focus line is replaced by a blank. All other
characters in the overlay text replace the corresponding characters in the focus line.

T3]

There is no way to put underscore characters (
them converted to blanks in the focus line.

) into the overlay text without having

The COVERLAY command does the same thing as the OVERLAY command, except
that OVERLAY overlays text starting in column 1, while the COVERLAY command
overlays text starting at the focus column.

COVERLAY, REPLACE

106

Chapter 3. KEDIT Commands

OVERLAYBOX

Format

Description

OVERLAYBox

The OVERLAYBOX command, normally assigned to Shift+Ctrl+O, overlays a por-
tion of your file with the text in a block. OVERLAYBOX operates on line blocks, box
blocks, and one-line stream blocks; it does not operate on multi-line stream blocks. The
name OVERLAYBOX exists for historical reasons, since in earlier versions
OVERLAYBOX could only operate on box blocks.

If OVERLAYBOX is issued when a box block or one-line stream block is marked, a
copy of the text in the block overlays the lines of your file beginning at the focus line.

POPUP

Format

Description

POPUP [MOUSE | TEXT |CENTER] /iteml/[item2/ ...]

Use the POPUP command from within a macro, normally a macro associated with a
mouse action, to display a pop-up menu to the user of the macro. The user of the macro
then uses the mouse or keyboard to make a choice from the menu, and this choice is
returned to your macro.

The first, optional, operand determines where the pop-up menu appears. If MOUSE is
specified, or if the operand is omitted, the upper left corner of the menu is positioned at
the mouse pointer location. With TEXT, the upper left corner is positioned at the text
cursor location, and with CENTER the upper left corner is positioned at the center of
KEDIT’s frame window.

The POPUP command takes as its remaining operands a delimited list of the menu
items involved. The delimiters are normally slash characters (““/””), but can be any spe-
cial character not contained in any of the menu items. Some special rules:

e If a menu item begins with a tilde (“~”
cannot be selected by the user.

), that menu item will be grayed out and

9

e Ifamenu item consists solely of a minus sign (
a separator line within the menu.

), that menu item is displayed as

e Ifamenu item contains an ampersand (““&”’), the ampersand is not displayed but
the character following the ampersand is underlined and the user of the macro can
type that character to choose that menu item. To have an ampersand displayed as
part of a menu item, use two consecutive ampersands. POPUP returns its results
through macro variables, much as the EXTRACT command does.

POPUP

107

Commands

See also

Examples

On completion of the POPUP command, two macro variables are set:

popup.0 1

popup.1 The contents of the menu item selected by the user. This value is re-
turned exactly as you specified it, and includes any ampersands pres-
ent in your original string. If no item was selected (because the user
pressed the Escape key or clicked outside of the menu), this variable
is set to the null string.

DIALOG, READV

'popup /Add/Delete/~Replace/-/Upload/Download/’'
if popup.l = '’ then call no_selection

else if popup.1 'Add' then call adder

else if popup.1l 'Delete' then call deleter

In this portion of a macro, a pop-up menu with the items Add, Delete, Replace
(grayed-out and not selectable), a separator line, Upload, and Download is displayed.
After the POPUP command completes, the variable POPUP.1 is set to the null string if
no item was selected, and otherwise it is set equal to the text of the item that was chosen.

PRESERVE

Format

Description

See also

PREServe

The PRESERVE command, used mainly in macros, causes KEDIT to save the current
values of most SET options so that you can temporarily change them, execute some
commands with the new settings, and then restore their values with the RESTORE
command.

The settings of ARBCHAR, ARROW, AUTOINDENT, AUTOSAVE,
AUTOSCROLL, BACKUP, BOUNDMARK, CASE, CMDLINE, COLMARK,
COLOR, COLORING, CURLINE, CURRBOX, DISPLAY, ECOLOR, EOFIN,
EOFOUT, EOLIN, EOLOUT, FORMAT, HEX, HIGHLIGHT, IDLINE,
IMPMACRO, INPUTMODE, INTERNATIONAL, LINEND, LRECL, MARGINS,
MSGLINE, MSGMODE, NEWLINES, NUMBER, PCOLOR, PREFIX,
PREFIXWIDTH, RECFM, SCALE, SCOPE, SCROLLBAR, SHADOW, STAY,
STREAM, SYNONYM, TABLINE, TABS, TABSAVE, TABSIN, TABSOUT,
THIGHLIGHT, TIMECHECK, TOFEOF, TRAILING, TRANSLATEIN,
TRANSLATEOUT, TRUNC, UNDOING, VARBLANK, VERIFY, VERSHIFT,
WORD, WORDWRAP, WRAP, and ZONE are preserved.

RESTORE

108

Chapter 3. KEDIT Commands

PRINT

Format

Description

PRint [target [n]]
PRint LINE [text]
PRint STRING text
PRint FORMfeed
PRint CLOSE

Use the PRINT command to send data to your printer.

Print output normally is handled by Windows, and you can use the File Print Setup and
File Print dialog boxes to determine which printer, printer driver, printer font, and
printer margins to use. You can also use the SET PRINTER command to specify that
printer output is to bypass Windows and go directly to a specific printer port.

KEDIT’s focus is on text editing, and its printing abilities are very limited. KEDIT does
not automatically position your paper in the printer, print headings, footings, or page
numbers, handle boldface or italicized output, or use multiple fonts or proportional
fonts.

If your printer uses device-specific escape sequences to control boldface, etc., you can
imbed these sequences in your file or in macros and use the PRINT command to send
them to your printer, but this requires that you use the SET PRINTER command to
route output directly to a specific printer port (such as LPT1:, LPT2:, etc.). With the
default of PRINTER WINDOWS printer output goes through Windows device-inde-
pendent printer handling, and escape sequences are not properly processed.

There are several different forms of the PRINT command:

PRint [target [n]]

KEDIT sends all text in the target area to your printer. The farget area can specify
lines within your file, or can be any kind of marked block. PRINT with no
operands prints the focus line. KEDIT follows each line sent to your printer with a
carriage return-linefeed pair. The n operand of the PRINT command tells KEDIT
to start a new page after every n lines have been printed, allowing you to print n
lines per page. If n is not specified (or is 0), KEDIT will print continuously, and
will not force any page ejects after a set number of lines.

When printing has completed, the last line printed becomes the new focus line if
STAY OFF is in effect; if STAY ON (the default) is in effect, the focus line location
is unchanged.

PRint LINE [text]
This sends the specified text to the printer, followed by a carriage return-linefeed.
If HEX ON is in effect, you can specify the text using hexadecimal or decimal no-
tation. If no text is specified, KEDIT sends only a carriage return-linefeed to the
printer.

PRINT

109

Commands

Notes

See also

Examples

PRint STRING text

This sends the specified fext to the printer but, unlike PRINT LINE, does not fol-
low it with a carriage return-linefeed. If HEX ON is in effect, you can specify the
text using hexadecimal or decimal notation.

PRint FORMfeed

Tells the printer to do a page eject, so that any additional output will begin on a new
page.

PRint CLOSE

If you are using a print spooler, or your printer is accessed through a network, your
system software may hold your printer output and not send it to the printer until
you tell the system that you are ready by “closing” your printer. By default, SET
PRINTER’s CLOSE|NOCLOSE value is set to CLOSE, and KEDIT closes your
printer after each use of the PRINT command. If SET PRINTER’s
CLOSE|NOCLOSE value is set to NOCLOSE, so that the printer is not closed
automatically after each use of the PRINT command, you can use the PRINT
CLOSE command at any time during a KEDIT session to tell KEDIT to close your
printer. Regardless of SET PRINTER’s CLOSE|NOCLOSE setting, KEDIT
closes your printer automatically when you leave KEDIT, when you switch from
KEDIT to another application, and when you use the SET PRINTER command to
switch to a different printer.

In addition to showing the text in color on your display, KEDIT will print syn-
tax-colored text in color when you print to a color printer and PRINTER
WINDOWS and PRINTCOLING ON are in effect.

KEDIT will print syntax-colored text in color when you print to a color printer
with PRINTER WINDOWS and PRINTCOLING ON in effect.

When you want to print either the contents of the currently-marked block or the
contents of the entire file, you can use the Print File button on the default toolbar,
or the File Print dialog box.

If you are using multiple PRINT commands to print data on a single page (for ex-
ample, by issuing multiple PRINT LINE commands from within a macro), you
will probably want to change the SET PRINTER’s CLOSE[NOCLOSE setting
from its default of CLOSE to NOCLOSE. This will prevent KEDIT from automat-
ically closing the printer, which normally also involves a page eject, after each of
your PRINT commands. You can then use PRINT CLOSE when you are ready to
close the printer.

SET PRINTER, User’s Guide Section 3.10, “Printing”

PRINT BLOCK
All text in the currently marked block is printed.
PRINT ALL

The entire file is printed.

110

Chapter 3. KEDIT Commands

PRINT
KEDIT prints the focus line.
PRINT * 60

All lines from the focus line through the end of the file are printed, with a formfeed
character sent to the printer every 60 lines.

PRINT LINE Hello there.
KEDIT sends “Hello there.” to your printer, followed by a carriage return-linefeed.
PRINT CLOSE

KEDIT closes your printer device.

PURGE

Format

Description

Examples

PURge macronamel [macroname2 ...]

Use the PURGE command to remove in-memory macros (put into memory via the
DEFINE command) from memory. This allows you to free up the memory occupied by
in-memory macros that you have finished using.

If you purge a macro assigned to a key that by default enters a character (such as the A
or SHIFT+A macros), the key will revert to its default definition. If you purge a macro
assigned to any other key, the key will then do nothing when you press it. Purging a
macro assigned to these keys is equivalent to issuing the command

DEFINE keyname nop

If you purge any other in-memory macro, and then attempt to execute the macro,
KEDIT will see that the macro is not in memory and will then search for it on disk.

If you attempt to purge a macro that is not in fact in memory, KEDIT takes no action.

PURGE F1 RETRY

KEDIT purges the definition of the F1 key; F1 will then be ignored if you press it.
KEDIT also purges the definition of RETRY. Since this is not the name of a key, if you
later try to run a macro called RETRY, KEDIT will look for RETRY.KEX on disk.

PURGE

111

Commands

PUT, PUTD

Format

Description

See also

PUT [target [fileid]]
PUT LINE fileid [text]
PUTD [target [fileid]]

The PUT command copies the contents of the specified target area of your file to the
disk file specified by fileid. Text written to disk by the PUT command is not deleted
from the file you are editing.

A second form of the PUT command lets you directly specify, as part of the PUT com-
mand, a line of zext to be appended to the specified disk file.

The PUTD command does exactly the same thing as the first form of the PUT com-
mand except that, after text has been successfully written to disk, it is deleted from the
file you are editing.

If you specify a fileid with no drive or directory, KEDIT uses the current drive and
directory. The shortcuts for specifying a fileid that are discussed in connection with the
SET FILEID command can also be used with the PUT and PUTD commands.

The text in the target area is appended to the specified disk file. If the file does not exist,
it is created.

If no fileid is given, KEDIT creates a temporary file to hold the text. (If the temporary
file already exists as a result of previous PUT or PUTD commands, it is completely
replaced, and not appended to as would happen if you gave a fileid when issuing the
PUT or PUTD command.) This temporary file can then be read back by issuing the
GET command with no operands. If no target is given, the focus line is written to the
temporary file.

PUT and PUTD do not create backup copies of the files you append to, regardless of
the setting of BACKUP. The text written out will be affected by the settings of LRECL,
RECFM, EOFOUT, EOLOUT, TRAILING, TABSOUT, and TRANSLATEOUT. To
append to a file, KEDIT looks at the last byte of the file. If the last byte of the file is the
DOS end-of-file character (character code 26), text is written starting at this last char-
acter of the file, overwriting the end-of-file character; otherwise, text is written after the
last character of the file.

If STAY OFF is in effect, the line after the last line written to disk becomes the focus
line when the PUT or PUTD command completes. If STAY ON is in effect, the focus
line location does not change.

GET

112

Chapter 3. KEDIT Commands

Examples

PUT 10 ABC.C

The focus line and the nine lines following it, for a total of ten lines, are appended to the
file ABC.C. (If ABC.C does not yet exist, it is created.)

PUT 10

The focus line and the nine lines following it are placed into a temporary file that can
later be retrieved by issuing the GET command with no operands.

PUT LINE ABC.C Hello there.

KEDIT adds the line “Hello there.” to end of the file ABC.C, creating the file if it did
not already exist.

QUERY

Format

Description

See also

Examples

Query option

The QUERY command allows you to determine the current value of any of the options
that can be set via the SET command. You can also QUERY a number of values that
cannot be directly set, such as the names of all files in the ring and the current time.

The QUERY command takes one operand, the name of the option whose value you
want to see. The name of the option can be abbreviated using the same minimal
truncations as the corresponding SET command allows. The value of the option is then
displayed on the message line.

For a full discussion of all the options that you can QUERY, see Chapter 5, “QUERY
and EXTRACT”.

Commands

MODIFY, STATUS, Chapter 4, “The SET Command”, Chapter 5, “QUERY and
EXTRACT”

QUERY TIME

The date and time are displayed in the message area.

QUERY MACRO F1

The definition of the macro assigned to the F1 key is displayed in the message area.
QUERY ZONE

The current ZONE settings are displayed in the message area.

QUERY

113

QUIT, QQUIT

Format

Description

See also

QUIT
QQuit

Use the QUIT command when you have finished working with the current file and
have made no changes to it. KEDIT removes the file from memory and, if you are edit-
ing multiple files, makes the previous file in the ring become the current file. The file is
not written to disk.

You will frequently use KEDIT to simply look at a file, with no intention of making
changes to it. When you are finished with such a file, it is not necessary to write it back
to your disk with the FILE command, since an unchanged copy of your file is already
on disk. Instead, it makes sense in this situation to use the QUIT command to save time.

The QUIT command is assigned by default to function key F3. You can also use the
File Close menu item to remove an unmodified file from the ring. (If you use File Close
on a file that has been modified, KEDIT will ask you if you want to save the file before
removing it from memory.)

If you have made changes to your file, you usually wouldn’t want to use the QUIT com-
mand, since your changes would not be written to disk. So that accidental use of the
QUIT command cannot cause you to lose valuable work, the QUIT command will
work only if the file has not been changed since you began editing it or last used the
SAVE command to save the file to disk. (KEDIT checks whether the count it maintains
of alterations since the last SAVE is greater than 0.) If you try to QUIT from a file that
has been changed, KEDIT will not QUIT but will instead give you an error message. If
you really do want to QUIT from a file that has been changed, you can use the QQUIT
command. QQUIT does the same thing as QUIT, except that it will exit from your file
even if changes have been made.

CANCEL, FILE, SAVE

READV

Format

Description

READV Cmdline [initial]
READV EDITfield [initial]
READV KEY [Ignoremouse |NOIgnoremouse]

The READV command, valid only if issued from a macro, causes KEDIT to read infor-
mation from the user of the macro. The results are passed back through assignments to
macro variables, in much the same way as the results of the EXTRACT command are
passed back to a macro.

114

Chapter 3. KEDIT Commands

READV
CMDLINE

READV
EDITFIELD

READV KEY

READV CMDLINE lets your macro obtain a line of input from the user. READV
CMDLINE allows optional specification of initial contents of the line to be read in.
KEDIT reads a line of input from the command line, which is then passed back to your
macro.

You can set the initial contents of the line to be read in by specifying the optional initial
text.

READV CMDLINE sets these variables:

readv.0 1

readv.1l Text read from the dialog box

READV EDITFIELD is like READV CMDLINE, except that input is read from an edit
field that is displayed within a dialog box, and not from the command line.

READV KEY reads a single keystroke from the keyboard, waiting if necessary until a
keystroke has been entered. Your macro can then determine the key that was pressed
and act accordingly.

READYV KEY has options that let you control the effect of mouse events that occur
while waiting for a keystroke. With IGNOREMOUSE, the default, mouse events are
ignored (except that, if MOUSEBEEP ON is in effect, the speaker beeps). With
NOIGNOREMOUSE, mouse events cause READV KEY to terminate with a return
code of 2, but they remain queued up for processing after the macro that issued
READV KEY terminates.

READV KEY gives you the name of the key that is entered (as described in Chapter 7,
“Built-in Macro Handling”), the character associated with the key (or a null string for
function keys and other keys without assigned characters), the scan code (a decimal
number from 0 to 255) of the key, and the Shift Status at the time KEDIT reads the key.

When a key is entered, READV KEY sets these variables:
readv.0 5 under Windows XP/2000/Vista; 4 under Windows 98/Me
readv.1 Key name (in uppercase, with possible “C-", <“S-”, “A-", “S-C-”,

or “A-C-” prefix); “-” is always used in the prefix rather than “+”
for compatibility with earlier versions of KEDIT.

readv.2 Character value (or null)

readv.3 Scan code (in decimal)

readv.4 Shift Status (see below)

readv.5 Extended Shift Status (see below; not set under Windows 98/Me)

READV

115

Commands

Shift Status is an eight character string of 0's and 1's where characters are set to 1 as fol-
lows:

Position Set to 1 if

1 INSERTMODE ON

2 CapsLock ON

3 NumLock ON

4 ScrollLock ON

5 Either Alt key down

6 Either Ctrl key down

7 Left Shift key down (XP/2000/Vista);

either Shift key down (Windows 98/Me)

8 Right Shift key down (XP/2000/Vista);
either Shift key down (Windows 98/Me)

For example, if INSERTMODE ON is in effect and a Ctrl key is down, READV.4 will
be set to ““10000100".

Extended Shift Status, not available under Windows 98/Me, is also an eight character
string of 0's and 1's. Characters are set to 1 as follows:

Position Set to 1 if
1 Always 0 (SysReq key status is not available)
2 CapsLock key down
3 NumLock key down
4 ScrollLock key down
5 Right Alt key down
6 Right Ctrl key down
7 Left Alt key down
8 Left Ctrl key down
Notes e Key combinations involving Alt, Ctrl, and a character key (that is, A-C-x) are ig-
nored except when a macro for the key combination involved has been defined.
o Forkeys normally processed by the ASCII macro (that is, special characters found
on non-U.S. keyboards but not on U.S. keyboards, digits entered via the numeric
pad, and characters entered via the Alt key-numeric pad method), READV.1 is set
to “ASCII ddd”’, where ddd is the decimal value of the character code involved.
The scan code in READV.3 is 0 for digits entered via the numeric pad, 56 (the scan
code of the Alt key) for Altkey-numeric pad input, and the scan code of the key in-
volved for special characters on non-U.S. keyboards.
See also DIALOG, KEXX PULL and PARSE PULL instructions
116 Chapter 3. KEDIT Commands

RECOVER

Format

Description

See also

Examples

RECover [n]|*]

The RECOVER command, normally assigned to Alt+R, allows you to recover lines of
text that you have deleted or changed. KEDIT tries to save the last 100 deleted or
changed lines in an internal buffer.

Note that the UNDO command provides a more powerful facility for undoing the
effects of changes to your file. RECOVER is available mainly for compatibility with
XEDIT and with earlier versions of KEDIT.

If you issue the RECOVER command and give a number as an operand, KEDIT tries to
recover that many lines. The most recently deleted or changed line is inserted above the
focus line, the next most recently deleted or changed line is inserted above that, etc. The
last line recovered becomes the new focus line.

If you issue the RECOVER command with no operand, KEDIT tries to recover the last
line deleted or changed. Issuing the RECOVER command again causes KEDIT to try
to recover the line before that, etc. Issuing

RECOVER *

causes KEDIT to recover all the changed or deleted lines that it can.
UNDO

RECOVER
KEDIT tries to recover the last changed or deleted line of text.
RECOVER 4

KEDIT tries to recover the last four changed or deleted lines of text.

RECOVER

117

Commands

REDO

Format

Description

See also

REDO

Use the REDO command, normally assigned to Ctrl+Bksp and to Ctrl+Y, if you have
used the UNDO command to undo some changes to your file and then decide to redo
those changes, reversing the effect of the UNDO command. If you have used the
UNDO command repeatedly to undo multiple levels of changes, you can use the
REDO command repeatedly to redo those changes. REDO will work only if no
changes have been made to the current file since the corresponding UNDO command.
After an UNDO command you can move around in the current file, can save it to disk,
and can make changes to other files in the ring, and you can still use the REDO com-
mand. But REDO is not available once you make any further changes to the contents of
the current file, change the selection levels of any line (for example, by using the ALL
command), change the lineflags of any line (for example, by using the TAG command),
add or delete any line names (for example, by using the SET POINT command). You
can also REDO the last UNDO action using the Edit Redo menu item or using the Redo
button on the toolbar.

Whenever it is possible to REDO previous UNDO commands, the available undo level

count (the third number following “Alt=""on the status line) will be followed by an
asterisk (““*”).

User’s Guide Chapter 3, “Using KEDIT for Windows”, UNDO, SET UNDOING

REFRESH

Format

Description

REFRESH

Use the REFRESH command to cause KEDIT to update the display while a macro is
active. Normally, KEDIT doesn’t redisplay its windows after every command issued
from within a macro. The windows are only updated when the macro finishes or when
it needs keyboard input. The REFRESH command allows you to have the windows
redisplayed at additional times during the execution of your macro. You might, for
example, wish to refresh the windows to indicate to the user the progress of a long-run-
ning macro. Note, however, that frequent refreshes can slow your macro down
significantly.

118

Chapter 3. KEDIT Commands

REGUTIL

Format REGUTIL SAVE |CLEAR STATE |HISTory|SETTINGS
REGUTIL SAVE SET option
REGUTIL CONVERT SETTINGS
REGUTIL BACKUP CONFIG|HISTory
REGUTIL GET CONFIG|HISTORY section name

Description Use the REGUTIL command to help manage the contents of the information saved by
KEDIT in the Windows registry. Most KEDIT users will not need to use the REGUTIL
command, since the registry is normally updated automatically by KEDIT at the appro-
priate times.

REGUTIL SAVE |CLEAR STATE

KEDIT normally saves certain information about the STATE of your KEDIT ses-
sion, such as the position of your frame window, whether it is maximized, and the
screen and printer fonts you are using, in the Windows registry at the end of each
session, and refers to this information at the start of the next KEDIT session. With
REGUTIL SAVE STATE, KEDIT immediately saves the current state of a session,
even though the session has not ended. With REGUTIL CLEAR STATE, KEDIT
removes this state information from the registry; if no state information is found in
the registry at the start of the next KEDIT session, KEDIT will use internal de-
faults for your frame window position, fonts, etc.

REGUTIL SAVE |CLEAR HISTory

Similarly, KEDIT normally saves certain HISTORY information in the Windows
registry at the end of each session. This includes information about commands you
have recently issued from the command line, files you have recently edited, strings
you have recently worked with in the Edit Find dialog box, etc. REGUTIL SAVE
HISTORY will immediately update the history information in the registry.
REGUTIL CLEAR HISTORY will clear out all of the KEDIT history information
in the registry.

Commands

REGUTIL SAVE |CLEAR SETTINGS

KEDIT also saves the values of most SET options in the Windows registry. This is
not done automatically at the end of a KEDIT session, but is instead done when
you use Options Save Settings to save the value of all such options or when you
use the Save Setting button in the Options SET Command dialog box to update the
value of an individual setting in the registry. REGUTIL SAVE SETTINGS updates
the value of all savable options in the registry, just as Options Save Settings does.
REGUTIL CLEAR SETTINGS removes all saved settings from the registry; if no
saved settings are present at the start of a KEDIT session, KEDIT will use default
values for all of your SET options.

REGUTIL SAVE SET option
This command lets you update the value of an individual SET option in the Win-
dows registry, and is equivalent to using the Save Setting button in the Options
SET Command dialog box to save an individual setting.

REGUTIL 119

Notes

REGUTIL CONVERT SETTINGS

This command adds a new file, REGSET.KEX, to the ring of files that you are edit-
ing. KEDIT takes each of the settings saved in the Windows registry, converts it
into the equivalent KEDIT SET command, puts quotes around the SET command
to ensure that the command is valid from within a KEDIT macro, and adds it to
REGSET.KEX. REGSET.KEX is therefore a valid KEDIT macro containing SET
commands corresponding to each of the settings saved in the registry.

REGUTIL BACKUP CONFIG|HISTory

REGUTIL BACKUP adds a file called KEDIT.CONFIG.REG or
KEDIT.HISTORY.REG to the KEDIT ring, containing a copy (for CONFIG) of
the KEDIT configuration settings saved in the registry or (for HISTORY) of recent
command lines, files edited, etc. from the registry.

You can use these files to transfer your KEDIT configuration settings and/or his-
tory to a new machine. Save the .REG file to disk, copy it to your new machine,
and double-click on it to install it in the registry of the new machine.

REGUTIL GET CONFIG|HISTORY section name

REGUTIL GET is valid only within macros. It reads a value from KEDIT's section
of the registry, returning information in these macro variables::

regutil.O 0 if the requested information was not found in the registry or
there was a problem reading it in, otherwise 1.

regutil.l Not set when REGUTIL.O is 0. Otherwise, it contains the value
of the information read from the registry entry. (KEDIT uses es-
cape sequences to store certain special characters in the registry;
in REGUTIL.1 these escape sequences have been replaced by
the actual special characters involved)

For example, “REGUTIL GET CONFIG STATE32 PrinterFaceName” might re-
turn:

regutil.O 1

regutil.l “Courier New” (quotes aren’t part of the value returned)

The exact details of how KEDIT stores configuration and history information in
the registry are undocumented and are more likely than most other aspects of
KEDIT to be subject to incompatible changes between versions of KEDIT. You
should not use REGUTIL GET, or the ability to edit the contents of the
KEDIT.CONFIGREG or KEDIT.HISTORY.REG files unless you are aware of
and are comfortable with this possibility.

With the default of REGSAVE STATE HISTORY in effect, KEDIT will automati-
cally update the state and history information in the Windows registry at the end of
your KEDIT session, overriding the changes made to the registry by any
REGUTIL SAVE|CLEAR STATE[HISTORY commands earlier in the session. If
you want to avoid this, you can put REGSAVE NOSTATE NOHISTORY into
effect.

120

Chapter 3. KEDIT Commands

See also

e The Windows registry does not contain values for all of the KEDIT SET options
that can be saved. Instead, it only contains values that differ from KEDIT’s de-
faults. Therefore the REGSET.KEX file created by the REGUTIL CONVERT
SETTINGS command will only contain SET commands corresponding to saved
settings whose values differ from KEDIT’s defaults.

e For historical reasons the INIUTIL command, which does the same thing as the
REGUTIL command, is also available.

HISTUTIL, SET REGSAVE

RENAME

Format

Description

See also

Examples

REName fileidl fileid2

Use KEDIT’s RENAME command to change the name of a file on disk. Fileidl speci-
fies the disk file to be renamed and fileid?2 specifies the file’s new name.

Both fileids can contain path specifications; if the path specification for the second file
is different from the path specification for the first file, the RENAME command will
move the file from one directory to another. You cannot use RENAME to move a file
from one drive to another.

The KEDIT RENAME command changes the name of a file on disk. It does not affect
the fileid associated with any of the files currently being edited. Use the SET FILEID
command to change the fileid associated a file currently being edited.

Unlike the DOS RENAME command, KEDIT’s RENAME command does not allow
wildcard characters in either fileid. You can use KEDIT’s DOS command to issue the
“real” DOS RENAME command.

DIR, DOS, ERASE, SET FILEID

RENAME ABC.TXT DEF.TXT

The file ABC.TXT in the current directory is renamed to DEF. TXT.

REPEAT

Format

Description

REPEat [target]

Use the REPEAT command to cause the command in the equal buffer (which is
normally the most recently completed command issued from the command line) to be
repeatedly executed, affecting additional lines in your file.

REPEAT

121

Commands

Using REPEAT
in a macro

When you issue the REPEAT command with no operands, KEDIT moves the focus line
pointer down one line in your file and then repeats the last command entered (that is,
the last command entered prior to the REPEAT command). REPEAT with no operands
is equivalent to

=DOWN 1

(The “="" command causes KEDIT to re-execute the command in the equal buffer.)

When you specify a target with REPEAT, KEDIT determines the number of lines n
from the focus line to the target line. KEDIT then repeatedly moves down a line and
re-executes the command in the equal buffer, continuing until it has either done this n
times, or the command in the equal buffer gives a nonzero return code. For example, if
you enter

CAPPEND X
KEDIT will place an “X” at the end of the focus line. If you then enter
REPEAT 3

KEDIT will, three times, move down one line and repeat the CAPPEND X command.
So,

CAPPEND X
REPEAT 3

is equivalent to

CAPPEND X
=DOWN 1
=DOWN 1
=DOWN 1

Both of these sequences are also equivalent to

CAPPEND X
DOWN 1
CAPPEND X
DOWN 1
CAPPEND X
DOWN 1
CAPPEND X

All three of the above sequences have the same effect: the focus line and the three lines
following it have an “X”” appended to them.

If the target that you specify is located above the focus line, KEDIT moves repeatedly
up one line, towards the target line, before repeating the last command.

The command re-executed by the REPEAT command is the command in the equal
buffer. This is normally the most recently completed command issued from the com-
mand line. The equal buffer is not automatically updated by commands issued from
macros, but you can use the SET = command from within a macro to directly set the

122

Chapter 3. KEDIT Commands

contents of the equal buffer. So to use REPEAT in a macro, you will probably precede it
with

'SET = command'

where command is the command you want to REPEAT.

Commands

Examples REPEAT *
KEDIT moves down one line and reissues the last command, repeating this process
through the end of the file.
REPEAT -1
KEDIT moves up one line and reissues the last command.

REPLACE

Format Replace [text]

Description The REPLACE command causes the fext that you specify to replace the focus line in
your file.
If no text is specified (the command line consists only of the word “REPLACE”),
KEDIT replaces the focus line with a blank line and the blank line becomes the new
focus line. With INPUTMODE OFF, the default, the cursor then moves to the left mar-
gin column of the focus line. With INPUTMODE LINE or INPUTMODE FULL, you
enter KEDIT’s Input Mode.

See also INPUT, SET INPUTMODE

Examples R Hello there.
A line consisting of “Hello there.” is put in your file, replacing the focus line.
REPLACE
The focus line is replaced with a blank line. This line becomes the focus line, and
KEDIT then acts according to the current INPUTMODE setting.

RESET

Format RESet [Block|CMDSEL|FIELD|Prefix|THIGHlight|UNDO]

Description The RESET command lets you reset various aspects of KEDIT’s status. By default,

Alt+U issues the RESET BLOCK and RESET THIGHLIGHT commands and the Esc
key issues the RESET FIELD command.

RESET

123

RESet Block
KEDIT unmarks any currently marked block.

RESet CMDSEL
KEDIT unmarks any currently marked command line selection.

RESet FIELD
Resets the contents of the cursor field to what it was when the cursor entered the
field.

RESet Prefix
Resets the prefix area. All text in the prefix area is ”’blanked out”, as if you had
typed blanks over all pending prefix commands.

RESet THIGHlight
Displays the currently highlighted target in its normal color.

RESet UNDO
Forces KEDIT to start a new undo level from within a macro. If, for example, you
run a macro that changes 10 lines, KEDIT normally groups all 10 changes together
into a single undo level that can only be undone as a unit. If your macro changed 5
lines, then issued the RESET UNDO command, and then changed 5 more lines,
KEDIT would create 2 undo levels, and you could undo the second group of
changes separately from the first group.

RESet
RESET with no operands resets marked blocks and prefix commands, and is
equivalent to issuing RESET BLOCK and RESET PREFIX.

RESTORE

Format

Description

See also

RESTore

The RESTORE command is used only in connection with the PRESERVE command.
PRESERVE saves the current values of most SET options so that you can temporarily
change them, execute some commands with the new settings, and then restore their val-
ues with the RESTORE command.

RESTORE restores the settings most recently preserved for the current view of the cur-
rent file. If you issue the RESTORE command without having first issued the PRE-
SERVE command, you will get an error message. If you issue the RESTORE command
twice in a row without an intervening PRESERVE command, you will also get an error
message; the preserved settings are saved only until the next RESTORE.

PRESERVE

124

Chapter 3. KEDIT Commands

RGTLEFT

Format

Description

See also

RGTLEFT [n]

Use the RGTLEFT command, most useful when assigned to a key, to work with text
that is a bit too wide to be completely displayed within a window. Issuing RGTLEFT
repeatedly will alternate between scrolling text in the window to the right and then to
the left, allowing you to view text that won’t fit into the window, and then to return to
your normal view of the text.

Text scrolls n columns to the right or left. If n is not specified, text scrolls by three
quarters of the number of columns displayed in the window. (If you have used the SET
VERIFY command to display multiple sets of columns in the window, text scrolls by
three quarters of the width of the first set of columns.)

The RGTLEFT command scrolls the window to the right if the current VERSHIFT
value is less than or equal to 0; otherwise, the RGTLEFT command scrolls the window
to the left. RGTLEFT works by adjusting the value of VERSHIFT.

You can also scroll right and left in your file by using the mouse to manipulate the hori-
zontal scroll bar.

LEFT, RIGHT

RIGHT

Format

Description

RIght [n|HALF]

The RIGHT command scrolls your view of the file #n columns to the right. The RIGHT
command does not affect the contents of your file; it only affects which columns of
your file are displayed in the document window.

RIGHT with no operands scrolls one column to the right. RIGHT HALF scrolls one
half the width of the document window to the right.

For example, assume that you have issued the command
SET VERIFY 40 *

so that columns 40 through 119 of your file are visible in a window 80 columns wide.
Using the RIGHT and LEFT commands, you can scroll the window right or left.

RIGHT 10

would scroll 10 columns to the right, showing you columns 50 through 129 of your file.

RIGHT

125

Commands

RIGHT 20

would then scroll an additional 20 columns to the right, showing you columns 70
through 149 of your file.

The RIGHT and LEFT commands affect the value of VERSHIFT. VERSHIFT is a
number that represents the number of columns that the display window has been
scrolled to the right or left of the columns specified by the VERIFY setting. For
example, after the commands RIGHT 10 and RIGHT 20, VERSHIFT will be 30, since
the window has been scrolled a total of 30 columns to the right. If you then issued a
LEFT 65 command, VERSHIFT would be set to -35 (that is, 30 - 65). (You can
QUERY VERSHIFT but cannot directly set it. Its value is controlled by the RIGHT
and LEFT commands, and by the RGTLEFT command. KEDIT’s AUTOSCROLL
facility also works by adjusting the value of VERSHIFT.) The commands RIGHT 0
and LEFT 0 are special cases. They reset the value of VERSHIFT to 0. VERSHIFT is
also reset to 0 whenever you issue a SET VERIFY command.

You can also scroll right and left in your file by using the mouse to manipulate the hori-
zontal scroll bar.

See also LEFT, RGTLEFT, SET VERIFY

RIGHTADJUST

Format RIGHTAd]just [target]

Description Text in the farget area is right-adjusted, with the text of each line shifted so that the last
nonblank character within each line is in the right margin column.
You can use RIGHTADJUST BLOCK, or the Rightadjust Block button on the bottom
toolbar, to right-adjust line blocks, box blocks, and one-line stream blocks. Box blocks
and one-line stream blocks are given special handling: KEDIT right-adjusts the text
within the block boundaries, and text outside the block is not affected. You cannot
right-adjust a multi-line stream block.

See also CENTER, LEFTADJUST

Examples RIGHTADJUST
The focus line is right-adjusted. This command is assigned by default to Ctrl+R.
RIGHTA 6
The focus line and the five lines following it, for a total of six lines, are right-adjusted
according to the current margin settings.

126 Chapter 3. KEDIT Commands

SAVE, SSAVE

Format

Description

See also

Examples

SAVE [fileid]
SSave [fileid]

The SAVE command causes KEDIT to write the current file to disk. Unlike the FILE
command, which writes the file to disk and then removes it from memory, the SAVE
command writes the file to disk but does not remove it from memory, and you can con-
tinue to edit it.

Any changes you have made to the file are saved and you can continue to edit the copy
of the file in the PC’s memory. If you then mistakenly delete important parts of your
file, or the PC’s memory is wiped out by a power failure, all of your work through the
last SAVE will have been safely written to disk.

You will normally issue the SAVE command without specifying the optional fileid
operand. In this case, the file will be written to disk under its current fileid. The current
fileid is displayed in the title bar of the document window and, unless you have
changed it with a command like SET FILEID, is the fileid you originally used when
you began editing the file. You can use the optional fileid operand to write the file to
disk under a different fileid; the current in-memory fileid does not change. When speci-
fying the fileid operand, you can make use of the shortcuts discussed in connection with
the SET FILEID command.

You can also save your file using the File Save menu item and the Save button from the
toolbar. You can use the File Save As menu item to set a new fileid for the current file
and save the file under that fileid.

Like the SAVE command, the SSAVE command also writes the current file to disk. The
difference between the commands is that there are conditions under which the SAVE
command will give you an error, to warn you that you may be inadvertently overwriting
some data, while the SSAVE command will write your file to disk regardless of the pos-
sible problem. The FILE and FFILE commands have the same relationship to each
other as the SAVE and SSAVE commands; see the description of the FILE and FFILE
commands for a discussion of the situations where these possible problems can arise.

FILE, FFILE, QUIT, QQUIT, SET AUTOSAVE, SET BACKUP

SAVE

Saves the current file on disk under its current fileid.

SAVE A:SAMP1.PAS

Saves the file on disk under the name A:SAMP1.PAS.

SAVE, SSAVE

127

Commands

SAVE C:\TEST\

Saves the current file in the \TEST directory of the C: drive (which must already exist),
using the file’s current name and extension.

SCHANGE

Format

Description

SCHange /stringl/string2/ [target] [n] [m]

The SCHANGE (“‘selective change’) command is similar to the CHANGE command,
but it allows you to make changes selectively. To understand this description of the
SCHANGE command, you should first read the description of the CHANGE
command.

Note that the function of the Edit Replace dialog box is similar to that of the
SCHANGE command. The Edit Replace dialog box is more frequently used and in
many situations is more convenient.

Where the CHANGE command simply changes all occurrences of stringl into string?2
in the specified area of the file, SCHANGE highlights each occurrence of stringl and
asks you if you want to make the change. You have three choices:

e You can press function key F6. This causes the change to be made. SCHANGE
then gives you a chance to undo the change by pressing F6 again before moving to
the next occurrence of stringl.

e Your second choice is to press function key F5. This causes SCHANGE to move
on to the next occurrence of string!.

e Your third choice is to press the Esc key. This cancels the SCHANGE command
immediately. The current occurrence of string/ is not changed, and SCHANGE
doesn’t look for any further occurrences of string!.

The operands to SCHANGE are the same as the operands for the CHANGE command
and have the same meanings. The only differences are that if you issue the command
without giving a target line, CHANGE will only affect the first occurrence of string!/ in
the focus line, while SCHANGE will ask you about all occurrences of string! in all
lines from the focus line through the bottom of the file. If you issue the command with a
target but without saying how many occurrences in each line are to be processed, the
CHANGE command will only affect the first occurrence in each line, while the
SCHANGE command will ask you about all occurrences.

The last line scanned becomes the new focus line after the SCHANGE command
finishes.

If you enter the SCHANGE command with no operands, KEDIT re-executes the last
SCHANGE command that you issued from the command line.

128

Chapter 3. KEDIT Commands

See also

When issued from a macro, the SCHANGE command sets the macro variable
SCHANGE.O to 3, returns the number of occurrences changed in SCHANGE.],
returns the number of lines changed in SCHANGE .2, and returns the number of lines
truncated (because the changed text would have extended beyond the truncation
column) in SCHANGE.3.

CHANGE

SET

Format

Description

See also

[Set] option value

The SET command allows you to control how KEDIT carries out many of its functions.
You can decide, for example, whether the wordwrap feature is enabled, what the left
and right margins should be, and what colors to use when displaying text on your
screen.

You can use the Options SET Options dialog box to set the values of most of the SET
options.

The SET command is fully described in Chapter 4, “The SET Command”.

EXTRACT, MODIFY, PRESERVE, RESTORE, QUERY, STATUS

SHIFT

Format

Description

SHift Left|Right [n [target]]

Commands

The SHIFT command moves the text in all lines in the farget area LEFT or RIGHT n
columns. Ifno target is specified, only the text in the focus line shifts. If z is not speci-
fied either, KEDIT shifts the text in the focus line one column to the left or right.

If STAY ON (the default) is in effect, the focus line location is unchanged after the shift.
If STAY OFF is in effect, the last line shifted becomes the new focus line.

The SHIFT command affects text from the left zone column through the truncation col-
umn. Text that would be shifted left beyond the left zone column is lost, as is text that
would be shifted right beyond the truncation column.

You can use the SHIFT command with line blocks, box blocks, and one-line stream
blocks. Box blocks and one-line stream blocks get special handling: text from the left
boundary of the box block through the truncation column shifts; the right boundary of
the block is ignored. The SHIFT command cannot handle multi-line stream blocks.

SHIFT

129

Examples

Note that you can use Shift+F7 and Shift+F8 to shift the currently marked block left or
right by one character, and you can use the Shift Block Left and Shift Block Right but-
tons on the bottom toolbar for the same purpose.

Do not confuse the SHIFT command, which changes your file by moving text to the left
or right, with the LEFT and RIGHT commands, which affect which columns of your
file are displayed, but do not change the contents of your file.

SHIFT RIGHT 4 ALL

All text in your file is shifted four columns to the right.
SHIFT LEFT

Text in the focus line is shifted one column to the left.
SHIFT RIGHT 1 4

Text in the focus line and the three lines following it, for a total of four lines, is shifted
one column to the right.

SHOWDLG

Format

Description

SHOWDLG dialog

The SHOWDLG command displays and processes one of KEDIT for Windows’
built-in dialog boxes. It is used mainly by the menu-handling macros that are activated
when you select an item from one of KEDIT’s menus. For example, when you use File
Print, KEDIT runs the macro MENU_FILE PRINT, and this macro uses the command

SHOWDLG PRINT

to show KEDIT’s Print dialog box.

The dialog boxes controlled by SHOWDLG, all of which take their name from the
KEDIT menu item involved, are:

ABOUTKEDITFORWINDOWS
ARRANGE
BOOKMARK
DIRECTORY
FILL

FIND

GOTO
INTERFACE
OPEN [defaultdir]
PRINT
PRINTSETUP
REPLACE

130

Chapter 3. KEDIT Commands

Notes

SAVE
SAVEAS
SAVESETTINGS
SCREENFONT
SELECTIVEEDITING
SETCOMMAND [option]
SORT

STATUS

e SHOWDLG OPEN takes an optional operand specifying the directory that you
would like the File Open dialog box to display when it opens. For example:

SHOWDLG OPEN "C:\My Directory"

e SHOWDLG SETCOMMAND takes an optional operand specifying which SET
option should initially be selected when the SET Command dialog box is dis-
played. For example:

SHOWDLG SETCOMMAND WRAP

e SHOWDLG SAVE is used in the processing of File Save, and usually does not ac-
tually display a dialog box; unless an Untitled file is involved, it immediately saves
your file to disk under its current name. It is handled by the SHOWDLG command
because its processing is similar to that of SHOWDLG SAVEAS.

SORT

Format

Description

SORT target [[Ascending|Descending] nl ml]

The SORT command sorts the text of the specified target area.

KEDIT decides what order to put lines in by comparing characters in the columns spec-
ified by your sort fields. Each sort field is expressed as a pair of numbers giving the
leftmost and rightmost columns of the field. (You can use an asterisk (“*””) instead of
the second number; in that case, KEDIT will use the right zone column as the rightmost
column.) There can be up to ten sort fields.

If you don’t specify any sort fields at all, KEDIT uses the current ZONE settings to
determine a sort field, except that if the target area is a box block, KEDIT uses the
leftmost and rightmost columns of the block.

You can precede a sort field specification with ASCENDING or DESCENDING,
which tells KEDIT to sort that field (and all following fields until you specify other-
wise) in ascending or descending order. By default, KEDIT sorts all fields in ascending
order.

Unlike most other KEDIT commands, the SORT command processes all lines in the
target area, regardless of their selection level, so that even excluded lines are sorted.

You can also access KEDIT’s sort facility by using the Actions Sort dialog box.

SORT

131

Commands

See Also

Examples

If STAY ON is in effect, the focus line pointer does not move after the sort is complete. With
STAY OFF, the sorted line that ends up closest to the top of your file becomes the focus line.

If the SORT|NOSORT operand of SET INTERNATIONAL has the default value of NOSORT,
KEDIT orders text according to the character codes of the characters involved. If the first
IGNORE|RESPECT operand of SET CASE is set to IGNORE, uppercase and lowercase ver-
sions of the same letter (for example, “c” and “C”’) are treated as if they were both lowercase.
Only the 26 letters from “A’ to “Z” and from “a” to ““z” are treated as alphabetic. With CASE
RESPECT in effect, uppercase and lowercase versions of the same letter are treated as different
characters.

If the SORT|NOSORT operand of SET INTERNATIONAL has the value SORT, the sort order
used by KEDIT is determined by your Windows language driver. If the first IGNORERESPECT
operand of SET CASE is set to IGNORE, uppercase and lowercase versions of the same letter
(for example, “c” and “C”) are treated as if they were both lowercase, with lowercasing also
determined by your Windows language driver. With CASE RESPECT in effect, uppercase and
lowercase versions of the same letter are treated as different characters.

The SORT command's handling of international characters (that is, alphabetic charac-
ters other than the 26 letters of the English alphabet, such as the accented letters found
in many European languages) is discussed in connection with the SET INTERNA-
TIONAL command.

SET INTERNATIONAL

SORT ALL D

Sort all lines in the file into descending order, using the current zone settings to define
the sort field.

SORT 6 4 51 3

This tells KEDIT to sort six lines, beginning with the focus line, in ascending order
according to the data in columns 4 through 5 (the first sort field) and then columns 1
through 3 (the second sort field). If the lines to be sorted looked like this:

ABCDE
ABCED
ABCDF
ABEDE
AABBC
ZZZBC

KEDIT would sort them into the following order:

AABBC
ZZZBC
ABCDE
ABEDE
ABCDF
ABCED

132

Chapter 3. KEDIT Commands

SORT 48 1 12 D 14 30 34 56 A 62 84

Sort the focus line and the 47 lines following it in ascending order based on columns 1
through 12, descending order based on columns 14 through 30 and 34 through 56, and
ascending order based on columns 62 through 84.

SOS

Format

Description

SOS actionl [action2 ...]

The SOS (““screen operation simulation’’) command, used primarily in macros, han-
dles a number of specialized editing actions.

Many of these actions involve cursor placement and editing of text within the field con-
taining the cursor. For example, the SOS command lets you delete the character at the
cursor position, move the cursor to the next tab position, or move the cursor to the last
nonblank character of the field.

SOS also handles a number of miscellaneous actions, such as executing pending prefix
commands and beeping the PC's speaker, that aren't handled elsewhere in KEDIT.

SOS ADDline
Adds a blank line after the focus line. KEDIT positions the line in the document
window according to the NEWLINES setting. The cursor is moved to the
newly-added line.

SOS Alarm
SOS BEEP

The speaker beeps.

SOS BLANKDown
SOS BLANKUp

KEDIT searches for the next blank line. KEDIT searches up (SOS BLANKUP) or
down (SOS BLANKDOWN) from the focus line. The search continues until a
blank line (that is, a line with no nonblank characters at or to the left of the trunca-
tion column), or the top-of-file or end-of-file line, is encountered.

If the cursor is on the command line, the blank line becomes the current line. Oth-
erwise, the cursor moves to the blank line. This line becomes the focus line.

SOS BLOCKEnd
SOS BLOCKStart

If the cursor is on the command line, the first line of the marked block (with SOS
BLOCKSTART) or the last line of the marked block (with SOS BLOCKEND) be-
comes the current line.

Otherwise, the cursor moves to the first or last line of the marked block, with the
cursor repositioned to the starting or ending column of a box block or stream
block. An error occurs if there is no marked block in the current file.

SOS

133

Commands

SOS BOTTOMEdge
The cursor moves to the bottommost line of the file area. If this is below the
end-of-file line, the cursor moves to the end-of-file line.

SOS CRight
SOS CUp

The cursor moves one column down, left, right, or up, according to the rules used
by the CURSOR ESCREEN command.

SOS CHECK
SOS CHECK displays a message giving a checksum for all characters in the cursor
line and for all characters in the cursor line up to the cursor column. It also reports
on mismatched quotes and parentheses in the cursor line. SOS CHECK is provided
mainly to help Mansfield Software Group verify correct data entry while provid-
ing telephone support for KEDIT.

SOS CURRent
The cursor moves to the current line.

SOS CURSORAd]
Text in the cursor field is adjusted so that the first nonblank character of the text is
located at the cursor position. The cursor does not move.

SOS DELBAck
The cursor moves one character to the left and then deletes the character at the new
cursor position.

SOS DELBEGin
All text in the cursor field from column 1 up to (but not including) the cursor col-
umn is deleted, with text starting at the cursor column shifting to column 1 to fill
the gap. The cursor’s position is unchanged.

SOS DELChar
The character at the cursor position is deleted.

SOS DELEnd
All text in the cursor field, from the character at the cursor position through the end
of the field, is deleted.

SOS DELLine
The focus line is deleted, with the line below it becoming the new focus line.

SOS DELSEL
If DELSEL() is true (that is, INTERFACE CUA is in effect, there is an anchored
block or command line selection, and the cursor has not moved and the file has not
changed since the block or selection was marked), KEDIT deletes the block or se-
lection. SOS DELSEL is used in the default definitions of Del and Bksp when IN-
TERFACE CUA is in effect to delete a block or selection that you have just
marked.

SOS DELWord
The “word” (as defined with the SET WORD command) at, or to the right of, the
cursor position is deleted.

134

Chapter 3. KEDIT Commands

SOS DOPREfix
KEDIT executes any prefix commands pending for the current file.

SOS ENDChar
The cursor moves to the blank character following the last nonblank (or significant
trailing blank) character in the cursor line.

If the cursor line is empty, the cursor moves to the first column of the line.

SOS ENDWord
The cursor moves to the last character of the current “word” (as defined with the
SET WORD command).

If the cursor is not in a word, it moves to the end of the next word; if there are no
more words in the field, it moves to the end of the last word in the field; if the field
is blank the cursor does not move.

SOS ERRORBEEP
If BEEP ON is in effect, the speaker beeps.

SOS EXecute
The cursor moves to the command line, and KEDIT executes any command on the
command line.

SOS FIRSTCHar
The cursor moves to the first nonblank character of the cursor line.

If the cursor line is blank, the cursor moves to the first column of the line.

SOS FIRSTCOl
The cursor moves to the first column of the cursor line.

SOS INSTAB
KEDIT inserts blanks into the current field from the cursor position to the next tab
position. The cursor moves to the next tab position.

SOS LEFTEdge
If the cursor is on the command line, it moves to column 1 of the command line.
Otherwise, it moves to the leftmost column of the file area.

SOS LINEAdd
Same as SOS ADDLINE. Adds a line below the focus line.

SOS LINEDel
Same as SOS DELLINE. Deletes the focus line.

SOS MAKECURR
If the cursor is on the command line, nothing happens. Otherwise, the cursor line
becomes the current line.

SOS MARGINL
The cursor moves to the left margin column of the cursor line.

SOS MARGINR
The cursor moves to the right margin column of the cursor line.

Commands

SOS

135

SOS MOUSEBEEP
If MOUSEBEEP ON is in effect, the speaker beeps.

SOS PARINDent
The cursor moves to the paragraph indent column of the cursor line.

SOS PREfix
Ifthe cursor line has a prefix area, the cursor moves to the first column of the prefix
area.

SOS QCmnd
KEDIT moves the cursor to the first column of the command line and clears the
contents of the command line.

SOS QUICKFINDACT
KEDIT activates the Quick Find toolbar item, so that you can edit the string that it
contains.

SOS QUICKFINDB
SOS QUICKFINDf

KEDIT searches forward (SOS QUICKFINDF) or backward (SOS QUICK-
FINDB) in your file for the Quick Find string. That is, KEDIT searches forward or
backward for the string currently displayed in the Quick Find toolbar item.

SOS RESTORE
SOS RESTORECol
SOS RESTORELine

KEDIT restores the cursor position to the location it had in the current window
when the position was last saved with SOS SAVE, SOS SAVECOL, or SOS
SAVELINE. If no cursor position had previously been saved, KEDIT restores the
cursor to the first column of the command line.

With SOS RESTORE, both the line and column position within the window of the
cursor are restored.

With SOS RESTORECOL, the column position is restored, but the cursor remains
on the same line of the document window.

With SOS RESTORELINE, the line position is restored, but the cursor stays in the
same column.

SOS RETRIEVEDb
SOS RETRIEVEF

KEDIT cycles backward or forward through lines of text previously entered on the
command line, and redisplays them on the command line. If the command line is
empty, then all previous commands will be displayed. If you have entered any text
on the command line, then only commands beginning with that text will be
displayed.

SOS RIGHTEdge
If the cursor is on the command line, it moves to the rightmost column of the com-
mand line. Otherwise, it moves to the rightmost column of the file area.

136 Chapter 3. KEDIT Commands

SOS SAVE
SOS SAVECol
SOS SAVELine

KEDIT saves the cursor position within the current window so that SOS
RESTORE can later be used to restore the cursor position.

SOS SAVE saves both the line and column position of the cursor.

SOS SAVECOL saves only the column position, without changing any previously
saved line position.

SOS SAVELINE saves only the line position, without changing any previously
saved column position.

SOS SETCOLPtr
If the cursor is in the prefix area, no action is taken. Otherwise, the column pointer
is set to point to the cursor column.

SOS SETLeftm
If the cursor is in the prefix area, no action is taken. Otherwise, the left margin col-
umn is set to the cursor column.

SOS SETTAB
If the cursor is in the prefix area, no action is taken. Otherwise, the cursor column
is added to the list of tab columns.

SOS STARTWord
The cursor moves to the first character of the current ““word” (as defined with the
SET WORD command).

Ifthe cursor is not in a word, it moves to the start of the preceding word; if there are
no preceding words, it moves to the start of the first word on the line; if the line is
blank the cursor does not move.

SOS TABB
The cursor moves to the nearest tab position to the left of its current location.

If the cursor is on the command line and there are no preceding tab positions, the
cursor moves to column 1 of the command line. Otherwise, if there are no tab
positions to the left of the cursor column, the cursor moves to the last tab position
on the line of the file above the cursor line.

SOS TABCmd
The cursor moves to the first column of the command line of the current window.

SOS TABCMDB
SOS TABCMDF

The cursor moves to the previous or next document window, to the first column of
the new window’s command line.

SOS TABf
The cursor moves to the next tab position to the right of its current location.

If the cursor is on the command line and there are no more tab positions, the cursor
moves to the end of the command line. Otherwise, if there are no tab positions to
the right of the cursor column, the cursor moves to the first tab position on the line
of the file below the cursor line.

SOS

137

Commands

See also

Examples

SOS TABFIELDB
The cursor moves to the first character of the current field.

If the cursor is already in the first character of the current field, it moves to the first
character of the previous field, wrapping from the first field of the document win-
dow to the last field of the document window if necessary.

SOS TABFIELDf
The cursor moves to the first character of the next field, wrapping from the last
field of the window to the first field of the document window if necessary.

SOS TABWORDB
The cursor moves to the beginning of the first “word” (as defined with the SET
WORD command) to the left of its current position.

If there are no words to the left of the cursor, the cursor moves to the first column
of the line.

SOS TABWORDSE
The cursor moves to the beginning of the first “word” (as defined with the SET
WORD command) to the right of its current position.

If there are no words to the right of the cursor, the cursor does not move.

SOS TOPEdge
The cursor moves to the topmost line of the file area. If this is above the top-of-file
line, the cursor moves to the top-of-file line.

CURSOR, TEXT

SOS BEEP
KEDIT beeps the PC’s speaker.
SOS CDN DELCHAR TAB

The cursor moves down one line, and the character at which the cursor is then posi-
tioned is deleted. The cursor then moves to the next tab column.

SPLIT

Format

Description

SPlit [ALigned]

The SPLIT command splits a line into two lines. The SPLIT command is usually issued
from a macro assigned to a key. (It is assigned to Alt+S by default.) Text to the left of
the focus column remains in the focus line, while text in and to the right of the focus
column is split off to form a new line.

SPLIT with no operands positions the split-off text to begin in column one of the new
line. SPLIT ALIGNED (which Alt+S normally uses) adds as many leading blanks to
the new line as there are in the focus line. This is useful when you are working with

138

Chapter 3. KEDIT Commands

See also

Examples

indented text, and you would like the text in the new line to be indented to the same col-
umn as the focus line.

The SPLIT command does not affect the position of the focus line or focus column.
JOIN, SPLTJOIN

Assume that the focus line looks like the following, with the first nonblank character of
the focus line in column 5 and the cursor positioned at the ““S” of the word ““Split™:

This is the text to Split into two

Pressing a key to which SPLIT is assigned would start the split-off text in column one,
yielding

This is the text to

Split into two

A key with SPLIT ALIGNED, on the other hand, would preserve the existing indenta-
tion, giving

e This is the text to
Split into two

[ErTRTT—

SPLTJOIN

Format

Description

See also

SPLTJOIN

The SPLTJOIN command does ecither a SPLIT ALIGNED or a JOIN ALIGNED,
depending on the cursor position. SPLTJOIN must be issued from a macro with the
cursor positioned in the file area; it is not valid if issued from the command line.
SPLITJOIN is assigned to function key F11 by default. If you issue the SPLTJOIN
command with the cursor at or to the left of the end of a line, SPLTJOIN splits the line
into two lines. When the cursor is past the last nonblank character of a line, SPLTJOIN
joins together the contents of that line and the line below it.

Commands

When SPLTJOIN splits a line, it splits it at the cursor position, as if you had issued a
SPLIT ALIGNED command. When SPLTJOIN joins a line with the line below it, it
joins at the cursor column, as if you had issued a JOIN ALIGNED command.

JOIN, SPLIT

SPLTJOIN

139

STATUS

Format

Description

See also

STATus

Using the STATUS command is equivalent to using the Options Status menu item:
KEDIT displays a dialog box with the current values of most SET options.

Chapter 4, “The SET Command”, Chapter 5, “QUERY and EXTRACT”

SYNEX

Format

Description

See also

Examples

SYNEX command

KEDIT usually checks each command issued from the command line to see if you have
used the SET SYNONYM command to redefine its behavior. If so, KEDIT processes
the command as specified in the synonym definition. This synonym processing is nor-
mally bypassed for commands issued from macros. The SYNEX (“synonym exe-
cute”) command specifically requests that (unless SYNONYM OFF is in effect)
synonym processing apply to a command, even when it is issued from a macro.

SYNEX is useful only when issued from a macro, because synonym processing applies
by default to commands issued from the command line.

COMMAND, SET SYNONYM

SYNEX DELETE 3

KEDIT checks to see if you have defined a synonym for the DELETE command. If so,
KEDIT processes the synonym. Otherwise, KEDIT deletes three lines from your file.

TAG

Format

Description

TAG [target]

The TAG command lets you highlight all lines in your file that match a specified target.
The TAG command sets the tag bit of all lines matching a specified target, clears the tag
bit of lines that do not match the target, and then puts HIGHLIGHT TAGGED into
effect so that the matching lines are highlighted on your display.

Issuing the TAG command with no operands clears the tag bits of all lines in the file.

140

Chapter 3. KEDIT Commands

See also

Examples

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, LESS, MORE,
SET HIGHLIGHT

TAG /yesterday/

Tags and highlights all lines in your file that contain the string ““yesterday”.
TAG BLANK

Tags and highlights all blank lines in your file.

TAG

Turns off the tag bits of all lines in your file, so that no lines are highlighted.

TEXT

Format

Description

Examples

TEXT text

The TEXT command allows you, normally from within a macro, to simulate typing the
specified text at the cursor position. KEDIT processes the text just as if you had entered
it from the keyboard, with the handling of the text affected by the cursor position, the
settings of INSERTMODE and WORDWRAP, etc.

In fact, whenever you type text into KEDIT from the keyboard, the text is actually
being passed to KEDIT by the TEXT command. For example, the macro normally
assigned to the A key is ““text a”, which enters a lowercase ““a” at the cursor position.
The default macro for Shift+A is “text A, which enters an uppercase ““A” at the cursor
position.

IfHEX ON is in effect, you can specify the fext using hexadecimal or decimal notation,
as discussed in the description of SET HEX.

TEXT abcd

The text “abcd” is processed by KEDIT as if you had typed the text at the cursor
position.

TEXT x'61626364"'

Assuming HEX ON is in effect, this example also causes KEDIT to process the text
“abcd” (specified by giving the character codes for the characters in hexadecimal).

TEXT

141

Commands

TFIND

Format

Description

See also

Examples

TFind [target]

The TFIND command (““target find’’) makes the line referred to by the specified target
become the new focus line. If the target is a string target, however, the string must start
in the left zone column of the line.

The TFIND command is used when you want to look for a string that starts in a particu-
lar column. Since the left zone column is usually set to column 1, TFIND is most often
used to search for a string that starts in column 1 of a line. This can be useful, for exam-
ple, when working with assembler language programs, where labels are normally
defined beginning in column 1 of a line.

You can specify any type of target with the TFIND command, but for targets other than
string targets, the TFIND command works exactly like the LOCATE command. With a
string target, the TFIND command only finds occurrences of the string starting in the
left zone column, while the LOCATE command will locate occurrences anywhere
between the left zone and right zone columns.

If you issue the TFIND command with no operands, KEDIT will re-execute the last
TFIND command you issued, looking again for the same target.

The action of the TFIND command is affected by the settings of HEX, WRAP, STAY,
VARBLANK, ARBCHAR, CASE, ZONE, and THIGHLIGHT.

FIND, LOCATE

TFIND /ABC/

The next line that has, beginning in the left zone column, “ABC”’, becomes the focus
line.

LOCATE /ABC/

The next line that contains an “ABC” anywhere within the current zone becomes the
focus line.

TFIND ~/9/
The next line that does not have a ““9°” in the left zone column becomes the focus line.
LOCATE ~/9/

The next line that does not contain, anywhere within the current zone, a ““9”” becomes
the focus line.

142

Chapter 3. KEDIT Commands

TOP

Format TOP

Description The TOP command makes the top-of-file line become the focus line. With INTER-
FACE CUA in effect, you can also press Ctrl+Home to get to the top of your file. With
INTERFACE CLASSIC you can instead press Ctrl+Page Up.

See also BOTTOM

UNDO

Format UNDO

Description The UNDO command, normally assigned to Alt+Bksp and to Ctrl+Z, will undo one
level of changes to the current file. You can issue the UNDO command repeatedly to
undo additional changes.
You can also undo an action using the Edit Undo menu item or using the Undo button
on the toolbar.
Whenever it is possible to UNDO previous actions, the available undo level count (the
third number following ““Alt="" on the status line) will be nonzero.

See also User’s Guide Chapter 3, “Using KEDIT for Windows”, REDO, RESET, SET
UNDOING

UNLOCK

Format UNLOCK

Description Use the UNLOCK command to allow other users to access the disk copy of a locked
file that you are editing.
The UNLOCK command causes KEDIT to unlock the current file. That is, KEDIT
closes the file handle associated with the disk copy of the current file.
Attempting to UNLOCK a file that is not locked causes an error message. If the current
file is locked, KEDIT displays ‘‘Locked” to the right of the status line. Additionally, if
the current file is locked and IDLINE ON is in effect, its fileid will be preceded on the
idline with an asterisk.

See also User’s Guide Chapter 12, “File Processing”, LOCK, SET LOCKING

UNLOCK

143

Commands

UP

Format

Description

See also

Examples

Up [n]

The line # lines above the focus line becomes the new focus line. If n is not specified,
the line above the focus line becomes the focus line.

DOWN

UP

The line above the focus line becomes the new focus line.
UP 4

The line four lines above the focus line becomes the new focus line.

UPPERCASE

Format

Description

See also

Examples

UPPercase [target]

Use the UPPERCASE command to convert lowercase characters in a specified portion
of your file to uppercase characters.

If you give no operands, the UPPERCASE command converts the focus line to
uppercase. Otherwise, all text within the specified target area that falls within the
current ZONE columns is converted. If the target area is a box block, its entire contents
are converted, regardless of the ZONE settings. If STAY OFF is in effect, the last line
uppercased becomes the focus line. Otherwise, the focus line location does not change.

With the default of INTERNATIONAL NOCASE in effect, LOWERCASE treats only
the 26 letters from “A’” to “Z” and from ‘“a” to “z” as alphabetic. With
INTERNATIONAL CASE in effect the characters to be treated as alphabetic, and what
their lowercase equivalents are, are determined by your Windows language drivers.

Note that you can use the default definition of Shift+F5, the Actions Uppercase menu
item, or the Uppercase Block button on the bottom toolbar to uppercase a block of text.

LOWERCASE, SET INTERNATIONAL

UPPERCASE

All lowercase characters in the focus line are converted to uppercase.

144

Chapter 3. KEDIT Commands

UPPER -4

All lowercase characters in the focus line and in the three lines above it, for a total of
four lines, are converted to uppercase.

WINDOW

Format

Description

WINdow MINimize |MAXimize |RESTORE [DOCument|FRAME]
WINdow CASCADE

WINdow TILE [Horizontally|Vertically]

WINdow ARRANGE [Horizontally|Vertically]

WINdow CLOSE [DOCument|FRAME |FILE]

WINdow NEWwindow

WINdow NEXTwindow | PREVwindow

WINdow ARRANGEIcons

WINdow MENUmode [menuname]

The WINDOW command performs assorted operations related to the sizing and posi-
tioning of KEDIT’s frame window or of your document windows. The WINDOW
command is most often used in macros and is not usually issued directly from the com-
mand line. For example, the macro that handles the Window Cascade menu item issues
the WINDOW CASCADE command to tell KEDIT to cascade your document
windows.

WINdow MINimize |MAXimize |RESTORE [DOCument |FRAME]
KEDIT minimizes a window, maximizes a window, or restores a window to the
normal (non-minimized, non-maximized) state. The operation can affect the cur-
rent DOCUMENT window (this is the default) or it can affect the FRAME
window.

WINdow CASCADE
KEDIT cascades its document windows. This is equivalent to using the Window
Cascade menu item.

WINdow TILE [Horizontally|Vertically]
KEDIT tiles its document windows either HORIZONTALLY (this is the default)
or VERTICALLY, as it does when you use the Window Tile Horizontally or Win-
dow Tile Vertically menu items.

WINdow ARRANGE [Horizontally|Vertically]
KEDIT arranges its document windows either HORIZONTALLY (this is the de-
fault) or VERTICALLY, as it does when you use the Window Arrange... menu
item.

WINdow CLOSE [DOCument |FRAME |FILE]
KEDIT closes either the current DOCUMENT window (this is the default), the
FRAME window, or the current FILE. Closing the document window is equiva-
lent to selecting Close from the document window’s system menu. Closing the
frame window is equivalent to selecting Close from the frame window’s system
menu, or to using File Exit. Closing the file is equivalent to using the File Close
menu item.

WINDOW

145

Commands

WINdow NEWwindow
KEDIT creates a new document window, giving you an additional view of the cur-
rent file. This is equivalent to using the Window New Window menu item.

WINdow NEXTwindow | PREVwindow
KEDIT makes the next or previous document window become the current docu-
ment window. This is the default behavior of Ctrl+F6 (which moves to the next
document window) or Shift+Ctrl+F6 (which moves to the previous document
window).

WINdow ARRANGEIcons
KEDIT rearranges any minimized document windows so that they are lined up
neatly near the bottom of the frame window; this is equivalent to using the Win-
dow Arrange Icons menu item.

WINdow MENUmode [menuname]
KEDIT activates its menu bar. To display and activate a specific menu, you can
specify menuname, which can be File, Edit, Actions, Options, Window, Help,
DOCument (to activate the document window’s system menu), or FRAME (to ac-
tivate the frame window’s system menu).

WINEXEC

Format

Description

Notes

WINEXEC [WAIT|NOWAIT] [NORMal |MAXimize|MINimize] command

Use the WINEXEC command to run an external Windows or DOS program.

Specify the command involved in the same way as you would when using the Run
option from the Windows Start Menu: give the name of the module involved (possibly
including a drive and/or path specifier) followed by any command line parameters that
you want to pass to the module.

You can precede the command with an option specifying either WAIT (this is the
default) or NOWAIT. With the WAIT option, KEDIT is inactive and can accept no fur-
ther mouse or keyboard input until the external command completes. With the
NOWAIT option, KEDIT remains active after the external command starts and you can
interact with KEDIT without waiting for the external command to complete.

You can also precede the command with an option that specifies whether the program
that you execute should start out with a NORMAL window (that is non-maximized,
non-minimized window; this is the default), a MAXIMIZED window, or a MINI-
MIZED window.

e While you can run both Windows and text mode Command Prompt-style pro-
grams via the WINEXEC command, it is usually preferable to run text mode pro-
grams via KEDIT’s DOS command or the related DOSNOWAIT or DOSQUIET
commands, and to use the WINEXEC command for running Windows programs.
This is because the DOS command will automatically handle commands that are
internal to CMD.EXE, will insure that the text mode program’s output remains on

146

Chapter 3. KEDIT Commands

See also

Examples

the screen until you have had a chance to see it, and will remove KEDIT for Win-
dows from the screen while waiting for your text mode program to complete, while
the WINEXEC command does none of these.

e When issued from a macro WINEXEC WAIT (but not WINEXEC NOWAIT) re-
turns information about the exit code set by the command that was executed. De-
tails on this are given in the discussion of the DOS command.

DOS

WINEXEC NOTEPAD

Starts the Windows Notepad program. Since WAIT and NORMAL are in effect by
default, Notepad starts up with its default window size and KEDIT is inactive until
Notepad has finished running.

WINEXEC NOWAIT NOTEPAD C:\AUTOEXEC.BAT

Starts the Windows Notepad program, with its default window size, and tells it to edit
the file C\AUTOEXEC.BAT. Because the NOWAIT option is specified, KEDIT does
not wait for Notepad to finish execution. Both programs are active at once and you can
switch between the two programs and do work in either of them.

WINHELP

Format

Description

See also

WINHELP fileid [topic]

Use the WINHELP command to invoke the Windows Help program so that you can
view a Windows Help file.

The WINHELP command is available mainly for compatibility with previous versions
of KEDIT. It is useful only with older, Windows 3.1-style, .HLP Help files and does not
work with the .CHM HTML Help files more commonly used by current Windows
applications. In particular, it does not work with the current KEDIT for Windows Help
file, which uses the newer HTML Help format.

Specify the fileid of the Help file that you want to view. You should include the .HLP
file extension and (unless the Help file is in the current directory, in the Windows direc-
tory, or in your PATH), the drive and path specifier for the Help file.

You can optionally supply a topic to search for in the Help file. The Windows Help pro-
gram will then jump to that topic in the Help file or, if there are either no matching top-
ics or more than one matching topic, will display its Search dialog box. If you do not
specify a topic, Windows Help will display the Help file’s Contents page.

HELP

WINHELP

147

Commands

Examples

WINHELP C:\SDK31\WIN31WH.HLP ShowCaret

Assuming that the Help file WIN31WH.HLP is installed in your C:\SDK31 directory,
this command would tell Windows Help to display that Help file and to search for help
on the topic ShowCaret.

WMSG

Format

Description

See also

Examples

WMSG command

WMSG, used mainly in macros, executes a command and displays any error message
that the command generates in a Windows message box instead of on the message line.

CMSG, DMSG, EMSG, MSG

WMSG LOCATE /Tomorrow/

This example, which would be in quotes if it were included in a macro, looks for the
string “Tomorrow”. If the string is found, KEDIT makes the line that contains the
string become the focus line, in the normal way. But if an error is encountered, the error
message is not displayed within the document window, on the message line, but is
instead displayed in a pop-up Windows message box.

XEDIT

Format Xedit [fileid ...] [(options [)]]

Description Use the XEDIT command to begin editing one or more additional files. See the
description of the KEDIT command for details on the XEDIT command. The XEDIT
command performs exactly the same functions as the KEDIT command.

See also KEDIT

&

Format &commandline

Description When you precede a command line with an ampersand (“&””), KEDIT handles all the
commands on the command line in the normal way and then redisplays the commands
(preceded by an “&’’) on the command line. This allows you to easily re-execute the
command line repeatedly, and lets you make changes to the command before re-enter-
ing it.

148 Chapter 3. KEDIT Commands

Examples

&LOCATE /12.4/

KEDIT locates the next line containing “12.4”*, then redisplays
&LOCATE /12.4/

on the command line.

Format

Description

See also

Examples

?[+]

The ? command, normally assigned to function key F6, causes KEDIT to redisplay on
the command line the last command entered on the command line. You can then edit
the command and re-enter it.

You can issue the ? command repeatedly to get back the second-to-the-last command
entered, then the third-to-the-last, etc., eventually cycling back to the most recent com-
mand. KEDIT saves the last 40 command lines entered. As a shortcut, you can enter
multiple question marks on the same command line. If you enter two consecutive ques-
tion marks on the same command line, KEDIT shows you the second-to-the-last com-
mand entered. Three question marks give you the third-to-the-last, etc.

KEDIT normally moves backward through the set of saved command lines, from the
most recent to the least recent. If you enter one or more question marks followed by a
plus sign (for example, ““?+"), KEDIT will cycle forward through the saved command
lines, from least recent to most recent.

Any text on the command line following the question marks (and possible plus sign) is
ignored.

SOS RETRIEVEB, SOS RETRIEVEF
DELATE 4
?

In this example, you want to issue the command DELETE 4 but you have spelled the
word “DELETE” wrong. Instead of retyping the entire command line, you can simply
issue the ? command (either by typing it in or by pressing F6). KEDIT will then
redisplay “DELATE 4> on the command line, and you can simply change the “A” in
DELATE to an “E’” and press Enter.

??

KEDIT redisplays the second-to-the-last command line entered.

149

Commands

Format

Description

See also

= [command]

The = command, assigned by default to function key F9, causes KEDIT to re-execute
the command in the equal buffer, which is normally the most recently completed com-
mand issued from the command line. For example, if you type in

DOWN 3

to cause KEDIT to move down three lines in the file and you then enter

KEDIT will move down three more lines.

You can enter several “=""s in a row to cause KEDIT to re-execute a command several
times.

would cause the last command to be re-executed three times.

The “="" can optionally be followed by a command that you want KEDIT to process
before the last command is re-executed. For example, assume that you enter these
commands:

DOWN 3
=TOP

DOWN 3 causes KEDIT to move down three lines in your file. =TOP tells KEDIT to
re-execute the DOWN 3 command after first moving to the top of your file, so the net
effect of this sequence is to make line 3 of your file become the focus line.

Commands issued from macros, as opposed to the command line, are not automatically
put into the equal buffer and made available for the = command, but you can use the
SET = command to set the contents of the equal buffer from within a macro.

Commands issued via menu and toolbar operations do not affect the contents of the
equal buffer.

REPEAT, SET =

150

Chapter 3. KEDIT Commands

Chapter 4. The SET Command

Format

Default value

The SET command lets you control how KEDIT carries out many of its functions. You
can decide, for example, whether the wordwrap feature is enabled, what the left and
right margins should be, and what colors to use to display text on your screen. The
general format of the SET command is

[Set] option value
For example,

SET MARGINS 1 60 5
SET TABS 1 10 16 30
SET WRAP OFF

You are allowed, however, to leave out the word “SET”” and simply specify the option
and its value. (SET ALT and SET = are exceptions; SET must be specified for these
options to avoid confusion with the ALTER and = commands.) So the previous
examples could in fact have been entered like this:

MARGINS 1 60 5
TABS 1 10 16 30
WRAP OFF

For each SET option, the discussion involves:

e The format of the corresponding SET command, including the operands involved
and the minimal truncations that you can specify.

e The default value of the option.

o The level at which the option takes effect; this can be the Global, File, or View
level, and is discussed in more detail below.

e The dialog box that you can use, as an alternative to issuing the SET command
from the command line, to control the value of the option. In most cases, this is the
Options SET Command dialog box. Some of the more specialized options do not
have a corresponding dialog box and can only be changed via the SET command.

e Information on whether the value of the SET option can be saved in the Windows
registry so that it will take effect in future KEDIT sessions.

e The bulk of the documentation for most SET options consists of a description of
the option and its operands, along with examples of their use.

The following pages contain a discussion of each of the options that can be set. Each
option has a default value, which is in effect until you change it. There are several ways
in which the default value of an option can be changed:

e At the start of each session KEDIT processes the KEDIT section of the Windows
registry. Among other things, KEDIT’s registry section contains settings that you

151

SET Options

Level

Saved settings

changed in previous sessions and then saved, using the Options Save Settings
menu item or related facilities, so that they would take effect in future KEDIT
sessions.

e At the start of each session KEDIT also processes your profile macro, which is
normally called WINPROF.KEX. Your profile is processed after the settings in the
registry, and changes made to your settings by SET commands issued from your
profile override any changes made to those same settings via the registry.

e Finally, you can change the values of SET options at any time during a KEDIT ses-
sion by issuing SET commands from the command line or from macros, or by us-
ing the Options SET Command dialog box.

The description of each SET option indicates the “level” at which the option takes
effect. Some SET options are at the Global level, affecting your entire KEDIT session.
Some options are at the File level, affecting only the current file. Other options are at
the View level, and can be different for each view you have of a file that is displayed in
multiple windows.

At the Global level are options like STATUSLINE, which determines whether KEDIT
displays a line of status information at the bottom of its frame window, and
MACROPATH, which controls which directories KEDIT searches when looking for a
macro. Most options at the File level affect how a file is read from or written to disk,
such as LRECL and TABSOUT. This is because if you have several files in the ring,
you might want them all to be written to disk with different record lengths. But if the
same file is displayed in multiple windows, it is unlikely that you would want it to be
written to disk with different record lengths depending on which window the save
operation was initiated from. The largest number of options are at the View level, since
you might well want to have, for example, different VERIFY settings in different views
of the same file. The largest number of options are at the View level, since you might
well want to have, for example, different VERIFY settings in different views of the
same file.

The values of most SET options can be saved in KEDIT’s section of the Windows reg-
istry. These saved settings are then put back into effect at the start of each future KEDIT
session.

The values of the following SET options can be saved: ARBCHAR, ARROW,
AUTOEXIT, AUTOINDENT, AUTOSAVE, AUTOSCROLL, BACKUP, BEEP,
BOUNDMARK, CASE, CLOCK, CMDLINE, COLMARK, COLOR, CURLINE,
CURRBOX, CURSORSIZE, CURSORTYPE, DEFEXT, DEFPROFILE, DEFSORT,
DIRFORMAT, DOCSIZING, ECOLOR, EOFIN, EOFOUT, EOLIN, EOLOUT,
FCASE, FORMAT, HELPDIR, HEX, HEXDISPLAY, HIGHLIGHT, IDLINE,
IMPMACRO, INITIALDIR, INITIALDOCSIZE, INITIALFRAMESIZE,
INITIALINSERT, INITIALWIDTH, INPUTMODE, INTERFACE,
INTERNATIONAL, KEYSTYLE, LINEND, LOCKING, MACROPATH,
MARGINS, MARKSTYLE, MONITOR, MOUSEBEEP, MSGLINE, NEWLINES,
NOVALUE, NUMBER, OFPW, PATH, PCOLOR, PREFIX (but not PREFIX SYN-
ONYM), PREFIXWIDTH, PRINTCOLORING, PRINTER, PRINTPROFILE,
RECENTFILES, RIGHTCTRL, SCALE, SCROLLBAR, SHADOW, SHARING,

152

Chapter 4. The SET Command

Unsupported
SET options

STATUSLINE, STAY, STREAM, SYNONYM ON|OFF, TABLINE, TABS, TABSIN,
TABSOUT, THIGHLIGHT, TIMECHECK, TOFEOF, TOOLBAR, TRAILING,
UNDOING, VARBLANK, WINMARGIN, WORD, WORDWRAP, and WRAP.

You can use Edit Save Settings or the command REGUTIL SAVE SETTINGS to
update the values of all of these options in the Windows registry. You can update indi-
vidual values by using the Save Setting button within the Options SET Command dia-
log box, or by using the REGUTIL SAVE SET option command. Not all of these option
values are actually written to the registry; to speed things up, KEDIT only writes out
the options whose values differ from the built-in KEDIT default.

There is one special class of SET options whose values are automatically updated in the
Windows registry whenever they are set. These are SET INSTANCE, SET
INITIALDIR, SET INITIALDOCSIZE, SET INITIALFRAMESIZE, SET
INITIALINSERT, and SET INITIALWIDTH, and what they have in common is that
they have an effect only during KEDIT initialization. They are automatically saved
because there is no point in setting these options unless the changes are reflected in
Windows registry so that they can affect future KEDIT sessions. Setting these options
has no effect on the current KEDIT session, because you don’t get a chance to set them
until KEDIT has already been initialized. But whenever you set one of these options,
the new value is automatically saved in the registry, and it will affect future KEDIT
sessions.

The following SET options, supported in earlier versions of KEDIT, are not used by
this version of KEDIT for Windows: BLINK, BORDER, CURSORSHAPE,
EAPRESERVE, FILEOPEN, KEYBOARD, LOGO, MOUSE, MOUSEBAR,
PSCREEN, RETRACE, REXXIO, SHIFTSTATE, SWAP, SYSRC, and TOPVIEW.
Any SET commands issued from the command line for these options will yield an error
message. SET commands for these options issued from macros will yield a return code
of 4 and will be otherwise ignored; avoiding an error message in this situation means
that many existing macros that use these options will continue to work. Additionally,
QUERY and MODIFY commands for these options will yield an error message, while
EXTRACT commands and implied EXTRACT functions involving these options will
return default information.

SET ATTRIBUTES is supported in KEDIT for Windows for compatibility with earlier
versions of KEDIT, but it is not documented here because new users are encouraged to
use SET COLOR, which is now the preferred alternative. QUERY, MODIFY, and
EXTRACT ATTRIBUTES are also still available.

SET MOUSETEXT is supported in KEDIT for Windows for compatibility with earlier
versions of KEDIT, but it is not documented here because new users are encouraged to
use SET TOOLBUTTON and SET TOOLSET. QUERY, MODIFY, and EXTRACT
MOUSETEXT are not supported. KEDIT for Windows handles SET MOUSETEXT
commands by internally converting them to the equivalent SET TOOLSET BOTTOM
commands, and your text mode mousebar text is displayed as on KEDIT’s bottom
toolbar. The bottom toolbar is not displayed by default, but can be controlled via the
SET TOOLBAR command.

153

SET Options

See also

EXTRACT, MODIFY, PRESERVE, RESTORE, STATUS, Chapter 5, “QUERY and
EXTRACT”

SET ALT

Format

Description

See also

Set ALT nl [nZ2]

KEDIT default: 0 0
Level: File
Dialog box: None

Save Settings handling: Not savable

SET ALT, used mainly in macros, lets you change KEDIT’s alteration counts. KEDIT
keeps track of two types of alteration count™. The firstis the number of changes since
your file was last saved or autosaved. (Your file is saved when you issue the SAVE
command or use the File Save or File Save As menu items.) The second is the number
of changes since the last save, regardless of intervening autosaves. Both alteration
counts are incremented whenever you issue a command that changes the contents of
your file. A single command may affect many lines of your file, but will only add 1 to
the alteration counts. A macro that issues a large number of commands may increment
the alteration counts many times.

The first alteration count is used by the autosave facility. Whenever enough changes
have been made to your file since the last save or autosave (you set the threshold for this
with the SET AUTOSAVE command), KEDIT will autosave your file.

The second alteration count is used by the QUIT command. If you try to quit from a file
which has been altered since the last save (that is, its second alteration count is not
zero), KEDIT will not quit the file but will give you a message warning you that the file
has been changed. The second alteration also affects, when you use File Close,
whether or not KEDIT asks if you want to save the file.

After every successful autosave, the value of the first alteration count is reset to zero.
After every successful save, the values of both alteration counts are reset to zero. The
UNDO and REDO commands also affect the alteration count.

KEDIT displays the alteration counts on the status line as the first two numbers after
“Alt=""; the third number following ““Alt=""indicates how many levels of changes are
available to KEDIT’s undo facility.

SET AUTOSAVE

154

Chapter 4. The SET Command

Examples

SET ALT 100

This sets the first alteration count for your file to 100. The word “SET” is required for
the ALT option to avoid confusion with the ALTER command. If AUTOSAVE is set to
some number less than 100 when this command is issued, an autosave will immediately
take place and the alteration count will be reset.

SET ALT 0 O

This sets both alteration counts for the current file to 0. You could then QUIT from the
file even if it had been changed, since the QUIT command is allowed if the second
alteration count is zero.

SET ARBCHAR

Format

Description

[Set] ARBchar ON|OFF [charl] [char2]
KEDIT default: OFF § ?

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

When ARBCHAR (“arbitrary character”) is ON, the characters char! and char2
(known as the ARBCHAR characters) have a special meaning when used in string tar-
gets, string column targets, with the CHANGE and SCHANGE commands, and with
the Edit Find, Edit Replace and Edit Selective Editing dialog boxes.

When ARBCHAR is on and KEDIT is looking for a string, the ARBCHAR characters
act as wildcard characters. The first ARBCHAR character, usually a dollar sign (“$”"),
will match any group of zero or more characters. The second ARBCHAR character,
usually a question mark (““?”’), will match any single character. For example, assume
that

ARBCHAR ON $?

is in effect and you enter

/ab$c/

Then any of the following strings would be matched:
abc

abbc

abfgfghc

They would be matched because the search string you gave will match any string of
characters containing an “a” followed immediately by a “b”” followed by any group of
zero or more characters followed by a “c”. So in the first string above, the “$”

SET ARBCHAR

155

SET Options

matched the empty string. In the second string above the ““$”” matched the second “b”’.
In the third string, the “$”” matched ““fgfgh”.

If you enter
/ab?c/
then ““?”’, the second ARBCHAR character, will match any single character. So, of the

three strings above, ““/ab?c/” will only match the second string, ““abbc”, since that is

[IPS]

the only one consisting of an “a”, a “‘b”’, exactly one other character, and thena “c”.

You can use more than one arbitrary character in the same search string. For example,
the target

/Thesawboy. /

would match

The man saw the small boy.
Note that it would not match

The man the boy saw.

When ARBCHAR is OFF, the ARBCHAR characters have no special meaning, so they
match only themselves.

When you use the first ARBCHAR character (usually a “$’*) as the first character in
the string to be changed by a CHANGE or SCHANGE command, or with the Edit
Replace dialog box, it will match all characters starting from the left zone column. If it
is the last character, it will match all characters through the right zone column. If it is
the only character in the string to be changed, it will match all characters from the left
zone column through the right zone column.

Assume that ZONE 1 8 is in effect and that the focus line is
12345678

The command

c/$3/a/

would change the focus line to

A45678

The command

c/3s/a/

would give you

12a

while

156

Chapter 4. The SET Command

Examples

c/$/a/
would give you
A

You can also use the first ARBCHAR character, normally “$”°, on the right side of a
CHANGE or SCHANGE command, or in the Edit Replace dialog box. The first “$”’ on
the right side of a CHANGE command is replaced by all characters matched by the first
“$” on the left side, the second ““$”” on the right is replaced by characters matching the
second “$” on the left, etc. There must be at least as many “$”’s on the left as on the
right. (The second ARBCHAR character, normally “?”*, works similarly.)

Again, assume that ZONE 1 8 is in effect and the focus line contains
12345678

The command

c/1$8/asz/

gives

A2345672

With ZONE 1 8 still in effect and 12345678 on the focus line
C/$4$5$/$A$BSC/

gives

123AB678C

ARB ON

This sets ARBCHAR ON, so that the current ARBCHAR characters take on the special
meanings discussed above when used in string searches. Unless you say otherwise,
“$” and ““?” are the ARBCHAR characters.

ARB OFF

This sets ARBCHAR OFF, so that the ARBCHAR characters have no special meaning
in string searches.

ARB ON * +

This turns ARBCHAR ON and sets “*”” up as the character that matches any group of
zero or more characters and ““+”” as the character that matches any single character.

ARB ON [

This turns ARBCHAR ON and sets ““[”” as the character that matches any group of zero
or more characters. The character that matches any single character is unchanged from
the value already in effect.

SET ARBCHAR

157

SET Options

SET ARROW

Format

Description

[Set] ARRow ON|OFF
KEDIT default: ON

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

With ARROW ON, the default, KEDIT displays an arrow (““====>"’) at the beginning
of the command line. This makes it easier for you to keep track of whether the cursor is
on the command line or in the file area. With ARROW OFF, the arrow does not appear.

SET AUTOCOLOR

Format [Set] AUTOCOLOR .ext parser
KEDIT default: See the table below
Level: Global
Dialog box: None
Save Settings handling: Not savable

Description Use SET AUTOCOLOR to determine the syntax coloring parser used for files with a
specified extension.
When the default of COLORING ON AUTO is in effect for a file, KEDIT decides
which parser to use for that file by examining the file’s extension. If SET
AUTOCOLOR has been used to specify a parser for that extension, KEDIT uses that
parser to control syntax coloring for the file. The NULL parser, which does no syntax
coloring, is used whenever a file has an extension for which no parser has been
specified.
For example, the command
SET AUTOCOLOR .LNG LANG
tells KEDIT to use the LANG parser (which must already have been defined via the
SET PARSER command) for files with an extension of .LNG.
Parsers referred to in SET AUTOCOLOR commands must already be defined, either
by being built into KEDIT or via the SET PARSER command.

158 Chapter 4. The SET Command

SET AUTOCOLOR is automatically put into effect for the following extensions during

KEDIT initialization:

Extension Parser
.BAS BASIC
.FRM BASIC

.C C

.COB COBOL
.COBOL COBOL
.CBL COBOL
.CPP C

.CXX C

.CS CSHARP
.DLG RESOURCE
.FOR FORTRAN
.FORTRAN FORTRAN
.F90 FORTRAN
.F FORTRAN
H C

.HPP C

HXX C

HTM HTML
HTML HTML
NI INI

JAV JAVA
JAVA JAVA
KEX REXX
.KML REXX
.REX REXX
KLD KLD

.PAS PASCAL
.DPK PASCAL
.DPR PASCAL
.PRG XBASE
.RC RESOURCE

SET Options

SET AUTOCOLOR

159

See also SET COLORING, SET ECOLOR, SET PARSER, Chapter 8, “KEDIT Language
Definition Files”

SET AUTOEXIT

Format [Set] AUTOEXIT ON |OFF
KEDIT default: OFF
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

Description SET AUTOEXIT determines whether KEDIT automatically exits when the last file in
the ring is closed.

With the default of AUTOEXIT OFF, KEDIT keeps running even if there are no files in
the ring and all of its document windows have been closed. You can then begin editing
other files, or you can use File Exit to close KEDIT’s frame window and end your edit-
ing session.

With AUTOEXIT ON, your editing session ends whenever the last file is removed
from the ring. Some KEDIT users prefer this behavior, because it is more like the
behavior of text mode KEDIT and because it saves the extra step of closing KEDIT’s
frame window to exit KEDIT after closing the last file in the ring.

SET AUTOINDENT

Format [Set] AUTOIndent ON|OFF
KEDIT default: OFF
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description SET AUTOINDENT controls where the default F2 and (if INTERFACE CUA is in
effect) Enter key definitions position the cursor after they add a line to your file.

With the default of AUTOINDENT OFF, the cursor is positioned in the left margin col-
umn of the newly-added line.

160 Chapter 4. The SET Command

With AUTOINDENT ON, the cursor is lined up with the first character of the line
above the new line. If that line is blank, the cursor stays in the column that it was in.

AUTOINDENT ON is useful when you are entering text in a programming language
like C, where different portions of the file are indented to different levels, but where
you most often want each line indented to the same level as the line above it.

SET AUTOSAVE

Format

Description

[Set] AUtosave n|OFF
KEDIT default: OFF

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

Use SET AUTOSAVE (“‘automatic save’’) to cause KEDIT to automatically save your
file to disk after a specified number of changes have been made to it.

After a power failure, a system crash, or inadvertent changes to your file during a
KEDIT session, you may be able to use the autosaved version of your file to recover
some of your work.

If AUTOSAVE is set to some number #, which must be greater than one, then whenever
that many alterations have been made to your file (see SET ALT for a discussion of
KEDIT’s alteration count), KEDIT will automatically save your file to disk. While
KEDIT is autosaving your file, you will see the message ““***Autosave®**”. If no
errors occur while saving the file, the first alteration count will be reset to zero. If errors
occur (such as drive not ready or disk full errors), you will get an error message and the
PC’s speaker will beep.

When KEDIT writes a copy of your file to disk during an AUTOSAVE, it uses the same
drive, directory, and name as the file you are editing, but it uses a file extension of
.AUS (for “AUtoSave”), as if you had issued the command “SAVE =.AUS”. This
causes the file to be autosaved under its own name, but with an extension of . AUS. The
“real” version of your file on disk is not overwritten. KEDIT will not create a .BAK
file during an autosave, regardless of the setting of BACKUP. Any existing .AUS file is
simply overwritten when the autosave occurs.

Whenever you successfully write your file to disk by using the SAVE or FILE com-
mands, or by using the File Save menu item, KEDIT erases the . AUS file to avoid clut-
tering up your disk. If you QQUIT your file, or your KEDIT session ends abnormally,
the .AUS file will remain on your disk for possible recovery of lost work. You can peri-
odically clean up your disk by erasing these .AUS files.

SET AUTOSAVE

161

SET Options

See also

Examples

If you use the File Close or File Exit menu items to close a file that has been modified,
the .AUS file is erased if you tell KEDIT to save the modified file; it is not erased if you
tell KEDIT not to save the modified file.

The DIR.DIR and MACROS.KML files created by the DIR and MACROS commands
are treated as special cases. Regardless of the setting of AUTOSAVE, they are never
autosaved.

SET ALT, SET BACKUP

AUTOSAVE 30

The current file will be autosaved after every thirty alterations to a file with an exten-
sion of .AUS.

SET AUTOSCROLL

Format

Description

[Set] AUTOSCroll n|Half|OFF

KEDIT default: HALF
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

The AUTOSCROLL setting controls how far KEDIT will scroll when automatic hori-
zontal scrolling is invoked.

Suppose, for example, that your window is 80 columns wide and VERIFY 1 80 is in
effect (so that columns 1 through 80 of the file are displayed in the window) and that the
cursor is in column 80. If you try to move the cursor 1 column to the right, KEDIT
invokes automatic horizontal scrolling to bring column 81 of the file into the window.
With AUTOSCROLL HALF (the default) in effect, KEDIT scrolls by half the width of
the document window, which is in this case 40 columns. So columns 41 through 120 of
the file are displayed in the window, with the cursor in column 81 of the file.

Note that with PREFIX ON, as discussed in User’s Guide Chapter 7, “The Prefix
Area”, the cursor keys that normally invoke automatic horizontal scrolling instead
move the cursor in and out of the prefix area.

If AUTOSCROLL # is in effect, KEDIT autoscrolls #» columns at a time:

162

Chapter 4. The SET Command

See also

AUTOSCROLL 5

would cause KEDIT to autoscroll five columns at a time. In the above example, moving
the cursor right from column 80 would cause columns 6 through 85 of your file to dis-
play, with the cursor at column 81 of the file.

With AUTOSCROLL OFF, KEDIT does not do automatic scrolling. If you attempt to
move the cursor beyond the left or right edge of the document window, KEDIT places
the cursor at the left or right edge of the document window and cannot move to the
intended column of your file.

KEDIT autoscrolls by adding or subtracting the appropriate number of columns from

the current VERSHIFT value, as if you had used the LEFT or RIGHT command to
adjust the VERSHIFT value by that many columns.

LEFT, RIGHT, RGTLEFT, SET VERIFY

SET BACKUP

Format

Description

[Set] BACKup OFF | TEMP |KEEP
KEDIT default: OFF

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET BACKUP controls whether KEDIT creates a backup copy of your file when it is
written to disk. It affects the FILE and SAVE commands and the File Save menu item.
It also has an effect when you use the File Close menu item with a modified file that you
then tell KEDIT to save.

The default is BACKUP OFF, but unless you have very limited disk space you will
probably want to run with BACKUP KEEP in effect, to create an automatic backup
copy of files that you edit. You can periodically clean up your disk by erasing these
.BAK files.

With BACKUP OFF, when a file that you are writing to disk will replace an existing
file, KEDIT first erases the old version of the file and then writes out the new version. If
something goes wrong while the file is being written (such as a disk error or power
failure), you may end up with neither the old nor the new version of your file on the
disk.

With BACKUP TEMP or BACKUP KEEP, when a file will replace an existing file,
KEDIT first renames the existing file to have the same name but an extension of .BAK
(for “BAcKup”). (If this .BAK file already exists, KEDIT erases it.) KEDIT then

SET BACKUP

163

SET Options

writes the new version of the file out to disk. If there is a problem while the new version
is being written, you will at least still have the old version of the file on your disk (with
the .BAK extension). [f BACKUP TEMP is in effect, the .BAK file is erased after the
new version of the file has been successfully written to disk. With BACKUP KEEP, the
.BAK file is not erased, but is left on disk.

Note that if BACKUP is set to TEMP or KEEP, there must be enough room on your disk
to hold both versions of your file: the new version that you are writing out and the old
version, which is being kept as a .BAK file. [f BACKUP TEMP is in effect, this .BAK
file may need to be there for only a few seconds, while your new version is being
written to disk. Nevertheless, there must still be enough room on your disk to hold both
versions of your file or you will get disk full error messages.

See also SET AUTOSAVE
SET BEEP
Format [Set] BEEP ON|OFF
KEDIT default: OFF
Level: Global
Dialog box: Options SET Command
Save Settings handling: Savable
Description SET BEEP controls whether the speaker beeps when error messages are displayed,
when SOS ERRORBEERP is issued, and when ALERT commands are executed.
See also SET MOUSEBEEP, SOS BEEP, SOS ERRORBEEP, SOS MOUSEBEEP

SET BOUNDMARK

Format

[Set] BOUNDMark Zone|TRunc|MARgins|TABs|Verify|WINMARgin
[Set] BOUNDMark OFF

KEDIT default: ZONE TRUNC
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

164

Chapter 4. The SET Command

Description

Notes

SET BOUNDMARK (“boundary mark’’) controls KEDIT’s drawing of vertical lines
in your document window that indicate important column locations in your file.

With the default of BOUNDMARK ZONE TRUNC, KEDIT draws boundary marks at
the beginning and end of the current zone columns, and after the truncation column.
For example, if ZONE 20 30 and TRUNC 80 are in effect, KEDIT will draw a line
between columns 19 and 20 of your file, between columns 30 and 31 of your file, and
between columns 80 and 81 of your file.

With SET BOUNDMARK, you can specify one or more of the following operands:

ZONE
Markers are drawn before the left zone column and after the right zone column.

TRUNC
A marker is drawn after the truncation column.

MARGINS
A marker is drawn before the left margin column and after the right margin
column.

TABS
A marker is drawn before each tab column.

VERIFY
A marker is drawn after each set of verify columns. For example, if VERIFY 1 20
3040 is in effect, KEDIT will display columns 1 through 20 of your file followed
by columns 30 through 40, and boundary marks will appear between columns 20
and 30 and after column 40.

WINMARGIN
When WINMARGIN ON is in effect, a margin area (used for marking line blocks
with the mouse) is displayed at the left of the document window. BOUNDMARK
WINMARGIN tells KEDIT to draw a marker line at the right edge of this margin
area, just before the first column of text.

Alternatively, you can specify BOUNDMARK OFF, which turns off any existing
boundary markers. Note that a separate set of vertical lines, controlled by the SET
COLMARK command, may still be displayed.

e You would normally only use one or two of the BOUNDMARK operands at a
time, since a large number of vertical lines could clutter your screen and be
confusing.

e The lines drawn by SET BOUNDMARK are automatically adjusted if one of the
settings involved changes. For example, if BOUNDMARK ZONE is in effect and
you issue a SET ZONE command, the position of the zone markers will be
updated.

e Youcanusearelated command, SET COLMARK, to draw marker lines at specific
columns of your file, independent of the settings of ZONE, TRUNC, etc.

SET BOUNDMARK 165

SET Options

See also

Examples

e The color of the boundary markers is determined by the foreground color that you
specify for the SET COLOR BOUNDMARK; the background color for SET
COLOR BOUNDMARK is ignored.

e To avoid drawing an extra line where there is already a clearly understood bound-
ary, boundary markers are not drawn for the left zone or left margin columns when
these are set to column 1 of your file.

SET COLMARK, SET MARGINS, SET TABS, SET TRUNC, SET WINMARGIN,
SET VERIFY, SET ZONE

BOUNDMARK WINMARGIN MARGINS

Draw boundary markers between the window margin area and the first column of the
document window, before the left margin column, and after the right margin column.

BOUNDMARK OFF

Turn off any boundary markers being displayed for the current view of your file.

SET CASE

Format

Description

[Set] CASE Mixed|Upper [Respect]|Ignore] [Respect|Ignore]
KEDIT default: MIXED IGNORE RESPECT

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

The CASE option controls how KEDIT handles uppercase and lowercase text.

If CASE UPPER is in effect, all lowercase letters input directly into the document win-
dow are treated as if their uppercase equivalent had been entered. Note that only text
entered directly into the document window is uppercased; CASE UPPER has no effect
on text entered into dialog boxes.

For example, suppose that CASE UPPER is in effect and you try to type on the com-
mand line

INPUT abcABC123

The characters will actually appear on the command line in uppercase, and the com-
mand will cause “ABCABC123”’, not “abcABC123”, to be input to your file. If
CASE MIXED, the default, is in effect, lowercase letters are treated as lowercase let-
ters, and not as their uppercase equivalents.

The first RESPECT or IGNORE setting affects how KEDIT searches for string targets
and string column targets. If RESPECT is in effect, strings must match exactly. With

166

Chapter 4. The SET Command

IGNORE, the default, strings containing exactly the same letters, regardless of whether
they are both uppercase, both lowercase, or of different cases, will match. For example,
with IGNORE,

/the/

would locate ““the”, “The”, “THE”, and several other variations of “‘the”. With
RESPECT, only the exactly matching “the” would be located.

IGNORE is useful since it allows you to search for words without worrying about
whether they are or are not capitalized. A word may, for example, be capitalized in
some of its occurrences where it appears as the first word of a sentence, but not in
occurrences in the middle of sentences.

The first RESPECT or IGNORE setting also affects comparisons between uppercase
and lowercase versions of the same letter during execution of the SORT command.

The second RESPECT or IGNORE controls comparisons made by the CHANGE,
SCHANGE, and COUNT commands. With RESPECT, the default, the string specified
on the left side of a CHANGE or SCHANGE, and the single string specified with the
COUNT command, must match exactly for a change to occur; with IGNORE, the
strings can differ in case.

If you ignore case when searching for strings in a change operation, KEDIT tries to
determine the case of the result string placed back into your file in an intelligent man-
ner. For example, with the second RESPECT|IGNORE operand set to IGNORE, the
following command:

CHANGE /the/a/ 1 *

will change the line

The boy saw the girl.
into what you probably intended:
A boy saw a girl.

while blindly substituting lowercase “a” for each occurrence of “the” found by a
case-insensitive search would have given

a boy saw a girl.

KEDIT’s internal rules for handling cases will very often, but not always, give the
“right” result. However, if you want complete control of exactly which strings are
matched and what they are changed into, you will need to set the second CASE
RESPECT|IGNORE operand to RESPECT and specify the case of the strings involved
exactly.

With INTERNATIONAL NOCASE, the default, in effect, KEDIT treats only the 26
letters from “A” to “Z”” and ““a’ to ““z”" as alphabetic and does not treat accented char-
acters as alphabetic. With INTERNATIONAL CASE in effect, KEDIT uses the

SET CASE

167

SET Options

Windows language drivers installed on your system to determine which characters are
considered alphabetic and how to uppercase, lowercase, and compare them.

See also SET INTERNATIONAL
Examples CASE M R
This sets CASE to MIXED RESPECT, leaving the value of the second
RESPECT|IGNORE setting unchanged.
CASE U
This sets CASE UPPER and leaves the RESPECT|IGNORE settings unchanged.
SET CLOCK
Format [Set] CLOCK ON|OFF
KEDIT default: ON
Level: Global
Dialog box: Options SET Command
Save Settings handling: Savable
Description With CLOCK ON, the default, KEDIT displays a time-of-day clock on the status line.
With CLOCK OFF, the clock is not displayed.
See also SET STATUSLINE
SET CMDLINE
Format [Set] CMDline ON|OFF |Top|Bottom
KEDIT default: BOTTOM
Level: View
Dialog box: Options SET Command
Save Settings handling: Savable
Description SET CMDLINE controls the display of KEDIT’s command line.
168 Chapter 4. The SET Command

Set] CMDline Bottom
Set] CMDline ON

The command line is displayed at the bottom of the editing window.

[Set] CMDline Top
The command line is displayed at the top of the editing window.

[Set] CMDline OFF
Turns off the display of KEDIT’s command line. It is normally important to have
the command line available, since many aspects of KEDIT are controlled from the
command line. CMDLINE OFF is provided mainly for use in specialized macros
where this is not an issue. CMDLINE OFF is not recommended for general use.

SET COLMARK

Format

Description

See also

[Set] COLMark nl [n2 n3 ...]
[Set] COLMARK OFF

KEDIT default: OFF
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

SET COLMARK (““column mark’) controls KEDIT’s drawing of vertical lines that
indicate column locations in your file.

With COLMARK OFF, the default, no column markers are drawn. Note that a separate
set of vertical lines, controlled by the SET BOUNDMARK command, may still be
displayed.

Butif you give a list of one or more columns, KEDIT will draw a vertical line to the left
of where each specified column of your file appears in the document window. The
color of the vertical lines is determined by the foreground color of the SET COLOR
COLMARK setting; any background color specified for COLOR COLMARK is
ignored. You can specify a maximum of 20 columns.

SET COLMARK draws lines at fixed column positions in your file. A related com-
mand, SET BOUNDMARK, lets you draw lines whose locations vary depending on
the boundaries of your zone columns, your margin columns, etc.

SET BOUNDMARK

SET COLMARK

169

SET Options

Examples

COLMARK 81

This tells KEDIT to draw a vertical line preceding column 81 of each line of your file.
This can be very useful, since on many displays you can have windows much wider
than 80 columns and you can mistakenly enter more text on a line than you intend to.

COLMARK 10 20 30 40

This gives you vertical lines preceding columns 10, 20, 30, and 40 of your file.

SET COLOR

Format

Description

Color Defaults

[Set] COLOR field foreground [ON background]
[Set] COLOR field DEFAULT

KEDIT default: See the table below
Level: File

Dialog box: Options SET Command
Save Settings handling: Savable

SET COLOR allows you to control the colors and highlighting that KEDIT uses on
your display. You can individually control the color used by KEDIT for each of the dif-
ferent types of information displayed by KEDIT by specifying the type of field
involved and the color to use for it.

Here is a list of the fields whose colors you can control, along with the color KEDIT
uses by default for each field, and a description of each field:

Field Default Description

Arrow blue on white command line arrow

Block white on black text within marked block
BOUNDMark ~gray on white ggﬁigﬁieés{(etc. controlled by SET
Cmdline black on white command line

COLMark aray on white CCOCl)liml\j[l ArnR:aIr{kers controlled by SET
CURRBox gray on white box drawn around current line

Filearea black on white file area

HIghlight black on yellow lines highlighted by SET HIGHLIGHT
Idline blue on white ID line

Msgline red on white message lines

Pending dark red on white pending prefix commands

170

Chapter 4. The SET Command

Available
colors

Specifying
colors

Field Default Description

PRefix dark blue on white | prefix area

Scale dark blue on white | scale line

SHadow dark blue on white | shadow lines

Tabline dark blue on white | tab line

THIghlight black on green highlighted target

TOfeof dark blue on white | top-of-file and end-of-file lines
pop-up toolbar help (no longer has any

TOOLtip black on yellow effect - system tooltip color is used
instead)

You can choose from the following sixteen colors, although not all will display prop-
erly on all adapters. For example, on a gray scale display, the colors would map into
shades of gray.

BLAck

White

BLUe

DARK BLUe
Cyan

DARK Cyan
GRAy

DARK GRay
Green

DARK Green
Magenta
DARK Magenta
Red

DARK Red
Yellow

DARK Yellow

The color to use for a field can be specified in two ways:

[Set] COLOR field foreground [ON background]

Specify the name of the field involved, followed by the foreground color for the
field and, optionally, the background color for the field. If you do not specify a
background color, a background of white is used. You can use an asterisk (““***) for
the field name to indicate that you want to set all fields to the same color.

SET COLOR

171

SET Options

[Set] COLOR field DEFAULT

If you have made changes to the color of a field, you can tell KEDIT for Windows
to switch back to using its default color for the field. A table of KEDIT for Win-
dows’ default colors is given above.

Notes e SET COLOR is only used to control colors used within a document window. It is
not used for scrollbars, dialog boxes, window title bars and borders, etc. These col-
ors are controlled via the Windows Control Panel.

e For BOUNDMARK, COLMARK, and CURRBOX, KEDIT draws lines on the
screen using the foreground color involved, and the background color specified
for these items has no effect.

e When COLORING ON is in effect and you are using KEDIT’s syntax coloring fa-
cility to show keywords, comments, etc. in your text in different colors, SET
ECOLOR determines the colors involved.

e IfMONITOR COLOR and MONITOR MONO, settings supplied for compatibil-
ity with text mode KEDIT, are in effect, SET COLOR works as it does in text mode
KEDIT, and not as described here.

See also SET ECOLOR, SET MONITOR, SET PCOLOR

Examples SET COLOR FILEAREA BLUE ON YELLOW

The file area of the document window will be displayed as blue characters on a yellow
background.

COLOR * DEFAULT

All fields are reset to their default colors.

SET COLORING

Format [Set] COLORING ON|OFF AUTO|parser
KEDIT default: ON AUTO
Level: File
Dialog box: Options SET Command

Save Settings handling: Not savable

Description Use SET COLORING to enable or disable KEDIT’s syntax coloring facility and to
determine which parser KEDIT will use to handle the syntax coloring.

172 Chapter 4. The SET Command

When syntax coloring is active, KEDIT uses different colors to highlight different
types of text. Syntax coloring is controlled by a language-specific parser. The parser
scans the text in your file, decides which characters are parts of keywords, comments,
strings, etc., and displays the text in the appropriate color; the specific colors used are
determined by the SET ECOLOR command.

Syntax coloring parsers for several languages are built into KEDIT, and you can use
KEDIT Language Definition files in connection with the SET PARSER command to
load your own parser definitions.

The first operand to SET COLORING turns syntax coloring ON or OFF for the current
file. When COLORING OFF is in effect, your file is displayed without syntax coloring.
When COLORING ON is in effect, your file is displayed using the colors determined
by the parser that you specify.

The second operand to SET COLORING determines the parser to use for the current
file:

AUTO
With the AUTO operand, KEDIT uses a parser that is determined by the extension
of'the file you are editing. The parser that is used for a given extension is controlled
via the SET AUTOCOLOR command. By default, the following extensions are
handled:

Extension Parser
.BAS BASIC
.FRM BASIC

.C C

.COB COBOL
.COBOL COBOL
.CBL COBOL
.CPP C

.CS CSHARP
.CXX C

.DLG RESOURCE
.FOR FORTRAN
.FORTRAN FORTRAN
.F90 FORTRAN
.F FORTRAN
H C

.HPP C

HXX C

SET COLORING

173

SET Options

Extension Parser
HTM HTML
HTML HTML
NI INI

JAV JAVA
JAVA JAVA
KEX REXX
KML REXX
.REX REXX
KLD KLD
.PAS PASCAL
.DPK PASCAL
.DPR PASCAL
.PRG XBASE
.RC RESOURCE

If no parser is defined for a particular extension, KEDIT uses the NULL parser,
which is a special dummy parser that doesn’t actually apply any syntax coloring.

parser
The parser operand gives the name of the language-specific parser to use. You can
choose one of the parsers that is built into KEDIT or you can use a parser of your
own that you have loaded via the SET PARSER command. Here are the parsers
that are built into KEDIT:

Parser Used With

C C and C++ programs

CSHARP C# programs

REXX KEXX and REXX programs

HTML HTML documents

JAVA Java programs

COBOL COBOL programs

FORTRAN FORTRAN programs

PASCAL Pascal and Delphi programs

KLD the KEDIT Language Definition ﬁle.s .descr.ibed in
Chapter 8, “KEDIT Language Definition Files”

INI INI files

BASIC BASIC programs

174

Chapter 4. The SET Command

Notes

See also

Parser Used With

XBASE xBase programs

RESOURCE the RC and DLG files used in Windows program
development

NULL dummy parser that doesn’t actually apply syntax

coloring

e Itis important to understand that the parsers that handle syntax coloring are not as
complete as the parsers built into a typical compiler. Syntax coloring operates very
quickly, processing text in a fairly simple-minded way, without building symbol
tables, processing header files, or checking for errors in your text. The goal is to be
as efficient as possible, handling all normal situations correctly, but accepting that
in some unusual cases, especially in files that contain syntax errors, text may be
colored incorrectly.

e Most KEDIT users will be able to leave the default of COLORING ON AUTO un-
changed. Files with the extensions used in several common languages will auto-
matically get syntax coloring, and other files will not.

SET AUTOCOLOR, SET ECOLOR, SET PCOLOR, SET PARSER, Chapter 8,
“KEDIT Language Definition Files”

SET CURLINE

Format

Description

[Set] CURLine line

KEDIT default: M (Middle of the document window)
Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

Use SET CURLINE to control the /ine of the document window in which KEDIT dis-
plays the current line.

You can specify the line in three ways: relative to the top of the document window, rela-
tive to the middle of the document window, and relative to the bottom of the document
window.

[Set] CURLine n|+n
This tells KEDIT to use line n of the document window.

SET CURLINE

175

SET Options

See also

Examples

[Set] CURLine M
This tells KEDIT to use the middle line of the document window. In a document
window that is 24 lines high, KEDIT would use line 12. (In a document window
that is 25 lines high, KEDIT would round up and use line 13.)

[Set] CURLine M+n|M-n
This tells KEDIT to use the line » lines above or below the middle line of the docu-
ment window.

[Set] CURLine -n

This tells KEDIT to use the line # lines from the bottom of the document window,
where the last line of the document window is line -1.

SET CURRBOX

CURLINE 2

Display the current line in the second line of the document window.

CURLINE -2

Display the current line in the second line from the bottom of the document window.
CURLINE M+2

Display the current line in the line two lines below the middle of the window.

SET CURRBOX

Format [Set] CURRBox ON|OFF [ON|OFF]
KEDIT default: ON OFF
Level: View
Dialog box: Options SET Command
Save Settings handling: Savable

Description SET CURRBOX determines whether KEDIT draws a box around the current line to
make that line stand out.
The first operand determines whether the box is drawn when the cursor is on the com-
mand line. This is ON by default, since most commands issued from the command line
act relative to the current line, and it is useful to be sure which line this is.

176 Chapter 4. The SET Command

The second operand determines whether the box is drawn when the cursor is in the file
area. This is OFF by default, because the current line is usually of less interest when
you are not working from the command line.

The box’s color is determined by the foreground color of the SET COLOR CURRBOX
setting; any background color specified for COLOR CURRBOX is ignored.

SET CURSORSIZE

Format

Description

Examples

[Set] CURSORSIze vovr vins hovr hins
KEDIT default: 10 25 15 30

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET CURSORSIZE controls the size of KEDIT’s text cursor.

If CURSORTYPE VERTICAL is in effect, or if CURSORTYPE INTERFACE and
INTERFACE CUA are in effect, KEDIT uses a vertical cursor. The first and second
operands for SET CURSORSIZE control the width of this vertical cursor: the first
operand controls the width of the cursor in Overtype Mode, and the second operand
controls the width in Insert Mode.

If CURSORTYPE HORIZONTAL is in effect, or if CURSORTYPE INTERFACE and
INTERFACE CLASSIC are in effect, KEDIT uses a horizontal cursor. The third and
fourth operands for SET CURSORSIZE control the height of this horizontal cursor: the
third operand controls the height of the cursor in Overtype Mode, and the fourth oper-
and controls the height in Insert Mode.

The values used with SET CURSORSIZE are expressed as a percentage of the width of
a character, and can range from 1 to 100. For example, with the default settings in
effect, a vertical cursor in Overtype Mode is 10% of the width of a character in the cur-
rent font.

SET CURSORSIZE 20 40 20 40

This example makes the cursor sizes somewhat thicker than the default settings. For
example, the vertical cursor is 20% of the character width in Overtype Mode instead of
the default of 10%.

SET CURSORSIZE 25 10 30 15

This example makes the Insert Mode cursor thinner than the Overtype Mode cursor,
reversing KEDIT’s normal convention of using a thicker cursor to indicate Insert
Mode.

SET CURSORSIZE 177

SET Options

SET CURSORTYPE

Format

Description

[Set] CURSORType Vertical|Horizontal|Interface

KEDIT default: INTERFACE
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

SET CURSORTYPE determines the shape of KEDIT’s text cursor.

With CURSORTYPE VERTICAL, KEDIT uses a vertical cursor, displayed at the left
of the current character.

With CURSORTYPE HORIZONTAL, KEDIT uses a horizontal cursor, displayed
beneath the current character.

With the default of CURSORTYPE INTERFACE, the shape of KEDIT’s cursor is
dependent on the setting of the INTERFACE option. With INTERFACE CUA, KEDIT
will use a vertical cursor; with INTERFACE CLASSIC, KEDIT will use a horizontal
Cursor.

Most Windows programs use a vertical text cursor, as KEDIT for Windows does by
default when INTERFACE CUA is in effect. This fits well with the way KEDIT marks
blocks when INTERFACE CUA is in effect. With INTERFACE CUA, blocks marked
with the mouse and with CUA-compatible keys extend up to, but do not include, the
current character. Visually, this means that they extend up to, but not beyond, the verti-
cal cursor displayed at the left of the current character.

Text mode KEDIT and other text mode applications use a horizontal text cursor, as
KEDIT for Windows does when INTERFACE CLASSIC is in effect. This also fits well
with the way KEDIT marks blocks when INTERFACE CLASSIC is in effect. With
INTERFACE CLASSIC, stream and box blocks always include the character at the
cursor position. Visually, the block extends to the edge of the horizontal cursor dis-
played under the current character.

SET DEBUGGING

Format [Set] DEBUGGing ON|OFF height tracing
KEDIT default: OFF 15 +R
Level: Global
Dialog box: Options SET Command
178 Chapter 4. The SET Command

Description

See also

Examples

Save Settings handling: Not savable

SET DEBUGGING controls whether the debugging window (a separate window used by the
macro debugger) is on or off, the height of the debugging window, and the default tracing level
for macros executed via the DEBUG command.

When the debugging window is on, trace output is written to the debugging window and interac-
tive trace input is read from a line at the bottom of the debugging window. When the debugging
window is off, the KEXX debugger is inactive and all KEXX TRACE instructions are ignored.

The height of the debugging window is initially set to 15 lines. The debugging window must be
at least 6 lines high and can be no more than 25 lines high. Tracing controls the initial level of
tracing in effect for macros run via the DEBUG command. The default value of +R specifies that
interactive trace will be active and that all clauses and expression results will be traced.

User’s Guide Chapter 10, “Using Macros”, PROFDEBUG initialization option,
DEBUG, KEXX TRACE instruction

DEBUGGING ON 10 +I

Turns on the debugging window, and sets it to occupy ten lines. Also sets the default
level of tracing for macros run via the DEBUG command to +I, which means interac-
tive tracing of all clauses and intermediate and final expression results.

SET DEFEXT

Format

Description

[Set] DEFEXT ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable
With DEFEXT (“default extension’’) ON, the KEDIT, GET, FILE, PUT, and SAVE
commands use the extension of the current fileid if you do not explicitly specify one.

For example, assume you are editing the file SAMPLE1.PAS and you want to save it
under the name SAMPLE2.PAS. With DEFEXT OFF, you must say either

SAVE SAMPLE2.PAS
or

SAVE SAMPLE2.=

SET DEFEXT

179

SET Options

See also

With DEFEXT ON, you can simply say
SAVE SAMPLE2

and the file extension of .PAS will be assumed.

With DEFEXT ON, if you want to specify a fileid that has no extension, you must give
a period after the name of the file. So, with DEFEXT ON,

SAVE SAMPLE2
saves the file as SAMPLE2.PAS, and
SAVE SAMPLE2.

saves the file as SAMPLE?2, with no extension.
Note that SET DEFEXT does not affect how file names are handled when you use the

File Open or File Save As dialog boxes, where you must explicitly supply any desired
extension.

NODEFEXT initialization option

SET DEFPROFILE

Format

Description

[Set] DEFPROFile fileid
KEDIT default: WINPROF.KEX

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET DEFPROFILE (““default profile”) lets you change the name of the profile that
KEDIT runs by default to something other than WINPROF.KEX.

When KEDIT needs to run your profile, because the first file is being added to the ring
at the start of a KEDIT session or because REPROFILE ON is in effect and new files
are being added to the ring later in a KEDIT session, it normally runs the profile speci-
fied via the DEFPROFILE option. which defaults to WINPROF.KEX.

You can override this behavior by using the NOPROFILE option on the KEDIT com-
mand line, in which case no profile is executed, or by using the PROFILE option to
specify a different profile to be executed.

When you change the value of DEFPROFILE, the change stays in effect for the rest of
the KEDIT session and, if you use Options Save Settings, will affect future KEDIT

180

Chapter 4. The SET Command

See also

Examples

sessions. In contrast, the PROFILE and NOPROFILE options only affect the profile
executed while processing the current KEDIT command line, and do not affect the pro-
file executed for additional files that you later begin editing.

You can also specify DEFPROFILE as a KEDIT initialization option on the command
line used to invoke KEDIT. If you do this, the value that you specify will replace the
current value of the DEFPROFILE option and, at the start of a KEDIT session, will
override any DEFPROFILE option saved in the Windows registry previous sessions.

DEFPROFILE initialization option, PROFILE initialization option, NOPROFILE ini-
tialization option, SET REPROFILE

SET DEFPROFILE C:\MYMACROS\MYPROF.KEX

KEDIT will use C:\MYMACROS\MYPROF.KEX as your default profile, instead of
WINPROF.KEX.

SET DEFSORT

Format

Description

[Set] DEFSORT Date|Extension|Name|Path|Size
[Set] DEFSORT OFF

KEDIT default: NAME EXTENSION PATH
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

SET DEFSORT (‘“default sort”) controls the order in which the DIR and
DIRAPPEND commands normally sort the list of files they create.

[Set] DEFSORT Date
Causes DIR and DIRAPPEND to sort the list of files according to the date and time
of each file, with the newest files listed first.

[Set] DEFSORT Extension
Tells DIR and DIRAPPEND to sort the list of files in alphabetical order according
to the file extension.

[Set] DEFSORT Name
Sorts the list of files in alphabetical order according to the file name.

[Set] DEFSORT Path
Sorts the list of files in alphabetical order according to the drive letter and subdi-
rectory of each file.

SET DEFSORT

181

SET Options

See also

[Set] DEFSORT Size
Sorts the list of files according to the size of each file, with the largest files listed
first.

These operands can be combined. For example, the default setting of DEFSORT, which
is NAME EXTENSION PATH, tells DIR and DIRAPPEND to sort directory listings
by name and, if several files have the same name, to sort these by extension and then
path.

With DEFSORT OFF, DIR and DIRAPPEND do not sort directory listings; files are
listed in the order they appear in your disk’s directory.

After using DIR or DIRAPPEND to create a DIR.DIR file sorted according to your
DEFSORT setting, you can use the DIRSORT command to re-sort the DIR.DIR file
into a different order.

DIR, DIRAPPEND, DIRSORT, SET DIRFORMAT

SET DIRFORMAT

Format

Description

[Set] DIRFORMat fname fext year

KEDIT default: 30 10 2

Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

SET DIRFORMAT controls the output format used by KEDIT’s DIR command.

The first two operands control the amount of space set aside in DIR.DIR files for file
names and for file extensions. To accommodate long filenames, you can use the SET
DIRFORMAT command to have KEDIT set aside more columns for file names and for
file extensions (that is, everything after the last period in a fileid). By default, KEDIT
sets aside 30 columns in DIR.DIR files for filenames and 10 columns for file
extensions.

As a special case, you can specify 0 as the value for file extensions. This causes KEDIT
to display the name and extension together as a unit in the columns normally set aside
for the file name.

The third operand of SET DIRFORMAT controls the number of digits used to display
the year in DIR.DIR files. It can be set to either 2 (the default, which yields two-digit
years, such as 96 or 08, in DIR.DIR listings) or 4 (which yields four-digit years, such as
1996 or 2008).

182

Chapter 4. The SET Command

See also

SET DIRFORMAT does not have any effect on a DIR.DIR file that you have already
created; it only affects subsequent DIR commands. So you should use SET
DIRFORMAT before issuing a DIR command whose output you want to affect.

DIR, DIRAPPEND

SET DISPLAY

Format

Description

[Set] DISPlay nl [n2]|*]
KEDIT default: 0 0

Level: View

Dialog box: Options SET Command

Save Settings handling: Not savable

SET DISPLAY causes KEDIT to select for display lines whose selection level falls into
the range n/ through n2. Lines whose selection level falls outside this range are
excluded from the display.

Each line of your file has a number, called its selection level, associated with it. Selec-
tion levels can range from 0 to 255. You can set the selection level of a line by using the
SET SELECT command. The ALL command, the X and S prefix commands, and the
Edit Selective Editing dialog box also affect selection levels of lines in your file.

Initially, all lines in your file have a selection level of 0, and DISPLAY is set to 0 0, so
all lines in your file are selected.

SET DISPLAY nl *
is equivalent to

SET DISPLAY nl 255
and

SET DISPLAY nl

is equivalent to

SET DISPLAY nl nl

With SHADOW ON, the default, excluded lines are represented in your document win-
dow by a shadow line, which indicates the number of excluded lines. With SHADOW
OFF, excluded lines are not represented in your document window at all.

With SCOPE DISPLAY, the default, most KEDIT commands will operate only on lines
that are selected, and will act as if excluded lines are not present in your file. With

SET DISPLAY

183

SET Options

See also

Examples

SCOPE ALL, KEDIT commands operate on excluded lines as well as selected lines,
even though excluded lines are not shown on your screen. A special case is the current
line, which is always displayed with SCOPE ALL, regardless of its selection level.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, SET
SCOPE, SET SELECT, SET SHADOW

SET DISPLAY 5 10

All lines in your file with a selection level of 5 through 10 are shown, while all lines in
your file whose selection level is less than 5 or greater than 10 are excluded.

SET DISPLAY 1 *
All lines in your file whose selection level is greater than zero are selected.
SET DISPLAY 1

This is equivalent to SET DISPLAY 1 1—only lines with a selection level of 1 are
selected.

SET DOCSIZING

Format

Description

[Set] DOCSIZing Standard|EXTENded [n]
KEDIT default: EXTENDED 80

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET DOCSIZING controls the method used to determine the size of new non-maxi-
mized document windows, and of existing document windows that are rearranged via
the Window Cascade menu item.

When DOCSIZING STANDARD is in effect, KEDIT lets window handling code built
into Windows determine the size. Each window is given a standard default size that is
some fixed percentage of the size of the frame window. With DOCSIZING STAN-
DARD, SET DOCSIZING’s second operand has no effect.

When DOCSIZING EXTENDED is in effect, the window sizes are controlled by
KEDIT. The idea is that rather than making all windows the same size, KEDIT tries to
make each window large enough to hold as much useful information as possible.
KEDIT makes each new document window extend to the bottom of the frame window,
and tries to make each window wide enough to display n columns of text, where n
defaults to 80 and is the second operand specified for SET DOCSIZING.

184

Chapter 4. The SET Command

DOCSIZING EXTENDED makes a difference only when the frame window is at least
wide enough for the width of one of the document windows that you will create or cas-
cade, plus enough extra room to allow four cascaded document windows, each slightly
offset from the others, to fit. In a typical case, you will have document windows 80
characters wide and the extra room to allow for cascading will be about 10 characters
wide, so the frame window needs to be wide enough for approximately 90 columns of
text. If the frame window is narrower than this, KEDIT uses the standard document
window sizing, as if DOCSIZING STANDARD had been in effect.

Note that for DOCSIZING EXTENDED to have an effect on the initial document win-
dow created at the start of a KEDIT session, it must have been set during a previous
KEDIT session and saved to the Windows registry via Options Save Settings.

SET DRAG

Format

Description

[Set] DRAG Box|Line|Stream [PERSISTent|SELection]
[Anchor |Word] [RESET]

[Set] DRAG CMDline [SELection] [Anchor|Word] [RESET]

[Set] DRAG DRAGDROP

[Set] DRAG NONE

KEDIT default: NONE
Level: Global
Dialog box: None

Save Settings handling: Not savable

SET DRAG, a specialized command used only in the macros that process mouse clicks,
controls what will happen when you drag the mouse after clicking a mouse button.

Set] DRAG BoxiLinelStream
Set] DRAG CMDline

To mark a block when you drag the mouse, KEDIT’s internal mouse handling rou-
tines repeatedly issue MARK commands. This form of SET DRAG determines the
operands used for these MARK commands. You can mark a BOX, LINE, or
STREAM block or, if INTERFACE CUA is in effect, you can mark a command
line selection.

PERSISTent|SELection
Determines whether dragging the mouse marks persistent blocks or selections. For
LINE, STREAM, and BOX blocks, PERSISTENT is the default and SELEC-
TION may only be specified when INTERFACE CUA is in effect. For command
line selections, which are available only when INTERFACE CUA is in effect, SE-
LECTION is the default and is the only legal choice.

SET DRAG

185

SET Options

See also

Anchor |Word
Determines whether the ANCHOR operand or the WORD operand (which is valid
only for stream blocks and command line selections) is used in the MARK com-
mands issued while dragging to mark a block. All blocks marked by dragging the
mouse are anchored blocks; ANCHOR is the default for SET DRAG if neither
ANCHOR nor WORD is specified explicitly. See the MARK command for dis-
cussion of these operands.

RESET
If RESET is specified, the first MARK command issued when the mouse is
dragged will include the RESET operand, unmarking any existing block. Other-
wise, any existing block in the current file will be extended from its anchor point as
you drag with the mouse.

[Set] DRAG DRAGDROP
This form of SET DRAG specifies that dragging the mouse should invoke a
drag-and-drop operation, either moving or copying the currently-marked block to
the location at which the mouse button is released. If the Ctrl key is down at the end
of the drag operation, the block is copied; otherwise it is moved.

[Set] DRAG NONE
Specifies that no block mark, move, or copy will occur when the mouse is dragged.

EXTEND, MARK

SET ECOLOR

Format

Description

[Set] ECOLOR a foreground [ON background]
[Set] ECOLOR a DEFAULT

KEDIT default: See the table below
Level: File
Dialog box: Options SET Command

Save Settings handling: Savable

SET ECOLOR (““emphasis color’’) controls the colors used by KEDIT’s syntax color-
ing facility.

When syntax coloring, enabled via the SET COLORING command, is active, KEDIT
uses different colors to highlight different types of text. KEDIT includes a simple
parser for each language with syntax coloring support. The parser scans the text in your
file, decides which characters are parts of keywords, comments, strings, etc. and based
on this decides which of 35 emphasis types, referred to by the letters A through Z and
the numbers 1 through 9, to use for those characters. For example, numbers used in
most programming languages are given emphasis type C, which is by default shown in
dark red.

186

Chapter 4. The SET Command

Here are the emphasis colors that KEDIT uses by default when MONITOR WIN-

dark magenta

level 5 paren, matchable keyword

DOWS is in effect:
Letter Color Language Element
A dark green comments
B dark cyan strings
C dark red numbers
D blue keywords
E dark red labels
F dark red preprocessor keywords
G red header lines
H black extra right paren, matchable keyword
I blue level 1 paren
J blue level 1 matchable keywords
K dark red level 1 matchable preprocessor keywords
L dark green level 2 paren, matchable keyword
M red level 3 paren, matchable keyword
N dark cyan level 4 paren, matchable keyword
o
P
Q
R
S
T
U
V.

SET Options

gray level 6 paren, matchable keyword
dark blue level 7 paren, matchable keyword
magenta level 8 or higher paren, matchable keyword
magenta incomplete strings
blue HTML markup tags
red HTML character/entity references
—7 black not currently used

1 red alternate keyword color 1

2 dark blue alternate keyword color 2

3 dark red alternate keyword color 3

4 dark magenta alternate keyword color 4

5 dark green alternate keyword color 5

6 dark cyan alternate keyword color 6

7 red alternate keyword color 7

8 black alternate keyword color 8

9 blue alternate keyword color 9

SET ECOLOR

187

Notes

See also

Examples

[Set] ECOLOR a foreground [ON background]
Specify the emphasis type involved (in the range A—Z or 1—9), followed by the
foreground color to use and, optionally, the background color. If you do not spec-
ify a background color, a background of white is used. You can use an asterisk
(““*”) instead of a letter as the emphasis type to indicate that you want all emphasis
types to use the same color. The foreground and background colors that you can
choose from are the same as the colors used with the SET COLOR command.

[Set] ECOLOR a DEFAULT
If you have made changes to an emphasis color, you can tell KEDIT for Windows
to switch back to using the default color. A table of KEDIT for Windows’ default
emphasis colors is given above.

e Even when syntax coloring is active, some of the text in your file may not be given
an emphasis color. For example, most parsers do not give an emphasis color to or-
dinary variables. KEDIT uses the color controlled by SET COLOR FILEAREA,
which is normally black on white, for such text.

e For text that is part of a block or part of a highlighted target, syntax coloring is
overridden. KEDIT instead uses the colors determined by SET COLOR BLOCK
(normally white on black) or SET COLOR THIGHLIGHT (normally black on
green).

e For text that is highlighted because you have used the SET HIGHLIGHT com-
mand or the TAG command, and for which syntax coloring also applies, KEDIT
attempts to merge the two colors. KEDIT uses the background color from the SET
COLOR HIGHLIGHT setting (this is normally yellow), and the foreground color
from the appropriate ECOLOR setting. You need to take this into account when
you decide on the colors you will use with SET COLOR HIGHLIGHT and SET
ECOLOR, since not all combinations of foreground and background colors work
well together.

SET AUTOCOLOR, SET COLOR, SET COLORING, SET PARSER, SET PCOLOR,
Chapter 8, “KEDIT Language Definition Files”

ECOLOR A RED
Emphasis type A (used for comments) is displayed in red.
ECOLOR * DEFAULT

All emphasis colors are reset to their default values.

188

Chapter 4. The SET Command

SET EOFIN

Format

Description

See also

[Set] EOFIN ALLOW|PREVENT
KEDIT default: ALLOW

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET EOFIN controls how KEDIT handles end-of-file characters (character code 26)
when reading in files as you begin to edit them and during execution of the GET
command.

End-of-file characters are sometimes used to signal that the end of all useful data in a
file has been reached. Many programs (such as the DOS TYPE command) will stop
processing a file when an end-of-file character is encountered. With EOFIN
PREVENT, KEDIT also behaves this way: when an end-of-file character is encoun-
tered, KEDIT assumes that it has reached the end of the useful data in the file and stops
processing it.

With EOFIN ALLOW, the default, KEDIT does not stop processing a file when it
encounters an end-of-file character, but instead processes the entire file and allows
end-of-file characters as data in your file.

Existing files sometimes have one or more end-of-file characters at the very end of the
file, because some older programs require it. So KEDIT always ignores any end-of-file
characters at the very end of an input file, regardless of the setting of EOFIN.

User’s Guide Chapter 12, “File Processing”, SET EOFOUT, SET EOLIN

SET EOFOUT

Format

Description

[Set] EOFOUT EOL |EOLEOF | EOF | NONE
KEDIT default: EOL

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET EOFOUT controls the sequence of characters that KEDIT adds to the last line of
files written to disk by the FILE, SAVE, and PUT commands, by the autosave facility,
and by the File Save and related menu items.

SET EOFOUT

189

SET Options

See also

[Set] EOFOUT EOL
Tells KEDIT to add the same end-of-line sequence, controlled by SET EOLOUT
and normally a carriage return-linefeed pair, to the last line of the file as it adds to
every other line of the file. This is the default.

[Set] EOFOUT EOLEOF
Causes KEDIT to add the end-of-line sequence defined by SET EOLOUT fol-
lowed by an end-of-file character (character code 26) to the last line of a file. This
was the default behavior in text mode KEDIT 4.0 and earlier.

[Set] EOFOUT EOF
Tells KEDIT to add only an end-of-file character, with no end-of-line sequence, to
the last line of the file.

[Set] EOFOUT NONE
Tells KEDIT not to add anything to the last line of the file.

User’s Guide Chapter 12, “File Processing”, SET EOFIN, SET EOLOUT

SET EOLIN

Format

Description

[Set] EOLIN CRORLF |LF |CR|NONE
KEDIT default: CRORLF

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET EOLIN controls how KEDIT determines where each line ends when reading files
as you begin to edit them and during execution of the GET command.

Most PC files use a carriage return-linefeed sequence (character codes 13 and 10) to
mark the end of each line. Some files, especially those created under UNIX, have only a
linefeed at the end of each line, and a few files have only a carriage return.

[Set] EOLIN CRORLF
With EOLIN CRORLF (“CR or LF”"), the default, carriage returns, linefeeds, and
carriage return-linefeed pairs all signal the end of a line to KEDIT. Most text files
are handled correctly with EOLIN CRORLF.

[Set] EOLIN CR
Carriage returns and carriage return-linefeed pairs signal the end of a line, but line-
feed characters do not. This allows you to edit files that use linefeed characters as
data within a line, instead of as an end-of-line signal.

190

Chapter 4. The SET Command

See also

[Set] EOLIN LF
Linefeeds and carriage return-linefeed pairs signal the end of a line, but carriage
return characters do not, so you can edit files that use carriage return characters as
data.

[Set] EOLIN NONE
KEDIT does not look for an explicit end-of-line sequence. Instead, KEDIT as-
sumes that all lines have a fixed length, equal to the value of the LRECL setting,
and KEDIT reads in exactly that many bytes per line. EOLIN NONE is useful in
specialized situations and is discussed further in User’s Guide Chapter 12, “File
Processing”.

User’s Guide Chapter 12, “File Processing”, SET EOFIN, SET EOLOUT

SET EOLOUT

Format

Description

[Set] EOLOUT CRLF|LF |CR|NONE
KEDIT default: CRLF

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET EOLOUT controls which characters KEDIT uses to mark the end of each line
written to disk by the FILE, SAVE, and PUT commands, by the autosave facility, and
by the File Save and related menu items.

[Set] EOLOUT CRLF
This is the default and causes KEDIT to use a carriage return-linefeed (ASCII
codes 13 and 10) to mark the end of each line. This is the standard end-of-line se-
quence for text files on PC systems.

[Set] EOLOUT LF
KEDIT adds a linefeed character to each line. This is the standard way of ending
lines on UNIX systems.

[Set] EOLOUT CR
KEDIT adds a carriage return character to each line.

[Set] EOLOUT NONE
Tells KEDIT not to write any explicit end-of-line sequence after each line. This is
useful in specialized situations and is discussed in User’s Guide Chapter 12, “File
Processing”.

SET EOLOUT

191

SET Options

Depending on the value of EOFOUT, a special end-of-line sequence may be written
after the last line of the file; see SET EOFOUT for a discussion of the options involved.

See also User’s Guide Chapter 12, “File Processing”, SET EOFOUT, SET EOLIN
SET FCASE
Format [Set] FCASE ASIS|LOWER
KEDIT default: ASIS
Level: Global
Dialog box: Options SET Command
Save Settings handling: Savable
Description With the default of FCASE ASIS (““as is””), KEDIT displays filenames in the same case

(upper, lower, or mixed) that the names have on disk, and creates new files using
exactly the combination of upper- and lowercase characters that you specify. An excep-
tion comes within DIR.DIR files, where names that are in lowercase or mixed case are
displayed as is, but names that are in uppercase are displayed in lowercase, since this is
generally easier to read.

With FCASE LOWER, KEDIT displays all filenames in lowercase in DIR.DIR files
and on the ID line, and in uppercase on the title bar. New files are created with lower-
case names, regardless of the case in which you enter the name.

SET FILEID, FMODE, FPATH, FNAME, FEXT, FTYPE

Format [Set] FILEId d:path\name.ext
[Set] FMode d[:]
[Set] FPath path
[Set] FName name
[Set] FExt ext
[Set] FType ext
KEDIT default: Based on fileid used to begin editing the file
Level: File
Dialog box: Options SET Command (SET FILEID only)
Save Settings handling: Not savable
192 Chapter 4. The SET Command

Description

Shortcuts

UNC names

SET FILEID allows you to change the fileid of the file you are currently editing. The
fileid is displayed in the title bar of the document window and, unless you override it, is
the fileid under which your file will eventually be written to disk by the FILE or SAVE
commands, or by menu items like File Save.

Fileids are made up of four components: the drive specifier, the directory path, the file
name, and the file extension. SET FILEID lets you control all of these. Related com-
mands let you control the individual components: SET FMODE sets the drive specifier,
SET FPATH sets the directory path, SET FNAME sets the file name, and SET FEXT
and the equivalent SET FTYPE set the file extension.

If you omit the drive specifier from the operand for SET FILEID, KEDIT uses the drive
letter of the current fileid. If you omit the directory path, the directory path of the cur-
rent fileid will be used, unless the drive specifier is changing, in which case KEDIT
uses the current directory of the specified drive.

For the drive specifier, you can give a specific drive letter or you can use a period (**.””)
to indicate that the current default system drive letter should be used.

For the directory path, you can give a specific directory path, or you can use the same
types of relative path specifications as are accepted in Command Prompt windows.

For the file name, give the name to use. You cannot omit the file name from the fileid
specification.

For the file extension, you can give a specific file extension. If you omit the file exten-
sion, what happens depends on the setting of DEFEXT. If DEFEXT OFF is in effect,
the new fileid will have no extension. If DEFEXT ON is in effect, and the new fileid
specification does not end in a period, the current file extension will be used. If
DEFEXT ON is in effect but the new fileid specification does end in a period, the new
fileid will have no extension. (FEXT NONE or FTYPE NONE is handled as a special
case, providing another way to assign a fileid with no extension.)

You can also use an equal sign (“="") for any of the four components of the fileid to
specify that the corresponding component of the existing fileid should be used without
change.

You can optionally enclose fileid operands in double quotes, and you must do so for
fileids that contain blanks.

You can also specify fileids using UNC (Universal Naming Convention) names. This is
a naming convention, often used with files stored on a network, in which files are
referred to not by a drive letter, path, and filename, but by a server name, the name of a
shared resource on the server, and then a path and filename. UNC names always begin
with a pair of backslashes.

\\SERVER2\COMMON\ SAMPLES\TEST.FIL

In this example, SERVER?2 is the server name, COMMON is a shared resource on the
server, SAMPLES is a subdirectory, and TEST.FIL is a file name and extension.

SET FILEID, FMODE, FPATH, FNAME, FEXT, FTYPE 193

SET Options

Examples

Each of the following examples assumes that the current fileid is C:\PROJ\PROG.TXT,
and that the current drive and directory is D:\WORK.

FILEID DEF.XYZ

Changes the fileid to C:\PRONDEF.XYZ.
FILEID SUB\DEF.XYZ

Changes the fileid to C:\PROJ\SUB\DEF.XYZ.
FILEID "SUB\TESTFILE.DATA"

Changes the fileid to C:\PRONSUB\TESTFILE.DATA. (Double-quotes are required
with fileids that contain blanks, but are also allowed with fileids that don't contain
blanks.)

"D:My file.txt"

Changes the fileid to D:\WORK\My file.txt. No path specification was given but the
drive specifier changed, so the current directory of the new drive is used. Fileid specifi-
cations that include blanks must be enclosed in double quotes.

FILEID =.TMP
Changes the fileid to C:\PROJ\PROG.TMP.
FILEID \NEW\=

This changes the fileid to C:\NEW\PROG if DEFEXT OFF is in effect, and to
C:\NEW\PROG.TXT if DEFEXT ON is in effect.

FMODE .

Changes the drive to the current default drive, which is D:, and since the drive is chang-
ing, the current directory of the new drive is used, yielding D:\WORK\PROG.TXT.

FNAME FRED
Changes the fileid to C:\PROJNFRED.TXT.
FPATH \KEEP

Changes the fileid to C:\KEEP\PROJ.TXT.

194

Chapter 4. The SET Command

SET FORMAT

Format

Description

Example

[Set] FORMAT Justify|NOJustify [BLANK |EXTENded
[SIngle|DOuble]]

KEDIT default: NOJUSTIFY BLANK DOUBLE
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

SET FORMAT affects how paragraphs are reformatted when you use the FLOW com-
mand or press Shift+Ctrl+F (or, with INTERFACE CLASSIC in effect, press Ctrl+F).
It also affects what KEDIT considers a paragraph when you use PARAGRAPH targets.

JUSTIFY or NOJUSTIFY controls whether paragraphs are justified within the margins
or are left with ragged right margins when they are reformatted.

BLANK or EXTENDED controls what KEDIT considers to be a paragraph when you
reformat text or when you use PARAGRAPH as a target. With BLANK, the default,
paragraphs are separated by completely blank lines. With EXTENDED, blank lines can
still separate paragraphs, but the start of a new paragraph is also recognized if the left
margin is in column 1 and a line is encountered that starts with a blank, a tab character, a
period (““.*“), a less than (*“<”), a greater than (“>*), or a colon (“:””). This allows para-
graphs that are indented but not separated by blank lines. It also treats lines that start
with HTML tags, with the ““dot” commands used with some text formatting programs,
or with the greater than (‘>") that is often used to quote text in e-mail messages, as

marking the start of a paragraph.

SINGLE or DOUBLE controls the number of blanks placed after a sentence during
paragraph reformatting. With DOUBLE, the default, KEDIT will insert two spaces
after each sentence. (Unfortunately, KEDIT is sometimes wrong about when it has
reached the end of a sentence, because it can be confused by certain acronyms, abbrevi-
ations, and short words beginning with a capital letter.) If SINGLE is in effect, KEDIT
will only insert one space after a sentence. (Note that in either case, additional spaces
may be added when FORMAT JUSTIFY is in effect and KEDIT must add extra spaces
to move text into the right margin column.)

FORMAT JUSTIFY EXTENDED

This tells KEDIT that you want paragraphs to be justified when you format them, and
that paragraph boundaries may be determined by lines starting with a period, colon,
less than, greater than, blank, or tab.

SET FORMAT

195

SET Options

SET HELPDIR

Format

Description

Notes

[Set] HELPDIR directory
KEDIT default: *PROGRAM

Level: Global

Dialog box: None

Save Settings handling: Savable

SET HELPDIR is a specialized command needed only by users who cannot access the
KEDIT Help file because it is stored on a network device.

KEDIT's Help file, KEDITW.CHM, is in HTML Help format and is normally installed
in the KEDIT program directory. Because of a Microsoft security fix issued in 2005,
HTML Help files stored on a network drive don't work without special changes to the
registry. If your copy of KEDIT is installed on a network drive, you can copy
KEDITW.CHM to a local directory and use SET HELPDIR to tell KEDIT where it is.

The default value of HELPDIR is *PROGRAM, which means that KEDIT will look
for KEDITW.CHM in the KEDIT program directory and nowhere else.

If HELPDIR is set to the name of a directory, for example C:\MyKeditHelp, KEDIT
will look for KEDITW.CHM in that directory. If KEDITW.CHM is not found there,
KEDIT will then look for it in the KEDIT program directory.

e SETHELPDIR is most often issued from within the WINPROF.KEX macro that is
automatically executed when KEDIT starts up.

e The KEDIT Setup program does not look for or update copies of KEDITW.CHM
that are stored outside of the KEDIT program directory. So if you copy the Help
file into a different directory and use SET HELPDIR to access it, you will need to
recopy it if you later install an updated version of KEDIT that has a newer version
of the Help file.

SET HEX

Format

[Set] HEX ON|OFF
KEDIT default: OFF
Level: View

Dialog box: Options SET Command

196

Chapter 4. The SET Command

Description

Save Settings handling: Savable

When you set HEX ON, you can enter hexadecimal and decimal codes for strings used
in target searches and with a number of KEDIT commands.

With HEX ON, any string used in a string target that starts with X’ (that is, “X’, in
uppercase or lowercase, followed by a single quote) is assumed to contain the character
codes in hexadecimal for the characters involved. Strings that start with D’ (that is,
“D”, in uppercase or lowercase, followed by a single quote) are assumed to contain the
character codes in decimal for the characters involved. Both types of strings must also
end with a single quote. Decimal numbers must be in the range 0 to 255 and are sepa-
rated by blanks. Hexadecimal numbers must be in the range 00 to FF; each character is
represented by exactly two hexadecimal digits. Pairs of hexadecimal digits may or may
not be separated by blanks.

For example, the character codes for <17, 2, 3", and “4” are 49, 50, 51, and 52 in
decimal and 31, 32, 33, and 34 in hexadecimal. With HEX ON, the following string
targets are equivalent:

/1234/

/d'49 50 51 52'/
/x'31323334"'/
/x'31 32 33 34'/

In addition to string targets, you can take advantage of HEX ON for the string operands
of CHANGE, COUNT, and SCHANGE, and for the text operands of CAPPEND,
CINSERT, COVERLAY, CREPLACE, FILLBOX, FIND, FINDUP, INPUT, NFIND,
NFINDUP, OVERLAY, PRINT, PUT, REPLACE, and TEXT. It also affects strings
entered into the Edit Find, Edit Replace, and Edit Selective Editing boxes.

SET HEXDISPLAY

Format

Description

[Set] HEXDISPlay ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

With HEXDISPLAY ON, KEDIT will display on the status line the hexadecimal and
decimal values of the character code for the character at which the cursor is located.

For example, if the cursor is positioned at a lowercase “e”’, whose character code is 65
in hexadecimal and 101 in decimal, KEDIT will display, in the status line:

SET HEXDISPLAY 197

SET Options

See also

'e'=65/101

SET STATUSLINE

SET HIGHLIGHT

Format

Description

See also

[Set] HIGHlight OFF|ALTered|TAGged|SELect n [m]
KEDIT default: OFF

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

SET HIGHLIGHT controls KEDIT’s highlighting facility, determining which types of
lines are highlighted on your display.

[Set] HIGHlight OFF
This is the default, and it means that no lines are highlighted.

[Set] HIGHlight ALTered
Tells KEDIT to highlight all lines in your file that have been altered during the cur-
rent editing session. (KEDIT determines whether a line has been altered by look-
ing at the flag bits associated with each line to see if the new bit or change bit are
set. See SET LINEFLAG for a discussion of these flag bits.)

[Set] HIGHlight TAGged
Tells KEDIT to highlight all lines whose tag bits are set. Tag bits are most often set
via the TAG command, which automatically puts HHGHLIGHT TAGGED into ef-
fect whenever it is issued.

[Set] HIGHlight SELect n [m]
Highlights all lines with a given selection level, or whose selection levels fall in a
specified range.

SET COLOR HIGHLIGHT determines the colors KEDIT uses to display highlighted
lines. With highlighted text for which syntax coloring also applies, KEDIT attempts to
merge the two colors. KEDIT uses the background color from the SET COLOR HIGH-
LIGHT setting, and the foreground color from the appropriate ECOLOR setting. You
need to take this into account when you decide on the colors you will use with SET
COLOR HIGHLIGHT and SET ECOLOR, since not all combinations of foreground
and background colors work well together.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, TAG, SET
ECOLOR, SET LINEFLAG

198

Chapter 4. The SET Command

SET IDLINE

Format [Set] IDline ON|OFF
KEDIT default: OFF
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description Use SET IDLINE to tell KEDIT whether to display the ID line.

The ID line is an optional line of information displayed at the top of the file area in a
document window. It has information about the fileid, your position in the file, the size
of'the file, etc. The ID line is usually off in KEDIT for Windows because the informa-
tion contained there is normally displayed elsewhere: the fileid is on the title bar, and
the current position in the file, the size of the file, and the number of alterations to the
file are on the status line. SET IDLINE is provided mainly for compatibility with the
text mode version of KEDIT.

SET IMPMACRO

Format [Set] IMPMACro ON|OFF
KEDIT default: ON
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description You can set IMPMACRO (“implied macro””) ON (the default) or OFF. With
IMPMACRO ON, when you enter a command that KEDIT does not recognize, KEDIT
checks to see if what you entered is instead the name of a macro, and if so, KEDIT runs
the macro. With IMPMACRO OFF, when you enter a command that KEDIT does not
recognize, KEDIT issues an error message.

The advantage of IMPMACRO ON is that you can invoke most KEDIT macros
directly, without having to issue the MACRO command, and can treat the macros as if
they were built-in KEDIT commands. The disadvantage of IMPMACRO ON is that,
when you really do make a typing error and enter an invalid command, there will be a
slight delay while KEDIT checks your disk to see if the invalid command is really a
macro.

SET Options

SET IMPMACRO 199

See also

IMPMACRO ON only helps you when the macro name involved consists entirely of
alphabetic characters. If you want to invoke a macro whose name contains numeric
characters, or you want to give a drive or path specification for a macro name, you must
use the MACRO command to run the macro. For example, even with IMPMACRO
ON,

MACRO DELS5

would run the macro DELS5, while

DELS5

would instead delete five lines from your file. And
MACRO C:TEST

would run the macro TEST.KEX on your C: drive, while
C:TEST

would not run your macro and is, in fact, a valid CHANGE command.

MACRO

SET INISAVE

Format [Set] INISAVE STATE|NOSTATE [HISTory|NOHISTory]
KEDIT default: STATE HISTORY
Level: Global
Dialog box: None
Save Settings handling: Not savable

Description SET INISAVE does the same thing as SET REGSAVE. See the discussion of SET
REGSAVE for a full description of the operands involved.
(KEDIT for Windows now stores its configuration information in the Windows regis-
try, but KEDIT for Windows 1.5 and earlier stored this information in the
KEDITW.INI file. So SET REGSAVE is the newer name for this option, but for com-
patibility reasons SET INISAVE remains available.)

See also NOREQG initialization option, REGUTIL, SET REGSAVE

200 Chapter 4. The SET Command

SET INITIALDIR

Format [Set] INITIALDIR PRESERVE |RECALL [PRESERVE |RECALL|FIRSTFile]
KEDIT default: PRESERVE PRESERVE
Level: Global
Dialog box: Options SET Command

Save Settings handling: Automatically saved

Description SET INITIALDIR controls the current directory put into effect at the start of a KEDIT
session.

The current directory is used within KEDIT for several purposes. For example, when
you use File New to begin editing an untitled file, the current directory is used as the
path specification for that file. When you use the DOS command to shell to an MS
DOS command session, that session inherits KEDIT’s current directory. And when
you issue the KEDIT command and do not give a path specification for the file you
want to edit, KEDIT begins its search in the current directory.

When KEDIT begins execution, the current directory is normally the Windows
Documents or My Documents folder. If you invoke KEDIT via a desktop shortcut, you
can override this by specifying a different “Start In” directory in the shortcut’s Proper-
ties dialog box. With the default setting of INITIALDIR PRESERVE PRESERVE,
KEDIT leaves this current directory in effect.

It is sometimes more useful to have the directory of the files that you are actually work-
ing with as the current directory, rather than the directory from which KEDIT was
loaded. So, SET INITIALDIR lets you make the directory of the first file edited at the
start of a KEDIT session become the current directory. But in the case where you dou-
ble-click on the KEDIT for Windows icon to run KEDIT, there is no initial fileid speci-
fied and KEDIT starts out by editing the file UNTITLED.I. In this situation, SET
INITIALDIR provides a way to set the current directory to whatever was the current
directory the last time you ran KEDIT.

The first operand of SET INITIALDIR determines what the current directory will be if
no fileid is used to start a KEDIT session. There are two choices:

PRESERVE
This is the default; KEDIT stays with the directory already put into effect by Win-
dows.

RECALL
KEDIT switches to whatever directory was the current directory at the end of the
last KEDIT session.

SET Options

The second operand of SET INITIALDIR determines what the current directory will be
if a fileid is used to start a KEDIT session. This happens when you explicitly invoke
KEDIT by specifying a fileid. It also happens if, in the Windows File Manager or

SET INITIALDIR 201

Notes

See also

Examples

Explorer, you drag-and-drop a file on KEDIT’s icon or double-click on a file whose
filetype has been associated with KEDIT. There are three choices for the second
operand:

PRESERVE
This is the default; KEDIT stays with the directory already put into effect by Win-
dows.

RECALL
KEDIT switches to whatever directory was the current directory at the end of the
last KEDIT session.

FIRSTFILE
KEDIT switches to the directory of the first file edited.

o KEDIT determines the initial current directory while it is initializing, before you
have a chance to enter any commands and before any macros, even your profile
macro, are executed. So, by the time you issue the SET INITIALDIR command it
has no effect at all on the current KEDIT session. The purpose of SET
INITIALDIR is to determine the initial current directory for future KEDIT ses-
sions, and to have any effect the value of INITIALDIR must be saved in the Win-
dows registry. Therefore, whenever you issue the SET INITIALDIR command,
the registry is automatically updated to reflect its new value; you do not need to
save it by using Options Save Settings or by using the Save Setting button of the
SET Command dialog box.

e SETINITIALDIR only affects how KEDIT determines the current directory at the
start of a KEDIT session. After KEDIT has determined the initial current directory,
KEDIT makes no further automatic changes to your current directory, although
you can change the current directory yourself by using the File Directory dialog
box or the CHDIR and CHDRIVE commands.

e IfKEDIT is unable to switch to the directory specified by SET INITIALDIR (for
example, if the directory in effect at the end of the last KEDIT session no longer
exists), KEDIT will leave the current directory unchanged.

CHDIR, CHDRIVE

SET INITIALDIR RECALL FIRSTFILE

If no fileid is specified in the command string used to start KEDIT, KEDIT switches to
the current directory in effect at the end of the last KEDIT session. If a fileid is speci-
fied, KEDIT switches to the directory of that file.

SET INITIALDIR RECALL RECALL

KEDIT will always switch to whatever was the current directory at the end of the last
KEDIT session.

202

Chapter 4. The SET Command

SET INITIALDIR PRESERVE PRESERVE

This is the default; KEDIT will leave unchanged the current directory put into effect by
Windows when KEDIT is loaded.

SET INITIALDOCSIZE

Format [Set] INITIALDOCsize MAXimized|NORMal |RECALL

KEDIT default: MAXIMIZED
Level: Global
Dialog box: Options SET Command

Save Settings handling: Automatically saved

Description SET INITIALDOCSIZE determines whether the initial document window created
when KEDIT starts up is maximized within KEDIT’s frame window or is in the
non-maximized state sometimes referred to as the ““normal” or “‘restored’ state.

INITIALDOCSIZE MAXIMIZED
This is the default. KEDIT starts with a maximized document window.

INITIALDOCSIZE NORMAL
KEDIT starts with a “normal” document window, neither minimized nor maxi-
mized, usually occupying only part of the area of the frame window.

INITIALDOCSIZE RECALL
KEDIT starts with the state, maximized or non-maximized, that was in effect for
the last document window closed in your last KEDIT session.

Notes o KEDIT determines the initial document window size while it is initializing, before
you have a chance to enter any commands and before any macros, even your pro-
file macro, are executed. So, by the time you issue the SET INITIALDOCSIZE
command it has no effect at all on the current KEDIT session. The purpose of SET
INITIALDOCSIZE is to determine the initial document window size for future
KEDIT sessions, and to have any effect the value of INITIALDOCSIZE must be
saved in the Windows registry. Therefore, whenever you issue the SET
INITIALDOCSIZE command, the registry is automatically updated to reflect its
new value; you do not need to save it by using Options Save Settings or by using
the Save Setting button of the SET Command dialog box.

e SET INITIALDOCSIZE only affects how KEDIT determines the state of the ini-
tial document window. When additional document windows are created during a
KEDIT session, the newly added windows are maximized if the current document
window is maximized and otherwise they are non-maximized. If, in the course of a
KEDIT session, you close all of your document windows and then create a new
document window, that window will be maximized or non-maximized depending
on the state of the last window closed.

SET Options

SET INITIALDOCSIZE 203

See also SET DOCSIZING, SET INITTALFRAMESIZE

SET INITIALFRAMESIZE

Format [Set] INITIALFRAMEsize MAXimized|NORMal |RECALL

KEDIT default: RECALL
Level: Global
Dialog box: Options SET Command

Save Settings handling: Automatically saved

Description SET INITIALFRAMESIZE determines whether KEDIT’s frame window is maxi-
mized or is in the non-maximized state sometimes referred to as the ““normal” or “‘re-
stored”’ state.

INITIALFRAMESIZE MAXIMIZED
KEDIT starts with a maximized frame window.

INITIALFRAMESIZE NORMAL
KEDIT starts with a “normal” frame window, neither minimized nor maximized,
usually occupying only part of your screen.

INITIALFRAMESIZE RECALL
KEDIT starts with the frame window state, maximized or non-maximized, that
was in effect at the end of your last KEDIT session.

Notes e KEDIT determines the initial frame window size while it is initializing, before you
have a chance to enter any commands and before any macros, even your profile
macro, are executed. So, by the time you issue the SET INITTALFRAMESIZE
command it has no effect at all on the current KEDIT session. The purpose of SET
INITIALFRAMESIZE is to determine the initial frame window size for future
KEDIT sessions, and to have any effect the value of INITTALFRAMESIZE must
be saved in the Windows registry. Therefore, whenever you issue the SET
INITIALFRAMESIZE command, the registry is automatically updated to reflect
its new value; you do not need to save it by using Options Save Settings or by using
the Save Setting button of the SET Command dialog box.

e To override the INITTALFRAMESIZE value for a particular KEDIT session, you

can specify the FRAMESIZE initialization option on the command line used to in-
voke KEDIT.

See also FRAMESIZE initialization option, SET INITIALDOCSIZE

204 Chapter 4. The SET Command

SET INITIALINSERT

Format [Set] INITIALINSert ON|OFF
KEDIT default: OFF
Level: Global
Dialog box: Options SET Command

Save Settings handling: Automatically saved

Description SET INITIALINSERT determines whether KEDIT starts out with Insert Mode in
effect.

With INITIALINSERT OFF, the default, INSERTMODE OFF is put into effect when
KEDIT is loaded, and you are in Overtype Mode.

With INITIALINSERT ON, INSERTMODE ON is put into effect when KEDIT is
loaded, and you are in Insert Mode.

Notes o KEDIT determines the initial Insert Mode state while it is initializing, before you
have a chance to enter any commands and before any macros, even your profile
macro, are executed. So, by the time you issue the SET INITIALINSERT com-
mand it has no effect at all on the current KEDIT session. The purpose of SET
INITIALINSERT is to determine the initial Insert Mode state in future KEDIT ses-
sions, and to have any effect the value of INITIALINSERT must be saved in the
Windows registry. Therefore, whenever you issue the SET INITTALINSERT com-
mand, the registry is automatically updated to reflect its new value; you do not
need to save it by using Options Save Settings or by using the Save Setting button
of the SET Command dialog box.

e In contrast to SET INITIALINSERT, SET INSERTMODE immediately puts you
into or takes you out of Insert Mode. A SET INSERTMODE command in your
profile could therefore be used to determine whether KEDIT starts out in Insert
Mode, and would override the state set by INITIALINSERT. INITIALINSERT is
available as a separate command so that KEDIT users can control this aspect of
KEDIT’s behavior solely via Options SET Command and Options Save Settings,
without the need for a profile.

See also SET INSERTMODE

SET Options

SET INITIALINSERT 205

SET INITIALWIDTH

Format [Set] INITIALWidth n
KEDIT default: 10000
Level: Global
Dialog box: Options SET Command

Save Settings handling: Automatically saved

Description SET INITIALWIDTH determines the WIDTH value that KEDIT puts into effect at the
start of each KEDIT session. The WIDTH value determines the length of the longest
line that you can edit during that KEDIT session. Its value can range from 1024 to
999999. The default is 10000.

Notes e KEDIT determines the WIDTH value while it is initializing, before you have a
chance to enter any commands and before any macros, even your profile macro,
are executed. So, by the time you issue the SET INITIALWIDTH command it has
no effect at all on the current KEDIT session. The purpose of SET
INITIALWIDTH is to determine the WIDTH used in future KEDIT sessions, and
to have any effect the value of INITIALWIDTH must be saved in the Windows
registry. Therefore, whenever you issue the SET INITIALWIDTH command, the
registry is automatically updated to reflect its new value; you do not need to save it
by using Options Save Settings or by using the Save Setting button of the SET
Command dialog box.

e To override the INITTALWIDTH value for a particular KEDIT session, you can
specify the WIDTH initialization option on the command line used to invoke
KEDIT.

e Once the WIDTH value is established at the start of a KEDIT session, it remains in
effect for the duration of that session and cannot be changed.

See also WIDTH initialization option

SET INPUTMODE

Format [Set] INPUTMode OFF|FUll|LIne
KEDIT default: OFF
Level: View

Dialog box: Options SET Command

206 Chapter 4. The SET Command

Description

Save Settings handling: Savable

When you enter the INPUT command with no operands and INPUTMODE is OFF (the
default), a blank line is added to your file and the cursor is positioned in the left margin
column of the line.

If INPUTMODE FULL is in effect and you enter the INPUT command with no
operands, KEDIT will simulate the Input Mode provided with IBM’s XEDIT editor.
INPUTMODE FULL has been added to KEDIT mainly for the convenience of fre-
quent users of XEDIT. The prefix area will temporarily be turned off and blank lines
will appear on your screen below the focus line. The cursor is positioned in the left mar-
gin column of the first of these blank lines and you can enter text, using the Enter key to
move to the beginning of each new line. When you have entered enough lines to reach
the bottom of the document window, KEDIT will automatically readjust the newly
entered text to make room on the screen for more input. To leave Input Mode, move the
cursor to the command line; you normally do this by pressing the F12 key (if you are
using INTERFACE CUA) or the Home key (if you are using INTERFACE CLASSIC).

If INPUTMODE LINE is in effect and you enter the INPUT command with no
operands, KEDIT adds one blank line to your file and positions the cursor in its left
margin column. What is special about INPUTMODE LINE is that, until you leave
Input Mode by moving the cursor to the command line (normally done in INTERFACE
CLASSIC by pressing the Home key), you can add new lines to your file by pressing
the Enter key, instead of the less convenient F2 key that is normally used with INTER-
FACE CLASSIC. This gives you an easy way to add lines to your file without having a
large part of your screen filled with blank lines, as it is with INPUTMODE FULL.
INPUTMODE LINE is primarily intended for users if INTERFACE CLASSIC, since
by default the Enter key always adds new lines to a file when INTERFACE CUA is in
effect.

The REPLACE command with no operands is similar to the INPUT command with no
operands. INPUT with no operands adds a blank line, while REPLACE with no
operands replaces the focus line with a blank line. Both can trigger KEDIT’s Input
Mode, depending on the setting of INPUTMODE.

XEDIT users should note that with INPUTMODE FULL and WORDWRAP ON,
KEDIT's Input Mode is very close to XEDIT's Power Input Mode.

SET INPUTMODE 207

SET Options

SET INSERTMODE

Format [Set] INSERTmode ON|OFF |TOGGLE
KEDIT default: Dependent on the value of INITIALINSERT
Level: Global
Dialog box: None
Save Settings handling: Not savable

Description With INSERTMODE ON, characters that you enter at the keyboard are inserted into
the cursor line at the cursor position. Existing text shifts to the right to make room for
the newly-inserted text. (If WORDWRAP ON is in effect, text shifted beyond the right
margin column may be split off to a new line.) With INSERTMODE OFF, characters
entered at the keyboard overtype existing text at the cursor location.
INSERTMODE TOGGLE, normally assigned to the Ins key, toggles the status of
INSERTMODE, from ON to OFF or from OFF to ON.
The status of INSERTMODE is indicated on the status line, where “INS”’ is displayed
if you are in Insert Mode and “OVR” is displayed if you are in Overtype Mode.
The cursor size also gives you an indication of the status of INSERTMODE, with a
larger cursor normally displayed when INSERTMODE ON is in effect. The cursor’s
appearance is controlled by the SET CURSORTYPE and SET CURSORSIZE
commands.

See also SET INITIALINSERT

SET INSTANCE

Format [Set] INSTANCE SINGLE |MULTIPLE
KEDIT default: SINGLE
Level: Global
Dialog box: Options SET Command
Save Settings handling: Automatically saved

Description SET INSTANCE controls whether multiple copies of KEDIT, or instead only a single
copy of KEDIT, can be active at the same time.

208 Chapter 4. The SET Command

With INSTANCE SINGLE, the default, only a single copy of KEDIT is active at a time.
If a copy of KEDIT is already active when you double-click on the KEDIT for Win-
dows icon in the Program Manager, double-click in the File Manager on a file that is
associated with KEDIT, or otherwise try to run KEDIT, the existing instance of KEDIT
is re-activated, with any new files to be edited added to the existing instance’s ring of
files. With INSTANCE MULTIPLE, a new instance of KEDIT, with a separate frame
window and ring of files, is created in each of these cases, and it is possible to have sev-
eral copies of KEDIT active at the same time.

INSTANCE SINGLE is the default because, when you want to edit several files at a
time, it is normally more convenient to have one copy of KEDIT working with multiple
files than it is to have multiple copies of KEDIT running simultaneously.

Notes e The value of the INSTANCE option is only used when you attempt to start a new
instance of KEDIT for Windows. By the time you issue the SET INSTANCE com-
mand it therefore has no effect at all on the current KEDIT session, since either a
new instance has already been started or an existing instance has already been
re-activated. The purpose of SET INSTANCE is to influence the processing that
takes place at the start of future KEDIT sessions, and to have any effect, the value
of SET INSTANCE must be saved in the Windows registry. Therefore, whenever
you issue the SET INSTANCE command, the registry is automatically updated to
reflect its new value; you do not need to save it by using Options Save Settings or
by using the Save Setting button of the SET Command dialog box.

e To override the INSTANCE setting for a particular KEDIT session, you can spec-

ify the INSTANCE SINGLE or INSTANCE MULTIPLE initialization options on
the command line used to invoke KEDIT.

See also INSTANCE initialization option

SET INTERFACE

Format [Set] INTERFACE CUA|CLASSIC
KEDIT default: CUA

Level: Global

Dialog box: Options SET Command, Options Interface

Save Settings handling: Savable

Description Use SET INTERFACE to control whether certain aspects of KEDIT for Windows’ user
interface work according to the CUA (““Common User Access’) conventions used by
most other Windows applications, or whether they instead work according to the con-
ventions used in the text mode version of KEDIT 5.0.

SET Options

With INTERFACE CUA, you get the Windows-style behavior:

SET INTERFACE 209

See also

Default behavior for most keys is based on CUA conventions. For example, the
Ctrl+End key moves the cursor to the end of the file and Alt+W opens the Window
menu.

Blocks marked with the mouse or with Shift+cursor key combinations behave like
selections, in that any text that you type after marking a block replaces the contents
of the block, and moving the cursor away from the block unmarks the block.

You can mark command line selections, useful for editing text on the command
line and for moving it to the clipboard.

By default, KEDIT uses a vertical text cursor.

You can use the SET KEYSTYLE and SET MARKSTYLE commands, or the Op-
tions Interface dialog box, to modify some aspects of KEDIT’s behavior when IN-
TERFACE CUA is in effect. These commands are primarily aimed at former users
of text mode KEDIT. They let you take advantage of most aspects of INTERFACE
CUA while letting you make a few aspects of KEDIT’s behavior more like the be-
havior of text mode KEDIT. SET KEYSTYLE Ilets you adjust the behavior of
some of KEDIT’s keys, while SET MARKSTYLE controls whether the mouse
marks selections or persistent blocks.

With INTERFACE CLASSIC, you get text mode-compatible behavior:

Default behavior for most keys is very close to the behavior in text mode KEDIT
5.0. For example, the Ctrl+End key deletes text from the cursor through the end of
the line, and AIt+W deletes a word.

Blocks do not exhibit CUA-style behavior. All blocks in INTERFACE CLASSIC
are persistent blocks: typing a character does not replace their contents, and cursor
movement does not unmark them.

Command line selections are not available.

By default, KEDIT uses a horizontal text cursor, resembling the text mode cursor.

SET KEYSTYLE and SET MARKSTYLE have no effect.

SET KEYSTYLE, SET MARKSTYLE

210

Chapter 4. The SET Command

SET INTERNATIONAL

Format

Description

CASE|NOCASE

SORT|NOSORT

[Set] INTERNATional CASE |NOCASE [SORT |NOSORT]
KEDIT default: NOCASE NOSORT

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

SET INTERNATIONAL controls some aspects of how KEDIT works with interna-
tional characters.

INTERNATIONAL CASE|NOCASE affects how text in your files is handled by the
UPPERCASE and LOWERCASE commands, and in case-insensitive string searches.

When INTERNATIONAL NOCASE is in effect, only the 26 letters of the English
alphabet are handled by the UPPERCASE and LOWERCASE commands, and given
special handling in case-insensitive string searches.

When INTERNATIONAL CASE is in effect, KEDIT asks Windows which characters
are alphabetic and how they are uppercased or lowercased, and handles the
UPPERCASE and LOWERCASE commands and case-insensitive comparisons
accordingly. This allows accented characters, etc. to be treated properly, according to
rules determined by the Windows language drivers installed on your system.

KEDIT's handling of the SORT command and international characters is somewhat
complicated, because it depends on the value of SET CASE, and on both the first and
second operands of SET INTERNATIONAL.

e If the second operand of SET INTERNATIONAL is set to NOSORT, the SORT
command works like this:

- If SET CASE's first IGNORE|RESPECT operand is set to RESPECT, all characters
are sorted according to the value of their character code, without regard to whether the
characters are alphabetic and without regard to case.

- If SET CASE's first IGNORERESPECT operand is set to IGNORE, then the SORT
command does pay attention to whether the characters are alphabetic and whether they
are uppercase or lowercase. If INTERNATIONAL NOCASE is in effect, the SORT
command lowercases the 26 letters of the English alphabet before making its compari-
sons. If INTERNATIONAL CASE is in effect, KEDIT uses your Windows language
driver to decide which characters are alphabetic, and it lowercases any uppercase
alphabetic characters, which may include accented characters, etc., before making its
comparisons.

* If the second operand of SET INTERNATIONAL is set to SORT, the SORT com-
mand does not compare the lines to be sorted one character at a time, in the way that it

SET INTERNATIONAL 211

SET Options

Notes

See also

does when the second operand of SET INTERNATIONAL is NOSORT. Instead, when
it compares text in the sort fields of two lines of your file, it uses your Windows lan-
guage driver to compare the entire strings as a unit.

If SET CASE's first IGNORE|RESPECT operand is set to RESPECT, the comparison
is case sensitive; if it is set to IGNORE, the comparison is case insensitive.

There are two reasons for using your Windows language driver to compare the strings
to be sorted, and for comparing entire strings at a time, rather than on a charac-
ter-by-character basis:

First, this allows the Windows language driver to determine how accented letters are
sorted with respect to non-accented versions of the characters involved. With the sec-
ond operand of SET INTERNATIONAL set to NOSORT, accented letters will always
sort after all 26 of unaccented letters of the English alphabet, but most Windows lan-
guage drivers sort the accented letters, using language-dependent rules, intermixed
with, or immediately after, the unaccented versions of those letters.

Second, by doing the sort based on the entire strings involved, your Windows language
driver can apply language-dependent rules that give special handling to some
multi-character sequences. For example, the Windows English language driver gives
special handling to the Latin character "ZE", sorting it between the two character
sequences "AE" and "AF", yielding orderings like this: "ADC", "AEF","ZAC", "AFC".

e SET INTERNATIONAL has no effect on the behavior of KEXX instructions or
built-in functions, such as the UPPER() and LOWER() KEXX functions. Most KEXX
instructions and built-in functions always consider only the 26 letters of the English
alphabet as alphabetic; the exceptions are the ANSIUPPER(), ANSILOWER(), and
ANSIDATATYPE() built-in functions, which depend on your Windows language
driver to decide which characters are alphabetic, uppercase, and lowercase.

* The handling done by SET INTERNATIONAL assumes that the characters you are
working with are in the ANSI character set, and it would not yield the expected results
for text that is in the OEM character set. SET INTERNATIONAL therefore has no
effect if the current screen font is an OEM font; regardless of the actual value of SET
INTERNATIONAL, international case and sort processing is bypassed in this
situation.

User’s Guide Section 3.8, “International Support”

212

Chapter 4. The SET Command

SET KEYSTYLE

Format

Description

[Set] KEYSTYLE enter [home delete backspace alt]

where each value can be either

Standard|ADJusted
KEDIT default: STANDARD STANDARD STANDARD STANDARD STANDARD

Level: Global
Dialog box: Options SET Command, Options Interface

Save Settings handling: Savable

The default behavior for many keys is very different when INTERFACE CUA is in
effect than when INTERFACE CLASSIC is in effect. Users of text mode KEDIT who
switch to KEDIT for Windows often want to use INTERFACE CUA so that KEDIT
will act as much as possible like other Windows applications. But sometimes they are
not comfortable with the new behavior of a few keys that are frequently used in text
mode KEDIT. SET KEYSTYLE lets you change the default behavior of some of the
keys that text mode KEDIT users have found hardest to get used to.

There are five keys whose behavior you can adjust. For each of the five keys, you can
specify that, when INTERFACE CUA is in effect, their behavior is STANDARD (that
is, they have the standard CUA behavior; this is the default for all five keys) or that their
behavior is ADJUSTED (in which case they behave more like they would in text mode
KEDIT). SET KEYSTYLE only makes a difference when INTERFACE CUA is in
effect; when INTERFACE CLASSIC is in effect, all five of the keys have text mode
compatible behavior, regardless of the value of the KEYSTYLE option.

1. The first operand controls the behavior of the Enter key. Its STANDARD behavior
when the cursor is in the file area and INTERFACE CUA is in effect is to insert a
new line following the character at the cursor position. The ADJUSTED behavior
of the Enter key when the cursor is in the file area is to move the cursor to the left
margin column of the next line.

2. The second operand controls the Home key. Its STANDARD behavior is to move
the cursor to the start of the line that it is on. Its ADJUSTED behavior is to move
the cursor to the command line and also to execute any pending prefix commands.

3. The third operand controls the Delete key. Its STANDARD behavior when the
cursor is at the end of a line is to join the text from the following line to the cursor
position. Its ADJUSTED behavior is to do nothing when the cursor is at the end of
a line.

4. The fourth operand controls the Backspace key. Its STANDARD behavior when
the cursor is at the start of a line is to join the text of that line to the end of the pre-
ceding line. Its ADJUSTED behavior is to do nothing when the cursor is at the start
of a line.

SET KEYSTYLE

213

SET Options

5. The fifth operand controls the Altkey, when it is pressed alone and not in combina-
tion with any other key. Its STANDARD behavior is to activate the menu bar at the
top of KEDIT’s frame window. Its ADJUSTED behavior is to do nothing.

Notes e When you update the settings in the section of the Options Interface dialog box la-
beled Adjust CUA Keyboard Behavior, you are actually updating the value of the
KEYSTYLE option.

e The default key definitions for the five keys involved check the value of the
KEYSTYLE option and act accordingly. If you supply your own definitions for
these keys, SET KEYSTYLE will have no effect on how they behave unless you
check the value of KEYSTYLE within your replacement key definitions.

e SETKEYSTYLE is provided as an easy way to tailor the behavior of the keys that
most often cause problems for users of text mode KEDIT who switch to KEDIT
for Windows. You can do much more extensive tailoring of these keys, or of any
other KEDIT keys, by using KEDIT’s macro language to replace KEDIT’s default
key definitions with definitions of your own.

See also SET INTERFACE, SET MARKSTYLE

Examples SET KEYSTYLE ADJUSTED ADJUSTED STANDARD STANDARD STANDARD

Set the Enter and Home keys to have their ADJUSTED behavior, with the Enter key
moving to the left margin column of the next line and the Home key moving to the com-
mand line and processing any pending prefix commands. Set the Delete, Backspace,
and Alt keys to have their standard CUA behavior.

SET LASTOP

Format [Set] LASTOP commandname text
KEDIT default: Undefined
Level: Global
Dialog box: None

Save Settings handling: Not savable

Description With SET LASTOP, most often used within macros, you can set the contents of
KEDIT’s operand memory for a particular command, controlling the operands that will
be used the next time the command is issued without any operands.

The commandname operand specifies the command whose operand memory you want
to set, and can be one of ALter, Change, CLocate, COUnt, Find, Locate, SCHange, or
TFind. Text specifies the new contents of the command’s operand memory.

214 Chapter 4. The SET Command

Examples

KEDIT “remembers” the last operands of several KEDIT commands, so that you can
reissue the same command again without having to type in the operands all over again.
For example, if you issue the CHANGE command with no operands, the last CHANGE
command that you issued will be repeated. KEDIT only remembers the operands of
commands issued directly from the KEDIT command line; to avoid confusion,
operands of commands issued from within a macro are not automatically remembered.
Edit Find, Edit Replace, and searches done from the toolbar also have no effect on the
value of LASTOP.

SET LASTOP LOCATE /1234/

If, when you next issue a LOCATE command, no operands are given, KEDIT will
locate the string “1234”.

SET LASTOP FIND 1234

Sets the operand memory for the FIND command. (The operand memory for the FIND
command also affects the related FINDUP, NFIND, and NFINDUP commands.)

SET LINEFLAG

Format

Description

[Set] LINEFLAG flagbits [target]

where flagbits can be one or more of the following:

CHAnge | NOCHAnge
NEW | NONEW
TAG | NOTAG

KEDIT default: NOCHANGE NONEW NOTAG
Level: File
Dialog box: Options SET Command (for focus line only)

Save Settings handling: Not savable

Use the SET LINEFLAG command to control the values of the flag bits for lines in
your file.

Associated with each line in your file are three flag bits, known as the change bit, the
new bit, and the tag bit. You can use the SET LINEFLAG command to set or clear one
or more of these bits for the lines in the specified target area.

When KEDIT initially reads a file in from disk, it sets all three bits off for all lines in the
file. While you are editing your file, KEDIT sets the change bit for any line that is
changed, added, moved, or sorted. For any line that is added to your file, KEDIT also
sets the new bit. KEDIT sets or clears tag bits when processing the TAG, MORE, LESS,
and SET LINEFLAG commands.

SET LINEFLAG

215

SET Options

See also

Examples

TAG, SET HIGHLIGHT

SET LINEFLAG TAG NOCHANGE 10

For each of the next 10 lines, beginning with the focus line, this command would turn
the TAG bit on, turn the change bit off, and leave the new bit unaffected.

SET LINEFLAG NONEW NOCHANGE ALL

Clears the new and change bits for all lines in the file.

SET LINEND

Format

Description

Examples

[Set] LINENd ON|OFF [char]
KEDIT default: OFF #

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

You use SET LINEND to enable or disable the ability to enter multiple commands on
the KEDIT command line. If the facility is enabled, the commands are separated by the
LINEND character, which is “#” by default but can be changed. If LINEND is OFF,
you can only enter one command at a time on the command line, and the LINEND char-
acter has no special meaning.

If LINEND is ON, the following will duplicate the focus line and then go down four
lines:

DUP#DOWN 4

If LINEND is OFF, the “#” would have no special meaning and you would have an
invalid command.

LINEND only affects commands entered from the command line It has no effect on
commands issued from macros or on text entered into dialog boxes.

LINEND ON

Allow multiple commands on the same command line.
LINEND OFF

Disallow multiple commands on the same command line.

216

Chapter 4. The SET Command

LINEND ON %

Allow multiple commands on the same command line, and set the LINEND character
that separates them to be “%”.

SET LOCKING

Format

Description

[Set] LOCKING ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

Use SET LOCKING to tell KEDIT to lock files that are added to the ring, preventing
access to these files by other users and programs.

If LOCKING ON is in effect when you begin editing a file, KEDIT will attempt to lock
the file. SET LOCKING has no effect on the status of files that are already in the ring.
KEDIT locks a file by keeping an open handle for the file with a sharing mode that pre-
vents other programs from accessing the file; SET SHARING controls the sharing
mode used.

There are three special cases where KEDIT does not lock a file, even if LOCKING ON
is in effect when you begin editing the file:

1. When you use the DIR command to create a DIR.DIR file and when you use the
MACROS command to create a MACRO.KML file, the lock processing is by-
passed, since these are normally used as temporary in-memory files.

2. When you edit files that are marked on disk as read-only, lock processing is also
bypassed. There is little need to protect against changes to such a file since, unless
autility program is used to change its read-only attribute, neither you nor any other
user on your network can write to it.

3. When you edit files on your A: or B: drives, KEDIT does not automatically lock
the files. This is because these are normally diskette drives, which are usually not
shared over a network, and there can sometimes be problems if you inadvertently
change diskettes in a drive that has open files. You can still use the LOCK com-
mand or initialization option to force KEDIT to lock files on your A: and B: drives.

KEDIT displays “Lock” on the status line to indicate when you are editing a locked
file, displays “R/O” when you are editing a file whose read-only attribute bit is set, and
displays “R/W” for file that is not locked and not read-only. Additionally, if IDLINE

SET LOCKING

217

SET Options

See also

ON is in effect, KEDIT displays an asterisk (““**”) on the ID line in front of the fileid for
a locked file, and a plus sign (““+”) in front of the fileid for a read-only file.

You can override the current setting of SET LOCKING for a particular file by using the
LOCK or NOLOCK options on the KEDIT command that you use to begin editing the
file. You can also use the LOCK command to lock a file that you have already begun to
edit, and the UNLOCK command to unlock a file that is locked.

User’s Guide Chapter 12, “File Processing”, LOCK and NOLOCK initialization
options, LOCK, UNLOCK, SET SHARING

SET LRECL

Format

Description

[Set] LRecl n

KEDIT default: * (WIDTH value)
Level: File

Dialog box: Options SET Command

Save Settings handling: Not savable

The SET LRECL (““logical record length””) command affects the length of lines written
to disk during a FILE, SAVE, and PUT commands, by the autosave facility, and by File
Save and related menu items. SET LRECL also affects how lines are read in if EOLIN
NONE is in effect.

SET LRECL * sets the logical record length equal to the value of the WIDTH initializa-
tion option, and is the default setting. This default does not normally need to be
changed.

IfRECFM FIXED is in effect, all lines written to disk will be n characters long, where n
is the LRECL setting. If necessary, KEDIT will pad shorter lines with blanks or will
truncate longer lines to the correct length when writing your file to disk.

If RECFM VARYING is in effect, lines will be a maximum of » characters long, and
will be truncated if necessary. Shorter lines will not be padded with blanks. For exam-
ple, if you set LRECL to 80 and some of the lines in your file are more than 80 charac-
ters long, only the first 80 characters of these lines would be written out. Characters
beyond column 80 would not be written out. Note that KEDIT does not give you any
warnings or messages about the text that is lost.

With the possible exception of the last line of the file (which is controlled by SET
EOFOUT), KEDIT adds an end-of-line sequence, controlled by SET EOLOUT, to
each line. The end-of-line sequence is not considered part of the logical record length.
With the default of EOLOUT CRLEF, a carriage return-linefeed pair is added to each
line written to disk, for a total length of n+2 bytes per line.

218

Chapter 4. The SET Command

See also

If TABSOUT ON is in effect, tab compression is done first, and then the record length
is examined.

The LRECL and RECFM settings have no effect on how KEDIT reads your file in or
how KEDIT processes your file while you are editing it; they only affect how KEDIT
writes your file to disk. An exception to this comes when EOLIN NONE is in effect;
LRECL then controls how data read from disk will be broken into lines.

Except in special situations, RECFM and LRECL can be left at their default values and
ignored. With the default settings of RECFM VARYING and LRECL equal to the
value of the WIDTH initialization option, KEDIT will never need to pad or truncate
lines when writing them to disk.

User’s Guide Chapter 12, “File Processing”, WIDTH initialization option, SET
RECFM, SET TRAILING

SET MACROPATH

Format

Description

[Set] MACROPath ON|OFF|envvar|dirlist

KEDIT default: PATH

Level: Global

Dialog box: Options SET Command
Save Settings handling: Savable

SET MACROPATH controls the path search done by KEDIT when you want to run a
macro that cannot be found in memory or in the current directory. It also controls the
path search done by the DEFINE command when you load a macro or a . KML file into
memory, by the SET TOOLBUTTON command when you load a bitmap file from disk,
and by the SET PARSER command when you load a KEDIT Language Definition file.

[Set] MACROPath ON
The default. Tells KEDIT to search for macros in each of the directories specified
via the PATH variable in the system environment.

[Set] MACROPath OFF
KEDIT will look for macros only in memory and in the current directory. In this
special case, KEDIT will not do its normal path search for macros, and also won’t
do its usual search of the KEDIT Macros, KEDIT program directory, and USER
and SAMPLES subdirectories.

[Set] MACROPath envvar
Tells KEDIT to do a path search for macros, with the list of directories to search
found in the environment variable envvar. Directories in the list are separated from
each other by a semicolon, in the same format as is traditionally used with the
PATH= environment variable.

SET MACROPATH 219

SET Options

See also

[Set] MACROPath dirlist
Dirlist is a string with a list of semi-colon-delimited directories. It can also contain
entries that begin with an asterisk, to indicate an indirect reference to an environ-
ment variable. “=""1s also allowed, causing a search of the directory of the current
file. For example,

SET MACROPATH C:\TEMP;E:\SOURCE; *INCLUDE;=

means search the C:\TEMP and E:\SOURCE directories, then the directories listed
in the INCLUDE environment variable, and then the directory of the current file.

In order for the value of MACROPATH to affect KEDIT’s initial search for your pro-
file, it needs to be set in an earlier KEDIT session and then saved to the Windows regis-
try via the Options Save Settings dialog box. You can also specify MACROPATH as a
KEDIT initialization option, and if you do so its value will override the value in the

registry.

When searching for macros, .KML files, .BMP files, and .KLD files, KEDIT proceeds
as follows: If a specific drive and/or directory is specified, KEDIT looks only there.
Otherwise, KEDIT looks first in the current directory, and next does a path search, as
controlled by SET MACROPATH. Finally, unless MACROPATH OFF is in effect, it
looks in the “KEDIT Macros” subdirectory of your Windows Documents or My Docu-
ments folder, the directory from which KEDIT for Windows was loaded, and the USER
and SAMPLES subdirectories of that directory. The search ends successfully as soon
as KEDIT finds the file it is looking for, and ends in failure if the file cannot be located.

As discussed in User’s Guide Section 10.2.3, “Storing Your Macros”, we normally rec-
ommend that macros that you create be kept in the “KEDIT Macros” subdirectory of
your Windows Documents folder (which is sometimes known as the My Documents
folder).

MACROPATH initialization option, MACRO, SET PATH

220

Chapter 4. The SET Command

SET MARGINS

Format

Description

See also

Examples

[Set] MARgins left right [[+|-]parindent]
KEDIT default: 1 72 +0

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

Use SET MARGINS to control your left and right margin columns and the paragraph
indent column (the indentation used for the first line of a paragraph).

The MARGINS setting affects paragraph reformatting by the FLOW command, the
wordwrap facility, and the LEFTADJUST, RIGHTADJUST, and CENTER commands.

For the left and right margins, enter the column number of the margin. For the para-
graph indent column, you can enter a specific column number, or you can specify a pos-
itive or negative offset from the left margin column.

The left margin must be less than or equal to the right margin. The right margin and
paragraph indent column must be less than or equal to the truncation column. You can
specify the right margin as an asterisk (““*”); this will set the right margin to the trunca-
tion column.

User’s Guide Section 3.11, “Word Processing Facilities”

MARGINS 10 60

The left margin is set to 10, the right margin is set to 60, and the paragraph indent col-
umn is unchanged.

MARGINS 10 65 +3

The left margin is set to 10, the right margin is set to 65, and the paragraph indent col-
umn is three columns to the right of the left margin column, at column 13. If you later
issued the command

MARGINS 5 60

the paragraph indent specification would not change, and paragraphs would be
indented three columns to the right of the new left margin, to column 8.

SET MARGINS

221

SET Options

SET MARKSTYLE

Format

Description

Notes

[Set] MARKSTYLE line [box stream]

where each value can be either

PERSISTent|SELection

KEDIT default: SELECTION SELECTION SELECTION

Level: Global

Dialog box: Options SET Command, Options Interface

Save Settings handling: Savable

SET MARKSTYLE controls whether, when you use the mouse to mark text while
INTERFACE CUA is in effect, you mark selections or persistent blocks.

SET MARKSTYLE has three operands, controlling how lines, boxes, and streams are
marked. The default for all three operands is SELECTION, meaning that selections are
marked; the other choice is PERSISTENT, meaning that persistent blocks are marked.

1.

The first operand controls whether dragging in the file area with Ctrl+button 1, or
dragging with button 1 in the window margin or in the prefix area, marks a persis-
tent line block or marks a line selection.

The second operand controls whether dragging with Alt+button 1 in the file area
marks a persistent box block or marks a box selection.

The third operand controls whether dragging with button 1 in the file area marks a
persistent stream block or marks a stream selection.

When you update the settings in the section of the Options Interface dialog box la-
beled Adjust CUA Mouse Behavior, you are actually updating the value of the
MARKSTYLE option.

SET MARKSTYLE only affects blocks or selections marked with the mouse and
does not affect blocks or selections marked from the keyboard. The default defini-
tions for Shift+cursor pad key, which are the key combinations used in CUA-com-
patible applications to mark selections, always mark selections and never mark
persistent blocks. The default definitions for Alt+L, Alt+B, and Alt+Z always
mark persistent line, box, and stream blocks.

The default macros that handle mouse actions check the value of the
MARKSTYLE option and act accordingly. If you supply your own definitions for
these macros, SET MARKSTYLE will have no effect on how they behave unless
you check the value of MARKSTYLE within your replacement definitions.

222

Chapter 4. The SET Command

See also

Examples

SET KEYSTYLE

SET MARKSTYLE PERSISTENT PERSISTENT SELECTION

Sets the mouse to mark lines and boxes as persistent blocks, but to mark stream selec-
tions when dragging with mouse button 1.

SET MONITOR

Format

Description

See also

[Set] MONitor WINDOWS | COLOR |MONO

KEDIT default: WINDOWS
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

Use the SET MONITOR command to control certain aspects of how KEDIT for Win-
dows handles your display.

With MONITOR WINDOWS, the normal KEDIT for Windows handling of your dis-
play applies, the normal KEDIT for Windows colors are used by default on your dis-
play, and the SET COLOR command works as described in this document.

MONITOR COLOR and MONITOR MONO are provided only for compatibility with
text mode KEDIT, and cause KEDIT’s display handling, default colors, and SET
COLOR handling to work as they do in text mode KEDIT. In most situations we
recommend that you leave the default of MONITOR WINDOWS in effect; MONITOR
COLOR and MONITOR MONO may not be supported in future versions of KEDIT
for Windows.

With MONITOR COLOR, KEDIT uses the default colors used on text mode color dis-
plays. With MONITOR MONO, KEDIT uses the colors it used with the original IBM
monochrome display.

Whenever the SET MONITOR command is issued, KEDIT automatically resets all
colors to the proper defaults for the type of display—WINDOWS, COLOR, or
MONO—that you specified.

SET COLOR

SET MONITOR

223

SET Options

SET MOUSEBEEP

Format

Description

See also

[Set] MOUSEBEEP ON|OFF
KEDIT default: ON

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET MOUSEBEEP controls whether KEDIT sounds the speaker when mouse errors
within a document window, such as a mouse click at an invalid location in the file area,
are detected, and when the SOS MOUSEBEEP command is executed. Note that many
mouse related errors, such as invalid mouse clicks while a dialog box is displayed, are
handled directly by Windows and are not affected by SET MOUSEBEEP.

SET BEEP, SOS MOUSEBEEP

SET MSGLINE

Format

Description

[Set] MSGLine ON line [n] [Overlay]

KEDIT default: ON 1 5 OVERLAY
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Use SET MSGLINE to control where in your document window messages generated
by KEDIT will be displayed.

You can specify what /ine of the document window will be the first line used for mes-
sage display, the number of lines to use for message display, and whether the first mes-
sage line should be reserved for messages or should OVERLAY a line normally used to
display a line of your file.

The first /ine used for messages can be specified relative to the top of the document
window, the middle of the document window, or the bottom of the document window;
see SET CURLINE for a discussion of how to do this.

You can also specify the number of lines to use for message display. In most situations,
KEDIT only needs to display one message at a time. Commands like QUERY can
sometimes generate several messages, and a macro can issue several messages or cause
several error messages to be generated. If KEDIT has more messages to display than

224

Chapter 4. The SET Command

Examples

you have allowed for, KEDIT uses a special pop-up window for message display. Oth-
erwise, KEDIT displays its messages in the area you specify with SET MSGLINE.

Finally, you can specify that the first message line is normally to be used for a line of
your file, and that when there is a message to display, it will OVERLAY a line of your
file on the display. (Message lines other than the first are always displayed in overlay
mode.)

Even though you can specify a message area that overlaps the command line, KEDIT
will never overlay the command line with a message. Instead, it will skip over the com-
mand line and put the message on the line below or above the command line.

SET MSGLINE ON 2 5 OVERLAY

This is the default MSGLINE setting, specifying that messages will display starting on
line 2 of the document window, with a maximum of five messages displayed. When no
message is displayed in line 2, line 2 will be used to display a line of your file.

SET MSGLINE ON -2 5 OVERLAY

The second-to-the-last line of your window will be used for messages. [f KEDIT needs
to display more than one message, the third-to-last line, etc., up to a total of five lines,
will be used.

SET MSGMODE

Format

Description

[Set] MSGMode ON|OFF
KEDIT default: ON

Level: View

Dialog box: None

Save Settings handling: Not savable

With MSGMODE ON, KEDIT processes messages (including error messages) in the
normal way, displaying them on your screen and saving the text of the last message so
that QUERY LASTMSG can retrieve it. With MSGMODE OFF, KEDIT does not dis-
play messages and error messages on your screen, although the text of the last message
is still saved for QUERY LASTMSG.

MSGMODE OFF is intended for use in specialized situations within macros, which
sometimes need to issue commands that generate messages or error messages that need
not be displayed. For example, you may want to issue a CHANGE command from
within a macro, but may not want KEDIT to display its message indicating how many
strings were changed.

SET MSGMODE

225

SET Options

See also

The NOMSG command provides a better solution to this problem, and should normally
be used in preference to SET MSGMODE OFF.

NOMSG initialization option, NOMSG

SET NEWLINES

Format

Description

[Set] NEWLines SAMELine |BELOW|BELOWCurr
KEDIT default: SAMELINE

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

When you add a new line to your file with the SOS LINEADD command (normally
assigned to function key F2) or because WORDWRAP is ON and you go beyond the
right margin, KEDIT normally places the newly added line in the line of the document
window in which the cursor is located, scrolling the text above the new line up to make
room for it. This is what happens with NEWLINES SAMELINE, the default.

With NEWLINES BELOW, the new line is placed one line below the cursor line,
scrolling the text below the new line down to make room for it. When the cursor is on
the bottom line of the document window, KEDIT can’t add a new line below the cursor
line, so the new line is added at the bottom of the document window, and text above the
new line scrolls up to make room for it.

NEWLINES BELOWCURR is like NEWLINES BELOW, in that new lines are added
below the cursor line. The difference is that, with NEWLINES BELOWCURR, when
you are at the bottom of the document window and add a new line, KEDIT scrolls the
window so that the new line is positioned at the current line location, and future lines
can then be added below the current line.

226

Chapter 4. The SET Command

SET NOVALUE

Format

Description

[Set] NOVALUE ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET NOVALUE provides a debugging aid for developers of KEDIT macros. With
NOVALUE ON, use of uninitialized variables in a KEXX macro will cause an error,
much as SIGNAL ON NOVALUE does. This brings to your attention cases where you
have forgotten to use quotes around literal values in macros.

You can get much the same effect by using SIGNAL ON NOVALUE within your
KEXX macros to trap references to uninitialized variables. An advantage of SET
NOVALUE ON is that it catches all uses of uninitialized variables in any macro that
you run, without having to change the source of the macro. A disadvantage of SET
NOVALUE ON is that, since it affects all macros that you run, it may trap harmless ref-
erences to uninitialized variables in existing macros and in macros that you get from
other KEDIT users.

SET NUMBER

Format

Description

[Set] NUMber ON|OFF
KEDIT default: OFF

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

I[f NUMBER ON is in effect, the line number of each line appears in the prefix area of
the line. Line numbers are not displayed if PREFIX OFF is in effect.

The line numbers are continually updated as you add lines to your file or delete them.
The line numbers are not part of your file; they are merely displayed on the screen for
your convenience. The line number associated with a line is not written to disk when
the file is saved.

SET NUMBER

227

SET Options

See also

By default, the prefix area is 5 characters wide, and can display line numbers up to
99999. To display line numbers above this value, you can use SET PREFIXWIDTH to
make the prefix area wider.

SET PREFIX, SET PREFIXWIDTH

SET OFPW

Format

Description

[Set] OFPW ON|OFF
KEDIT default: ON

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET OFPW determines whether KEDIT operates in “one-file-per-window”” mode.

KEDIT is a Windows MDI (““Multiple Document Interface’’) application. You can edit
multiple files with KEDIT and display them within multiple windows. These windows
are known as ”’document windows”’. The document windows are all displayed within a
larger window, known as the “frame window”’.

When you open a new file, most Windows MDI applications create a new document
window to display the file. If you want to display the file in multiple windows, you can
use the Window New menu item to create an additional document window displaying
the same file. When you close a file, all document windows displaying that file are
destroyed. When you close a document window, that window is destroyed and, if it is
the only document window displaying a file, the file itself is also closed.

With the default of OFPW ON, which is recommended for most KEDIT users, this is
also how KEDIT behaves. It is referred to as one-file-per-window mode because once a
document window is created and a file displayed in that window, that one file is the
only file that will ever be displayed in that window. Moving to a different file (for
example, by using the Next File or Previous File toolbar buttons) involves moving to a
different document window.

OFPW OFF is available mainly for compatibility with text mode versions of KEDIT.
With OFPW OFF, KEDIT for Windows behaves more like text mode KEDIT, where
windows are not tied to particular files. Instead, any document window can display any
file. When a new file is added to the ring, the new file is displayed in the current win-
dow. The old file remains in the ring, but may not be visible in any document window.
The Next File and Previous File toolbar buttons do not move you to a different docu-
ment window, but instead display different files in the same window.

228

Chapter 4. The SET Command

See also

When you close a file with OFPW OFF in effect, the document windows in which it
was displayed remain, displaying whatever file preceded the removed file in the ring.
When you close a document window with OFPW OFF, the file that was displayed in
that window remains in the ring. Exceptions to these general rules come when you
close the last file in the ring, in which case all document windows are also closed, and
when you close the last document window, in which case all files in the ring are closed.

User’s Guide Section 3.5, “Editing Multiple Files”

SET OPENFILTER

Format

Description

[Set] OPENFilter /textl/filterl/

KEDIT default: See below
Level: Global
Dialog box: None

Save Settings handling: Not savable

SET OPENFILTER controls the file filters displayed at the bottom of the File Open
dialog box. These in turn control the files in the dialog box’s default list of available
files.

SET OPENFILTER takes one or more pairs of strings as its operands, with one pair of
strings for each entry in the list of file filters. The first string of each pair is the string
that is actually displayed when you use the File Open dialog box. The second string of
each pair is the filter, consisting of a DOS fileid specification (possibly including wild-
card characters) or of multiple DOS fileid specifications separated by semicolons
(“;”), used by File Open to build the list of matching files.

The strings used with the SET OPENFILTER command are all delimited with slash
(°°/””) characters, or with some other delimiter character not appearing in the strings.

The default value for SET OPENFILTER (which is really all one long line, though it is
split here into multiple lines) is

SET OPENFILTER /All files (*.%)/*.%/
Text Files (*.TXT)/*.txt/

C Files (*.C;*.CPP;*.H)/*.c;*.cpp;*.h/
KEDIT Macros (*.KEX;*.KML)/*.kex;*.kml/

This specifies four filters. They are displayed as

SET OPENFILTER 229

SET Options

All files (*.¥*)

Text Files (*.TXT)

C Files (*.C;*.CPP;*_H)
KEDIT Macros (*.KEX;*.KML)

with *.*_* txt, etc. used by File Open to build the list of available files, depending on
which file filter is selected.

SET PARSER

Format [Set] PARSER parser fileid
KEDIT default: See the table below
Level: Global
Dialog box: None
Save Settings handling: Not savable

Description The syntax coloring facility depends on language-specific parameter files, known as
KLD (KEDIT Language Definition) files, to determine which text to display as com-
ments, strings, keywords, etc. Use the SET PARSER command to define a syntax col-
oring parser and load its associated KLD file.
Use the parser operand to specify the name of the parser you want to define.
The fileid operand specifies a file, with a default extension of .KLLD, containing your
language definition. The format of these KEDIT Language Definition files is discussed
in Chapter 8, “KEDIT Language Definition Files”. KEDIT searches for the .KLD file
in the same directories it uses when searching for macro files, as controlled by SET
MACROPATH.
For example, if you were working with a hypothetical language called LANG and you
had described the language in a KEDIT Language Definition file called
LANGDEF.KLD, you could define a parser called LANG with the command
SET PARSER LANG LANGDEF.KLD
After issuing the SET PARSER command, you could then issue the command
SET COLORING ON LANG
to use this parser to control syntax coloring for the current file.
If files in your language always had an extension of, for example, .LNG, you could use
the SET AUTOCOLOR command to tell KEDIT to always use the LANG parser for
.LNG files:

230 Chapter 4. The SET Command

SET AUTOCOLOR .LNG LANG

SET PARSER commands are typically executed from your KEDIT profile when
KEDIT is initially loaded. For example:

* if first profile execution in a session,
* setup the LANG parser and then
* cause all .LNG files to be colored using the LANG parser
if initial() then do
'set parser lang langdef.kld'
'set autocolor .lng lang'
end

Several language definitions are built into KEDIT, and when KEDIT is loaded it auto-
matically issues SET PARSER commands that use these language definitions to set up
its default parsers. To distinguish these internal language definition files from actual
disk files, KEDIT uses an asterisk as the first character of their names. For example, the
command

SET PARSER C *C.KLD

tells KEDIT to use *C.KLD as the Language Definition File associated with the C
parser. The asterisk in the name tells KEDIT to use the special file *C.KLD, which is
built into KEDIT, and not to look for the file on disk.

The following parser definitions are automatically put into effect at KEDIT
initialization:

Parser File

BASIC *BASIC.KLD

C *C.KLD

COBOL *COBOL.KLD
CSHARP *CSHARP.KLD
FORTRAN *FORTRAN.KLD
HTML *HTML.KLD
JAVA *JAVA.KLD

INI *INLKLD

KLD *KLD.KLD
PASCAL *PASCAL.KLD
REXX *REXX.KLD
RESOURCE *RESOURCE.KLD
XBASE *XBASE.KLD
NULL *NULL.KLD

Copies of these internal files are included in the SAMPLES subdirectory of the main
KEDITW directory. If you modify one of these copies you should save it in a different
location (normally the “KEDIT Macros” subdirectory of your Windows Documents

SET PARSER

231

SET Options

See also

folder, which is sometimes known as the My Documents folder) and load it by issuing a
SET PARSER command referring to the modified file.

If you want your own KLD file to be used in place of one of KEDIT’s built-in KLD
files, you can use a SET PARSER command that specifies the appropriate parser name
along with your KLD file. For example

SET PARSER C NEWC.KLD

would use your NEWC.KLD file in place of the built-in *C.KLD file.

SET AUTOCOLOR, SET COLORING, SET ECOLOR, Chapter 8, “KEDIT Language
Definition Files”

SET PATH

Format

Description

[Set] PATH ON|OFF|envvar|dirlist
KEDIT default: *PATH;*INCLUDE;=

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET PATH controls the path search done by KEDIT when you use the KEDIT com-
mand or the GET command and specify a file’s name and extension but no drive
specifier or path and the file that you specify cannot be found in the current directory.

[Set] PATH ON
KEDIT looks for your file in each of the directories specified via the PATH envi-
ronment variable.

[Set] PATH OFF
KEDIT will look for your file only in the current directory. In this special case,
KEDIT will not do its normal path search for your file, and also won’t do its usual
search of the KEDIT Macros, KEDIT program directory, and USER and SAM-
PLES subdirectories.

[Set] PATH envvar
Tells KEDIT to do a path search for files, with the list of directories to search found
in the environment variable envvar. Directories in the list are separated from each
other by a semicolon, in the same format as is traditionally used with the PATH=
environment variable.

SET PATH dirlist
Dirlist is a string with a list of semi-colon-delimited directories. It can also contain
entries that begin with an asterisk, to indicate an indirect reference to an environ-

232

Chapter 4. The SET Command

See also

_9

ment variable.
file. For example,

is also allowed, causing a search of the directory of the current

SET PATH C:\TEMP;E:\SOURCE; *PATH; =

means search the C\TEMP and E:\SOURCE directories, then the directories listed
in the PATH environment variable, and then the directory of the current file.

In order for the value of PATH to affect KEDIT’s search for files added to the ring at the
start of a KEDIT session, it needs to be set in an earlier KEDIT session and then saved
to the Windows registry via the Options Save Settings dialog box. You can also specify
PATH as a KEDIT initialization option, and if you do so its value will override the value
in the registry.

When searching for files to be edited, KEDIT proceeds as follows: If a specific drive
and/or directory is specified, KEDIT looks only there. Otherwise, KEDIT looks first in
the current directory, then does a path search controlled by SET PATH. Finally, it looks
in the “KEDIT Macros” subdirectory of your Windows Documents or My Documents
folder, and in the directory from which KEDIT was loaded and in the USER and
SAMPLES subdirectories of that directory. The search ends successfully as soon as
KEDIT finds the file it is looking for; if the file cannot be located, KEDIT assumes you
want to edit a new file with the specified name in the current directory.

The default value of *PATH;*INCLUDE;= tells KEDIT that its path search should
involve looking in each of the directories listed in the PATH environment variable and
the INCLUDE environment variable and then in the directory of the current file.

PATH initialization option, SET MACROPATH

SET PCOLOR

Format

Description

[Set] PCOLOR a foreground [ON background]
[Set] PCOLOR a DEFAULT

KEDIT default: See the table below
Level: File
Dialog box: Options SET Command

Save Settings handling: Savable

SET PCOLOR (“printer color’’) controls the colors used by KEDIT to print syntax-col-
ored text when PRINTER WINDOWS and PRINTCOLORING ON are in effect and
you are printing to a color printer.

The default SET PCOLOR values, given in the table below, are the same as the default
values, controlled by SET ECOLOR, that KEDIT uses to display syntax-colored text

SET PCOLOR

233

SET Options

on your screen. But they can be controlled separately so that you have the option of
using different color schemes on your printer and on your screen.

[Set] PCOLOR a foreground [ON background]
Specify the emphasis type involved (in the range A—Z or 1—9), followed by the
foreground color to use and, optionally, the background color. If you do not spec-
ify a background color, a background of white is used. You can use an asterisk
(“*7) instead of a letter as the emphasis type to indicate that you want all emphasis
types to use the same color. The foreground and background colors that you can
choose from are the same as the colors used with the SET COLOR command.

[Set] PCOLOR a DEFAULT
If you have made changes to a printer color, you can tell KEDIT for Windows to
switch back to using the default color. A table of KEDIT for Windows’ default
printer colors is given below.

Note Even when syntax coloring is active, some of the text in your file may not be given an
emphasis color. For example, most parsers do not give a special color to ordinary vari-
ables. KEDIT uses the color controlled by SET PCOLOR V, which is normally black
on white, to print such text.

See also SET ECOLOR, SET PRINTCOLORING

Examples PCOLOR A RED
Emphasis type A (used for comments) is printed in red.
PCOLOR * DEFAULT

All printer colors are reset to their default values.

Letter];:lt:;l: Color Language Element

A dark green comments

B dark cyan strings

C dark red numbers

D blue keywords

E dark red labels

F dark red preprocessor keywords

G red header lines

H black extra right paren, matchable keyword
I blue level 1 paren

J blue level 1 matchable keywords

K dark red level 1 matchable preprocessor keywords
L dark green level 2 paren, matchable keyword

234 Chapter 4. The SET Command

Letter];:if;ltl:l: Color Language Element

M red level 3 paren, matchable keyword
N dark cyan level 4 paren, matchable keyword
(0) dark magenta level 5 paren, matchable keyword
P gray level 6 paren, matchable keyword
Q dark blue level 7 paren, matchable keyword
R magenta level 8 or higher paren, matchable keyword
S magenta incomplete strings

T blue HTML markup tags

U red HTML character/entity references
\Y black unemphasised text (see note above)
wW—Z black not currently used

1 red alternate keyword color 1

2 dark blue alternate keyword color 2

3 dark red alternate keyword color 3

4 dark magenta alternate keyword color 4

5 dark green alternate keyword color 5

6 dark cyan alternate keyword color 6

7 red alternate keyword color 7

8 black alternate keyword color 8

9 blue alternate keyword color 9

SET POINT

Format

Description

[Set] Point .name [OFF]

KEDIT default: No named lines

Level: File

Dialog box: Actions Bookmark

SET Options

Save Settings handling: Not savable

Use the SET POINT command to give a name to the focus line. The line can then be
referred to in target specifications by that name. The name that you specify must be

SET POINT

235

Examples

[T3EE

preceded by a period (““.””). If name is already in use for some line of the current file, it
is first removed from that line.

Use the OFF operand to remove a line name. If name is assigned to some line in the cur-
rent file, the line name is removed. Otherwise, an error occurs.

A line can have more than one name, but no name can be used for more than one line in
the current file. Line names are associated with lines of your file, but are not part of
your file and are not saved when your file is written to disk. The line name remains with
a line if you change the line or if you use the MOVE command to move the line else-
where in the current file.

By default, Alt+1, Alt+2, and Alt+3 assign the names Bookmark1, Bookmark2, and
Bookmark3, respectively, to the focus line, while Alt+4, Alt+5, and Alt+6 issue
LOCATE commands that return you to these lines. The Set Bookmark button on the
bottom toolbar also assigns BOOKMARKI to the focus line, and the Go to Bookmark
button returns to the line named Bookmarkl.

You can also use the Actions Bookmark dialog box to work with line names.

POINT .ABC

Gives the name ABC to the focus line.

POINT .ABC OFF

Removes the name ABC from whatever line of the current file it is assigned to.
.XYZ

Makes the line named XYZ become the focus line.

SET PREFIX

Format

Description

[Set] PREfix ON|OFF|Nulls [Left|Right]
[Set] PREfix Synonym newname oldname

KEDIT default: OFF LEFT
Level: View
Dialog box: Options SET Command (first form of command only)

Save Settings handling: Savable (first form of command only)

The first form of SET PREFIX controls whether KEDIT’s prefix area is displayed and,
if so, whether it is placed at the left or right side of the document window. All prefix
commands are entered in the prefix area. The prefix area is normally displayed as five

236

Chapter 4. The SET Command

See also

Example

Prefix
command
summary

equal signs next to each line in the file area. With NUMBER ON, the equal signs are
not displayed; line numbers of each line in the file area appear instead.

With PREFIX NULLS, if NUMBER OFF is in effect KEDIT displays the prefix area as
five blanks rather than as five equal signs. If NUMBER ON is in effect, PREFIX
NULLS causes leading zeroes in line numbers to be displayed as blanks.

The second form of the SET PREFIX command allows you to define synonyms for pre-
fix commands. This lets you refer to prefix commands using names of your own choos-
ing. Newname is the new name by which you want to refer to the prefix command
oldname. Newname is a string of one to five non-numeric characters.

For example,

PREFIX SYNONYM A F
PREFIX SYNONYM B P

will make “A” act like the ““F”” prefix command and “B”’ act like the “P”’ prefix com-
mand. (You could then think of “A”” and “B” as “After” and “Before”, instead of “F”
and “P” as “Following” and “Preceding”.)

You can have up to fifteen prefix synonyms in effect. Prefix synonyms are global,
affecting all files in the ring.

User’s Guide Chapter 7, “The Prefix Area”, LPREFIX, SET NUMBER, SET
PREFIXWIDTH
PREFIX ON RIGHT

Causes the prefix area to be displayed to the right of the file area.

Here is a summary of the available prefix commands, which are discussed in more
detail in User’s Guide Chapter 7, “The Prefix Area™:

A Add a blank line to your file
Indicate a line that is to be Copied
Delete a line from your file

=l —-Ne!

Indicate the line Following which text will be moved or copied. (Used
in conjunction with “C” or “M”)

Insert a blank line into your file—same as “A”

Lowercase a line

Indicate a line that is to be Moved

-2 = -

Indicate the line Preceding which text will be moved or copied. (Used
in conjunction with “C” or “M”’)

Show excluded lines

Uppercase a line

eXclude a line

T K Cwm

Indicate a line that is to become the new current line

SET PREFIX

237

SET Options

"

<
>
SCALE
TABL
.name
nA or An
nC or Cn
nD or Dn
nlorIn
nL or Ln
nS or Sn
nU or Un
S-n

nX or Xn
n" or"n
n<or<n
n>or >n
CC

DD

LL

MM

Uu

XX

<<

>>

mne

Indicate a line that is to be duplicated

Indicate a line that is to be shifted left 1 column

Indicate a line that is to be shifted right 1 column

Specify that the scale line is to be displayed in this line

Specify that the tab line is to be displayed in this line

Give a line a name

Add n lines

Copy 7 lines

Delete n lines

Insert n lines

Lowercase n lines

Show first n lines represented by shadow line

Uppercase n lines

Show last n lines represented by shadow line

eXclude n lines

Duplicate a line n times

Shift a line # columns to the left

Shift a line #» columns to the right

Placed in the prefix area of the first and last lines to be Copied
Placed in the prefix area of the first and last lines to be Deleted
Placed in the prefix area of the first and last lines to be Lowercased
Placed in the prefix area of the first and last lines to be Moved
Placed in the prefix area of the first and last lines to be Uppercased
Placed in the prefix area of the first and last lines to be eXcluded
Placed in the prefix area of the first and last lines to be shifted left
Placed in the prefix area of the first and last lines to be shifted right
Placed in the prefix area of the first and last lines to be duplicated

n<<or <<n Indicates that a group of lines is to be shifted » columns to the left

n>>or >>n Indicates that a group of lines is to be shifted # columns to the right

n""

or ""n Indicates that a group of lines is to be duplicated » times

238

Chapter 4. The SET Command

SET PREFIXWIDTH

Format

Description

See also

[Set] PREFIXWIDTH n

KEDIT default::5
Level: File
Dialog box: Options SET Command

Save Settings handling: Savable

SET PREFIXWIDTH controls the width of the prefix area, which can be a value in the
range 5 through 9.

This option is useful if you use NUMBER ON in connection with PREFIX ON or
PREFIX NULLS to display line numbers within the files you are editing and you want
to be able to display line numbers larger than 99999, which is the largest that will fit in
the default 5-character width of the prefix area.

SET PREFIX, SET NUMBER

SET PRINTCOLORING

Format

Description

See also

[Set] PRINTCOLORing ON|OFF

KEDIT default: ON
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

With the default of PRINTCOLORING ON, syntax-colored text is printed in color
when PRINTER WINDOWS is in effect and you print to a color printer.

With PRINTCOLORING OFF, KEDIT prints all text in black and white.

The colors KEDIT uses to print syntax-colored text are controlled by SET PCOLOR.

SET PCOLOR, SET PRINTER

SET PRINTCOLORING 239

SET Options

SET PRINTER

Format

[Set] PRINTER WINdows|device CLOSE|NOCLOSE FORM|NOFORM

CONVert |NOCONVert

KEDIT default: WINDOWS CLOSE FORM CONVERT

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

Description SET PRINTER determines whether KEDIT uses your Windows printer driver for
printer output or bypasses the Windows printer driver and sends output directly to your
printer. SET PRINTER also controls some other details of KEDIT’s printer handling,
such as whether your printer is automatically closed after each print operation.

[Set] PRINTER WINdows

This is the default and is the recommended setting for most users. KEDIT uses
your Windows printer driver to send output to your printer. If you have multiple
Windows printers, you can use the File Print Setup dialog box (which is also acces-
sible from the Setup button of the File Print dialog box) to choose the printer that
KEDIT will use. The File Print dialog box’s Font and Margins buttons let you con-
trol the font that KEDIT uses for printer output and the margins that KEDIT uses
on the page.

[Set] PRINTER device

You can bypass the Windows printer and send output directly to LPT1:, LPT2:,
LPT3:, COMI:, or COM2. This is useful primarily if you have files that contain
device-dependent printer escape codes, which are not handled properly by the
device-independent printer handling used when PRINTER WINDOWS is in
effect.

KEDIT has no device-specific printer support. When you send output directly to a
device, KEDIT accesses your printer through standard system file handles and has
no special facilities for recovery from printer errors. For correct operation, your
printer must be attached to the specified port, turned on, and properly initialized
(possibly by using the system’s MODE command before you enter KEDIT).
KEDIT does not control the fonts or margins used on your printer; these are
determined by defaults built into the printer or by printer escape codes that you
imbed in your files.

CLOSE | NOCLOSE

When an application like KEDIT sends output through the Windows Print Man-
ager or to a network printer, your output is not actually printed until the application
““closes” the print file, letting the Print Manager know that all output is complete
and ready to go. By default, SET PRINTER’s CLOSE operand is in effect and
KEDIT automatically closes the printer after each use of the PRINT command.
This is almost always desirable behavior; the exception comes when you want to

240

Chapter 4. The SET Command

Notes

See also

Examples

use multiple PRINT commands for several smaller amounts of data that you would
like to print together as a unit. This case can be handled by using SET PRINTER’s
NOCLOSE option.

FORM | NOFORM

The FORM|NOFORM option controls whether, when KEDIT is printing to a de-
vice (that is, when PRINTER LPT1:, etc. is in effect), KEDIT automatically sends
a formfeed character, forcing a page eject, whenever the printer is closed. With the
default of FORM, KEDIT does send a formfeed character. With NOFORM, form-
feed characters are not automatically sent; if you are using a spooler or network
printer, your system may automatically eject the page anyway, or you may need to
use the Eject or Form Feed button on your printer.

When PRINTER WINDOWS is in effect, KEDIT always sends output to the
printer a page at a time and the FORM|NOFORM option has no effect.

CONVERT | NOCONVERT
Files that you edit with KEDIT are normally displayed using either the ANSI or the
OEM character set. Similarly, your printer is normally setup to print text in the
ANSI character set or in the OEM character set. Incorrect output can be generated
if the character set used by your file does not match the character set used by your
printer.

With SET PRINTER’s CONVERT option, which is the default, KEDIT attempts
to compensate for this by automatically converting the data that it sends to your
printer from OEM to ANSI if you are using an OEM character set for your file and
an ANSI character set for your printer. Similarly, KEDIT converts from ANSI to
OEM during printing if you are using an ANSI font for your file and an OEM font
for your printer, or if you are using an ANSI font for your file and PRINTER WIN-
DOWS is not in effect (since in most cases the default fonts built into printers use
the OEM character set). Use the NOCONVERT option to prevent this conversion
from taking place.

The printer is always closed, and a page eject is always done, when you print your file
by using the File Print dialog box or the Print button on the toolbar, regardless of which
of SET PRINTER’s CLOSE|NOCLOSE or FORM|NOFORM options are in effect.

PRINT, SET PRINTCOLORING

PRINTER WINDOWS CLOSE FORM CONVERT

This is the default; output is sent through the Windows Print Manager, with output
automatically sent to the printer after each PRINT command.

PRINTER LPT1: NOCLOSE NOFORM CONVERT

This setting is closest to the default handling in the text mode version of KEDIT. Out-
put is sent directly to LPT1: and may contain device-specific escape codes. The printer
is not automatically closed, and formfeeds are not automatically sent after each PRINT
command.

SET PRINTER

241

SET Options

SET PRINTPROFILE

Format

Description

[Set] PRINTPROFile fileid
KEDIT default: PRINTPROFILE

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET PRINTPROFILE lets you change the name of the profile executed when the Win-
dows Explorer invokes KEDIT to print an associated file.

You can use the Windows Explorer to specify that KEDIT will be the application used
to print files with certain extensions. Once a file extension has been associated with
KEDIT, you can select a file with that extension in the Windows Explorer and choose
Print from the button 2 context menu to have the file printed by KEDIT. You can also
have KEDIT print the file by dragging the file within the Windows Explorer to your
default printer icon.

When the Windows Explorer uses KEDIT to print a file, KEDIT is invoked with a com-
mand like

KEDITW32 /P fileid

When KEDIT sees /P as its first parameter it takes this a signal to run the profile speci-
fied via the SET PRINTPROFILE option, instead of your normal profile. This special
profile should contain commands to print your file and then exit from KEDIT. An
appropriate default profile, PRINTPROFILE, is built into KEDIT, so most KEDIT
users will not need to change the value of the PRINTPROFILE option.

242

Chapter 4. The SET Command

SET QUICKFIND

Format

Description

[Set] QUICKFIND Respect|Ignore Word|NOWord
Regexp | NORegexp string

KEDIT default: Preserved from previous editing session
Level: Global
Dialog box: None

Save Settings handling: Automatically saved at the end of a session

SET QUICKFIND is specialized command, most often used from within macros, that
sets the value of the search string in the Quick Find toolbar item.

Once the Quick Find string has been set, you can search for it by activating the Quick
Find toolbar item and pressing Enter or by clicking on the Find Next toolbar button.
Changes to the Quick Find string are also reflected in the default string displayed when
you use the Edit Find or Edit Replace dialog boxes. KEDIT automatically updates the
Quick Find string whenever you use Edit Find or Edit Replace or issue a LOCATE or
CLOCATE command from the command line.

The operands for SET QUICKFIND are RESPECT|IGNORE, which determines
whether case will be respected in a search involving the Quick Find string,
WORD|NOWORD, which determines whether a search will be limited to whole word
boundaries, REGEXPNOREGEXP, which determines whether the Quick Find string
will be treated as a regular expression, and finally the string itself. For example, to set
the Quick Find string to “yesterday”’, and to specify that a search involving this string
will ignore case, use word boundaries, and not be treated as a regular expression, you
would use the command

SET QUICKFIND IGNORE WORD NOREGEXP yesterday

The string specified with the SET QUICKFIND command cannot be more than 100
characters long.

SET QUICKFIND

243

SET Options

SET RANGE

Format

Description

Examples

[Set] RANge targetl target2
KEDIT default: The entire file

Level: View

Dialog box: Options SET Command

Save Settings handling: Not savable

Use the SET RANGE command to specify the range of lines in your file within which
KEDIT commands will operate. Target! specifies the first line of the range and target2
specifies the last line of the range.

Normally, KEDIT commands range over your entire file. For example, if you are edit-
ing a 1000-line file, commands can normally affect all lines of your file, from line 1
through line 1000. If you want to spend some time working with only a subset of your
file, for example lines 100 through 200, you can use the SET RANGE command to tell
KEDIT to limit its operations to that portion of your file:

SET RANGE :100 :200

KEDIT will then show you only lines 100 through 200 of your file, and any KEDIT
commands that you issue will operate only within that range of lines. Line 100 will act
very much like the first line of your file, and line 200 will act like the last line of your
file. For example, even though there are 1000 lines in your file, the BOTTOM com-
mand will go to line 200 of your file. Above line 100, KEDIT displays a top-of-range
line, similar to the normal top-of-file line, and lines 1 through 99 of your file are not
shown. Below line 200, KEDIT displays an end-of-range line, similar to the normal
end-of-file line, and lines 201 through 1000 of your file are not shown.

The FILE and SAVE commands will always write your entire file to disk, regardless of
the range in effect. All other KEDIT commands act within the current range, and ignore
lines outside of the range.

When you have finished working with a particular range of lines within your file, you
can use the SET RANGE command to once again include your entire file in the current
range. In our example of a 1000-line file,

SET RANGE :1 :1000

would allow commands to range over your entire file. A more general way of doing
this, which would be independent of the size of your file, would be

SET RANGE -* *

SET RANGE :10 *

Sets the range to extend from line 10 of your file through the end of your file.

244

Chapter 4. The SET Command

SET RANGE -5 5

The line five lines above the focus line becomes the first line of the range, and the line 5
lines below the focus line becomes the last line of the range.

SET RANGE BLOCK

This is handled as a special case. It sets the range to extend from the first to the last lines
of the currently defined block.

SET RECENTFILES

Format

Description

[Set] RECENTFiles n
KEDIT default: 9

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

At the bottom of the File menu is a list of files that you have recently edited. You can
select a file from this list to re-edit it without going into the File Open dialog box.
RECENTFILES determines the maximum number of files that can appear on this list.
By default, up to 9 recently-used files will appear. RECENTFILES can have values in
the range 0 to 25.

SET RECFM

Format

Description

[Set] RECFm Fixed|Varying
KEDIT default: VARYING

Level: File

Dialog box: Options SET Command

Save Settings handling: Not savable

SET RECFM, included for use in specialized situations, controls whether KEDIT
writes varying- or fixed-length lines when files are written to disk by the FILE, SAVE,
and PUT commands, by the autosave facility, and by File Save and related menu items.
When KEDIT writes a file with the default setting of RECFM VARYING, it writes out
all characters through the last nonblank character in each line. (Depending on the
setting of TRAILING, trailing blanks may also be written.) With RECFM FIXED,
KEDIT will write out all lines at the same length (as set by the SET LRECL command).

SET RECFM

245

SET Options

See also

Lines that are less than the current logical record length are padded with blanks. Lines
that are longer than the current logical record length are truncated.

Each line that KEDIT writes with RECFM FIXED normally takes up LRECLA2 bytes
on disk, since an end-of-line sequence, controlled by SET EOLOUT and defaulting to a
carriage return-linefeed pair, is written after each line. A 10-line file, for example, with
LRECL 80, RECFM FIXED, EOLOUT CRLF, and EOFOUT EOL would therefore
take 820 bytes when written to disk.

User’s Guide Chapter 12, “File Processing”, SET LRECL

SET REPROFILE

Format

Description

[Set] REPROFile ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Not savable

Use SET REPROFILE to determine whether your profile should be re-executed when-
ever you start to edit an additional file.

When you first invoke KEDIT, KEDIT assigns values to all SET options for the file
you will edit. These are based on KEDIT’s built-in default settings, as modified by any
changes you have made via Options Save Settings. KEDIT then executes your profile,
which may change some of these options, and reads in your file. If, during your session,
you edit additional files and REPROFILE OFF is in effect, KEDIT copies over the val-
ues of most SET options from the current file to the new file, as discussed in
Section 2.4, “Editing Additional Files”. Then KEDIT loads in the new file. Your profile
is not re-executed.

With REPROFILE ON, when you edit an additional file, the SET options for the new
file are not copied from the current file. Instead, they are set to their default values,
based on KEDIT’s built-in defaults, as modified by your saved settings. Then your pro-
file is re-executed, and finally your file is read in.

Re-executing your profile whenever you begin to edit a new file may slow things down
slightly, but is recommended so that your profile can contain commands that adjust
KEDIT’s settings depending on the extension of the file being edited. With
REPROFILE ON, your profile can set things up properly for each new file added to the
ring. Using the INITIAL() function, your profile can test if it is being executed for the
first time or is being re-executed, and can avoid redefining keys, etc., unnecessarily.

246

Chapter 4. The SET Command

To determine the name of the profile to execute when a new file is loaded with
REPROFILE in effect, KEDIT uses the value of the PROFILE option specified on the
command line involved and, if the PROFILE option is not specified, uses the value of
DEFPROFILE. The default value for DEFPROFILE is WINPROF.KEX. You can use
SET DEFPROFILE or the DEFPROFILE initialization option to specify a different
default profile.

SET REGSAVE

Format

Description

Notes

[Set] REGSAVE STATE |NOSTATE [HISTory|NOHISTory]
KEDIT default: STATE HISTORY

Level: Global

Dialog box: None

Save Settings handling: Not savable

SET REGSAVE determines which information KEDIT updates in its section of the
Windows registry upon termination. Information saved in the registry at the end of a
KEDIT session is used the next time that you run KEDIT to setup the File menu’s list of
recently-edited files, the initial position of KEDIT’s frame window, etc.

The STATE|NOSTATE value controls whether KEDIT updates certain status informa-
tion within the registry at the end of a session. This includes information about the state
(maximized or non-maximized) of KEDIT’s frame and document windows, the size
and position of the frame window, the screen and printer fonts that you are using, etc.
With REGSAVE STATE in effect, the default, this information is updated at the end of
the current session. With REGSAVE NOSTATE, it is not.

The HISTORY|NOHISTORY value controls whether, at the end of the current session,
KEDIT updates the lists of recently-issued commands, recently-edited files,
recently-used Edit Find search strings, etc. that it maintains within the Windows regis-
try. With the default value of HISTORY, the lists are updated; with NOHISTORY they
are not.

e STATE and HISTORY information that is not updated in the Windows registry at
the end of a KEDIT session is not deleted from the registry, but is instead left un-
changed. So if, for example, you put REGSAVE NOSTATE NOHISTORY into
effect and then exit KEDIT, information that was saved in the registry at the end of
your last KEDIT session will remain in the registry, and will be used the next time
you run KEDIT. You can, however, use the REGUTIL command to remove this
information from the registry.

e KEDIT also uses the Windows registry to save information about SET command
options whose values you have changed from their defaults. This information is

SET REGSAVE

247

SET Options

See also

not updated automatically at KEDIT termination, but is instead updated via the
Options Save Settings dialog box.

e If you start KEDIT with the NOREG or NOINI options, REGSAVE NOSTATE
NOHISTORY is the default instead of the usual REGSAVE STATE HISTORY.
The NOREG (or NOINI) option tells KEDIT not to load any information from the
Windows registry but to instead start with default window positions and with
empty history lists.

e For historical reasons SET INISAVE, which does the same thing as SET
REGSAVE, is also available.

NOREG initialization option, REGUTIL

SET RESERVED

Format

Description

Examples

[Set] RESERved line [color] text
[Set] RESERved line OFF

KEDIT default: No reserved lines
Level: File
Dialog box: None

Save Settings handling: Not savable

With SET RESERVED, you can reserve lines of the document window for special fext
that you want KEDIT to display in the current file’s window. You might, for example,
want to display a summary of your function key definitions near the bottom of the doc-
ument window.

The line to be reserved can be specified relative to the top of the document window, the
middle of the document window, or the bottom of the document window; see SET
CURLINE for a discussion of how to do this.

You can also specify the color to be used when displaying the reserved line; see SET
COLOR for a discussion of how colors can be specified. If you don’t specify a color,
KEDIT uses the COLOR IDLINE value to determine the color of the reserved line.

The alternate form of SET RESERVED lets you turn off display of a reserved line.

SET RESERVE -1 WHITE ON BLUE Fl=Help F2=Add F3=Quit F8=Dup

The specified text (starting with “F1="") is displayed, using white text on a blue back-
ground, in the last line of the document window.

248

Chapter 4. The SET Command

SET RESERVE -1 OFF

This removes the reserved line from the display.

SET RIGHTCTRL

Format

Description

[Set] RIGHTCTRL ON|OFF
KEDIT default: OFF

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET RIGHTCTRL lets you use the right Ctrl key found on most keyboards as an Enter
key. (The Enter key on 3270 displays, which many KEDIT users are familiar with, is
located in the same position as the right Ctrl key is on most PC keyboards.)

With RIGHTCTRL ON, whenever you press the right Ctrl key, KEDIT acts as if you
had pressed the Enter key on the numeric key pad, whose KEDIT keyname is
NUMENTER. The default definitions for both ENTER and NUMENTER are the
same, so pressing the right Ctrl key and pressing the ENTER key do the same thing by
default. If you use the right Ctrl key as an Enter key, you may want to redefine the
“real” ENTER key to serve some other purpose.

SET SCALE

Format

Description

[Set] SCALe ON|OFF [line]
KEDIT default: OFF M+1

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

When SCALE ON is in effect, KEDIT displays a ““scale line” in the file area of the doc-
ument window. The scale line, which visibly displays indications of what column text
is in, appears only on your screen and is not a part of your file. The scale line helps you
see what column things are in by indicating where every fifth column is located. Also,
the left and right zone columns are indicated by “<’” and ““>”’ characters, the left and
right margins by “[”” and ““]” characters, the paragraph indent column by a paragraph
symbol, the truncation column by a “T”’, and the column pointer by a ““|””. If the tab

SET SCALE

249

SET Options

See also

Examples

line is being displayed on the same line as the scale line, the current tab column settings
are also indicated on the scale line. (Ifthe same column is serving several purposes, for
example as both the left zone column and the left margin column, only one of the above
indicators is displayed.)

The scale line normally appears just below the middle of the document window, but
you can specify what /ine of the document window it should appear on. The /ine can be
specified relative to the top of the document window, the middle of the document win-
dow, or the bottom of the document window; see SET CURLINE for a discussion of
how to do this.

SET TABLINE

SCALE ON M-1
Displays the scale line one line above the middle of the document window.
SCALE ON

Displays the scale line in the default location (or in the location last set by issuing
“SCALE ON line”).

SET SCOPE

Format

Description

[Set] SCOPE All|Display
KEDIT default: DISPLAY

Level: View

Dialog box: Options SET Command

Save Settings handling: Not savable

Using KEDIT’s selective line editing facilities, you can exclude certain portions of
your file from your display. With SCOPE DISPLAY, the default, lines that are
excluded from display are also excluded from processing by most KEDIT commands;
these commands act as if excluded lines were not present in your file. With SCOPE
ALL, KEDIT commands operate on all lines of your file, even though some of them
may be excluded from display. SCOPE ALL is rarely used except in specialized situa-
tions within macros. In most situations the default of SCOPE DISPLAY is appropriate.

While most commands avoid excluded lines when SCOPE DISPLAY is in effect, there
are a few exceptions. The FILE and SAVE commands and menu items that write your
file to disk always operate on your entire file, writing even excluded lines to disk. The
SORT command and the Actions Sort dialog box sort all lines in the target area of your
file, even though some of these lines may be excluded lines.

250

Chapter 4. The SET Command

See also

Examples

When SCOPE ALL is in effect, the current line is always displayed, regardless of its
selection level.

The ALL command with a target operand automatically puts SCOPE DISPLAY into
effect whenever it is successfully executed, as does the Edit Selective Editing dialog
box when it successfully matches a string that you specify.

User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, SET
DISPLAY, SET SELECT, SET SHADOW

ALL /Lincoln/
DELETE 5

The ALL command selects all lines of your file containing ““Lincoln”, makes the first
such line become the focus line, and puts SCOPE DISPLAY into effect. Since SCOPE
DISPLAY is in effect, the DELETE command operates only on lines that are selected,
so it deletes the first five lines containing ““Lincoln”.

ALL /Lincoln/
SET SCOPE ALL
DELETE 5

After lines containing ““Lincoln” are selected, the SET SCOPE ALL command tells
KEDIT that commands should operate on all lines of your file. The DELETE command
therefore deletes the focus line and the four lines below it, for a total of five lines,
regardless of whether they contain “Lincoln”.

SET SCREEN

Format

Description

[Set] SCReen n [Horizontal|Vertical]
[Set] SCReen m Split

KEDIT default: 1

Level: Global

Dialog box: None

Save Settings handling: Not savable

SET SCREEN lets you specify the number of document windows that you want to have
displayed within KEDIT’s frame window, and it arranges the windows in a tiled fash-
ion so that they completely fill the frame window.

SET SCREEN is provided mainly for compatibility with the text mode version of
KEDIT, which only supports tiled windows. SET SCREEN works only when OFPW
(““One File Per Window””) OFF is in effect, since OFPW OFF makes KEDIT for Win-
dows use the same rules for placing files in document windows as text mode KEDIT

SET SCREEN

251

SET Options

does. The Window Tile and Window Cascade menu items, and the Window Arrange
dialog box, provide useful alternative methods for arranging your document windows.

In text mode KEDIT, document windows are always tiled and the SET SCREEN
command provides the only method for changing how many document windows are
displayed and how they are arranged. With KEDIT for Windows, you can easily create
new document windows (for example, with Window New), you can use the mouse to
move and resize windows, So the window arrangement that you specify with SET
SCREEN may not remain permanently in effect in the way that it does in text mode
KEDIT.

[Set] SCReen n [Horizontal|Vertical]
With the first form of the SET SCREEN command, you specify the number of doc-
ument windows to display within the frame window. If HORIZONTAL is speci-
fied (or if nothing is specified, since HORIZONTAL is the default) the frame
window will be split horizontally into » document windows. If you specify VER-
TICAL, the frame window is split vertically into # document windows.

[Set] SCReen m Split
With the second form of the SET SCREEN command, you specify the number of
horizontal areas that are to appear on your screen. SPLIT indicates that each of
these horizontal areas is to be split down the middle into two windows, giving you
a total of 2m windows.

See also User’s Guide Section 3.5, “Editing Multiple Files”, SET OFPW

Examples SCREEN 2
This gives you two document windows, one in the upper half of the frame window and
the other in the lower half.
SCREEN 2 V
This gives you two frame windows, one in the left half of the frame window and the
other in the right half.
SCREEN 3 S
This divides the frame window into three horizontal areas, each split vertically, giving
you a total of six document windows.

252 Chapter 4. The SET Command

SET SCROLLBAR

Format [Set] SCROLLbar ON|OFF [Vertical|Horizontal|BOTH]
KEDIT default: ON BOTH
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description SET SCROLLBAR controls the scroll bars KEDIT normally displays on your docu-
ment windows.

The first operand controls whether scroll bars are displayed at all. The second operand

lets you display only a VERTICAL scroll bar, only a HORIZONTAL scroll bar, or
BOTH vertical and horizontal scroll bars.

See also User’s Guide Chapter 4, “Keyboard and Mouse”

SET SELECT

Format [Set] SELect [+|-]1n [target]
KEDIT default: All lines have selection level 0
Level: File
Dialog box: Options SET Command (for focus line only)

Save Settings handling: Not savable

Description Use the SET SELECT command to set the selection level of lines in your file.

Each line of your file has a number, called its selection level, associated with it. Selec-
tion levels can range from 0 to 255. You can set the selection level of lines in your file
by using the SET SELECT command. (The ALL command, the Edit Selective Editing
dialog box, and the X and S prefix commands also manipulate the selection levels of
lines in your file.) Using the SET DISPLAY command, you specify the range of selec-
tion levels of lines you want selected for display. Lines whose selection levels fall
within the range specified by the SET DISPLAY command are selected for display.
Lines whose selection levels are outside this range are excluded from your display and,
if SCOPE DISPLAY is in effect, are excluded from processing by most KEDIT
commands.

SET Options

SET SELECT 253

SET SELECT affects selection levels of lines in the specified target area. If no target is
specified, SET SELECT sets the selection level of the focus line.

[Set] SELect n target
Sets the selection level of lines in the target area to n.

[Set] SELect +n target
Adds n to the selection level of lines in the farget area. (If the result would be
greater than 255, the selection level is set to 255.)

[Set] SELect -n target
Subtracts n from the selection level of lines in the target area. (If the result would
be less than 0, the selection level is set to 0.)

Note that, like most other KEDIT commands, SET SELECT operates only on lines
within the current SCOPE. If SCOPE DISPLAY is in effect, SET SELECT will not
operate on excluded lines.

All lines in your file initially have a selection level of 0. When a new line is added to
your file, it gets a selection level equal to the n/ value of the current DISPLAY setting
(DISPLAY n1 n2). When a line is copied, duplicated, or split, the resulting new line is
given the same selection level as the line which is copied, duplicated, or split.

See also User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, SET
DISPLAY, SET SCOPE, SET SHADOW
Examples SET SELECT +1
KEDIT adds 1 to the selection level of the focus line.
SCOPE ALL
SELECT 2 ALL
KEDIT gives all lines of your file a selection level of 2.
SCOPE DISPLAY
SELECT 2 ALL
KEDIT gives all selected lines of your file a selection level of 2.
SET SHADOW
Format [Set] SHADow ON|OFF
KEDIT default: ON
Level: View
Dialog box: Options SET Command
Save Settings handling: Savable
254 Chapter 4. The SET Command

Description SET SHADOW controls how excluded lines are represented on your display. With
SHADOW ON, the default, KEDIT displays a shadow line to represent each group of
one or more excluded lines. The shadow line lets you see where excluded lines occur in
your file, and indicates how many lines are excluded. With SHADOW OFF, KEDIT
does not display shadow lines; excluded lines are completely omitted from your
display.

Excluded lines most often result from use of the ALL command, the Edit Selective
Editing dialog box, or of the X prefix command.

See also User’s Guide Chapter 8, “Selective Line Editing and Highlighting”, ALL, SET
DISPLAY, SET SCOPE, SET SELECT

SET SHARING

Format [Set] SHARING DENYWRITE |DENYNONE [DENYWRITE |DENYREADWRITE]
KEDIT default: DENYWRITE DENYREADWRITE
Level: Global
Dialog box: Options SET Command

Save Settings handling: Savable

Description SET SHARING controls the sharing modes used by KEDIT when it reads a file into
memory and when it locks a file.

The first operand controls the sharing mode used when KEDIT reads a file, which hap-
pens when you begin to edit a file without file locking in effect, when you load a macro
or .KML file, and when you use the GET command.

DENYWRITE
This is the default sharing mode used when reading files. It means that the at-
tempted read will fail if any other program has write access to the file and that no
other program can begin to write to the file while KEDIT is reading it.

DENYNONE
KEDIT will attempt to read the file regardless of whether other programs have
write access to it. The read will still fail if some other process has exclusive access
to the file. Note that with DENYNONE there is a chance that the file may not be
read in properly, since it is possible that another program might change the file
while KEDIT is in the process of reading it.

SET Options

The second operand controls the sharing mode used when KEDIT locks a file. KEDIT
locks a file when you begin to edit a file and LOCKING ON is in effect or you specify
the LOCK option, and when you use the LOCK command to lock a file that is already
in the ring.

SET SHARING 255

See also

DENYREADWRITE
This is the default sharing mode used when locking files. It means that KEDIT will
have exclusive access to the file while it is locked. If any other programs are using
the file when the lock is requested, the request will fail. Once the lock has been ob-
tained, no other programs will be able to access the file.

DENYWRITE
KEDIT will be able to lock the file as long as no other program is currently writing
to the file or preventing write access to the file. While the file is locked, no other
program will be able to begin writing to the file or open the file in deny write mode.
Other programs will be able to read from the file. Note that with DENYWRITE
there is a chance that the file may not be read properly by these other programs,
since they may try to read from the file while you are saving changes to disk.

There is no operand to control the sharing modes used when KEDIT writes a file that
you are editing to disk when file locking is not in effect. In this case, KEDIT always
requires exclusive access to the file.

User’s Guide Chapter 12, “File Processing”

SET STATUSLINE

Format

Description

See also

[Set] STATUSLine ON|OFF
KEDIT default: ON

Level: Global

Dialog box: Options SET Command

Save Settings handling: Savable

SET STATUSLINE lets you control whether or not KEDIT displays a line of status
information at the bottom of your frame window.

With the default setting of STATUSLINE ON, KEDIT displays a status line at the bot-
tom of your frame window. The status line is used to display your position in the cur-
rent file, the number of alterations and undoable changes made to the file, the size of the
file, the number of files you are editing, the number of document windows you are

using, whether you are in Insert Mode or Overtype Mode, and whether the current file
is locked.

Other information that can be displayed on the status line is optional: With CLOCK
ON, the status line gives the time of day. With HEXDISPLAY ON, the status line dis-
plays the character code, in hexadecimal and in decimal, for the character at the cursor
position.

SET CLOCK, SET HEXDISPLAY

256

Chapter 4. The SET Command

SET STAY

Format [Set] STAY ON|OFF
KEDIT default: ON
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description The STAY option controls the positioning of the focus line after you attempt to locate a
string target or string column target or after you use one of the commands listed below.

With STAY OFF (and assuming WRAP is OFF), an unsuccessful LOCATE,
CLOCATE, TFIND, or Edit Find operation, makes the end-of-file line become the new
focus line. (The top-of-file line is the new focus line after an unsuccessful backward
search.)

With STAY ON, the focus line is unchanged after an unsuccessful LOCATE,
CLOCATE, TFIND, or Edit Find operation.

With STAY OFF, the last line scanned or affected by the ALTER, ANSITOOEM, CEN-
TER, CHANGE, COMPRESS, COUNT, EXPAND, FIND, FINDUP, LEFTADJUST,
LOWERCASE, NFIND, NFINDUP, OEMTOANSI, PRINT, PUT, RIGHTADJUST,
SET LINEFLAG, SET SELECT, SHIFT, UPPERCASE, and SORT commands
becomes the new focus line after the command has completed. This is also true for the
Edit Replace and Actions Sort dialog boxes.

With STAY ON, the location of the focus line is unchanged after these commands
finish.

SET STREAM

Format [Set] STReam ON|OFF
KEDIT default: ON
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description The setting of STREAM affects the search for string column targets when you use the
CLOCATE or CDELETE commands. With STREAM OFF, a search for a string col-
umn target is limited to the focus line. With STREAM ON, all lines through the end of
the file (or the whole file, if you have set WRAP ON) are searched.

SET STREAM 257

SET Options

Note that the setting of STREAM only affects the operation of the CLOCATE and
CDELETE commands, which are the only two commands whose operands are column
targets. The LOCATE command and the Edit Find dialog box are never limited to the
focus line and are not affected by SET STREAM.

SET SYNONYM

Format

Description

[Set] SYNonym ON|OFF
[Set] SYNonym [LINEND char] newname [n] definition

KEDIT default: ON
Level: View
Dialog box: Options SET Command (SYNONYM ON|OFF only)

Save Settings handling: Savable (SYNONYM ON|OFF only)

Use the SET SYNONYM command to control KEDIT’s synonym facility.

The first form of the SET SYNONYM command controls whether KEDIT does syn-
onym processing at all. With SYNONYM ON, the default, synonym processing (as
described below) is done for commands issued from the command line (and for com-
mands issued from macros via the SYNEX command). With SYNONYM OFF, no
synonym processing is done and KEDIT acts as if no synonyms have been defined.
Note that synonym processing is normally bypassed for commands issued from mac-
ros, unless you use the SYNEX command.

The second, more frequently used, form of SET SYNONYM lets you change the
names and definitions of KEDIT’s commands. After an optional LINEND character
specification (discussed below, and usually not necessary), you give the name which
you want a command to be known by. You can follow this with the number of charac-
ters that KEDIT will accept as the minimal truncation for this name. Then you tell
KEDIT what the command with this name should do.

For example, suppose that you wish KEDIT’s LOCATE command were called
SEARCH. You would issue the command

SYNONYM SEARCH LOCATE
Then, instead of
LOCATE /abc/

you could enter

258

Chapter 4. The SET Command

SEARCH /abc/

Note that KEDIT does only one level of synonym processing. When KEDIT sees that
SEARCH is a synonym for LOCATE, it executes the LOCATE command without
looking to see if LOCATE is itself a synonym for some other command.

After specifying the newname that you want for a command, you can specify the num-
ber n of characters that will be accepted as its minimal truncation. In the example
above, SEARCH would have to be spelled out in full. With

SYNONYM SEARCH 3 LOCATE

SEARCH could be given as “SEA”, “SEAR”, “SEARC”, or “SEARCH”.

KEDIT’s synonym processing can convert what you enter as one command into more
than one command. For example, suppose you want to have a command called FIRST
that finds the first occurrence of a string in your file. You need to specify a LINEND
character to tell KEDIT where each command in your synonym definition ends. (This
is different from the character controlled by SET LINEND, and is in effect only during
the affected SET SYNONYM command.) The FIRST command will go to the top of
the file and then look for the specified string:

SYNONYM LINEND + FIRST TOP + LOCATE

Here, “+” is set as the LINEND character. Then two commands (“TOP‘ and
”LOCATE”) are issued, with the ““+”” used to indicate the separation between the two
commands. You could then enter

FIRST /X/

to find the first occurrence of ““X”” in your file. Any operands on the command that you
enter are placed by KEDIT at the end of the last command in the synonym definition, so
that ““/X/” is taken as an operand for the LOCATE command and not of the TOP
command.

If your synonym definition ends with a special character, any operands you give are
placed immediately after the special character. If it ends with an alphabetic or numeric
character, KEDIT adds a blank after the synonym definition and then appends your
operands.

The newname given in your synonym definition can be a single special character or it
can be a string of one to ten alphabetic characters. You can define up to 80 synonyms.
The synonyms are global, affecting all files in the ring.

Query SYNonym *

will display all the SYNONYM definitions currently in effect.

You can cause KEDIT to bypass synonym processing for a command issued from the
command line by preceding it with “COMMAND”. For example, suppose that you
have made COPY a synonym for some other command, but that you now want to exe-
cute the “real” KEDIT COPY command, bypassing the synonym.

SET SYNONYM

259

SET Options

COMMAND COPY :12

causes KEDIT to process the command COPY :12, without first looking for synonyms
for COPY. On the other hand, synonym processing is bypassed for commands issued
from within a macro, so “COPY :12” issued from a macro would execute KEDIT’s
COPY command, and not your synonym. “SYNEX COPY :12”” would cause KEDIT
to look for synonyms of COPY.

See also COMMAND, SYNEX

SET TABLINE

Format [Set] TABLine ON|OFF [line]
KEDIT default: OFF -2
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Description When TABLINE is ON, a “tab line” is displayed in the specified /ine of the document
window. This tab line indicates the position of each tab column (controlled via the SET
TABS command) by showing a “T” in the appropriate column.

The tab line normally appears near the bottom of the file area, but you can specify what
line of the document window it should appear on. The /ine can be specified relative to
the top of the document window, the middle of the document window, or the bottom of
the document window; see SET CURLINE for a discussion of how to do this.

If the tab line is set to appear on the same line as the scale line, then the tab information

appears on the scale line, intermixed with the information normally displayed on the
scale line.

See also SET SCALE, SET TABS

260 Chapter 4. The SET Command

SET TABS

Format

Description

See also

Example

[Set] TABs nl [n2 n3 ...]
[Set] TABs INCR n
[Set] TABs nl [n2 ...] INCR n

KEDIT default: INCR 8
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

Use SET TABS to set your tab columns. Whenever you press the Tab key (or, if PRE-
FIX ON is in effect, the F4 key), KEDIT moves the cursor forward to the next tab col-
umn. Whenever you backtab (which, unless PREFIX ON is in effect, is normally done
by pressing Shift+Tab), the cursor moves backward to the previous tab column.

Initially, tab columns are set up every eight columns, starting at column 1. Issue the
SET TABS command if you want to change this.

With the first form of the SET TABS command, you enter a list of up to 32 tab columns.
The numbers you give must be in ascending order and can range from 1 to the value of
the WIDTH initialization option.

With the second form of the SET TABS command, you specify an increment n and
KEDIT sets tabs in column 1 and every n columns thereafter.

The third form of the SET TABS command lets you give a list of specific tab columns
and then specify that tabs will be set every n columns thereafter.

Using SET TABS is similar to defining tab stops on a typewriter. It can be very useful if
you need to enter text in specific columns. For example, you may be entering tables
where entries must be lined up in specific columns, or you may be using a program-
ming language that requires parts of your program to be in specific columns.

Note that KEDIT does not actually enter a tab character (character code 9) into your file
when you press the Tab key. KEDIT merely moves the cursor to the next tab column.
Your TABS setting also has no effect on how tab characters are processed by KEDIT
when it reads files from disk or writes them out to disk; this processing is controlled by
SET TABSIN and SET TABSOUT.

COMPRESS, EXPAND, SET TABSIN, SET TABSOUT, SET TABLINE

TABS 1 10 16 30 40 INCR 5

Columns 1, 10, 16, 30, and 40, and then columns 45, 50, 55, 60, etc., are set up as tab
columns.

SET TABS

261

SET Options

SET TABSAVE

Format

Description

[Set] TABSAVE ON|OFF
KEDIT default: OFF

Level: File

Dialog box: Options SET Command

Save Settings handling: Not savable

SET TABSAVE is a specialized command that deals with an issue affecting a small
number of KEDIT users.

KEDIT's TABSIN/TABSOUT processing can sometimes lead an “unchanged” line to
be written back to disk differently than when it was read in — existing tabs can be
replaced with spaces, or vice versa. Some version control systems undesirably see
these all as “‘changed” lines.

TABSAVE ON avoids this by checking to see whether the current line is subject to the
problem and, if so, by saving an exact copy of the character sequence of the original
line. Later, when the file is saved, and an “unchanged” line is about to be written back
to disk, KEDIT doesn't write the line out in the normal way, but instead writes back its
saved copy of the exact original version of the line.

To use TABSAVE, you need to do the following:

e Put TABSIN ON into effect (or use TABSIN ON n, if you assume tab stops at
other than the every-8-columns default)

e Put TABSAVE ON into effect.

e Put TABSOUT ON into effect (or use TABSOUT ON n) if you want tab compres-
sion on newly added lines or lines whose contents change during the editing ses-
sion. If you want all new/changed lines to be saved without tab compression, you
should use TABSOUT OFF n (where n matches the TABSIN ON = setting).

Things will work properly only if all three of these (including the TABSOUT ON|OFF
n setting) are in effect when you load the file involved. Furthermore, you will probably
only want to put TABSAVE ON into effect for certain file extensions, because it makes
files take twice as much room in memory. You would therefore want something like the
following in your WINPROF.KEX file:

262

Chapter 4. The SET Command

See also

'reprofile on'

if fext.1() = 'C' | fext.1() = 'H' then do
'tabsin on'
'tabsout on'
'tabsave on'

end

KEDIT will then keep track of the original contents of all lines of your file. When you
save the file, KEDIT will compare the current contents and the original contents of
each line of the file, ignoring changes due to tabs versus space characters. If the con-
tents of a line have not changed, the original version of the line will be written back to
disk preserving its original tab characters. If the contents of a line have changed, the
updated version of the line will be written back to disk, with its tab compression deter-
mined by the TABSOUT setting.

One point to be aware of is that to preserve the tabs, the TABSAVE handling discussed
above always needs to be in effect for the files in question — if you manage even once to
edit and save the file without the TABSAVE handling, the tabs will of course get
changed.

SET TABSIN, SET TABSOUT

SET TABSIN

Format

Description

[Set] TABSIn ON|OFF|TABQUOTE [n]
KEDIT default: OFF 8

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

To save space on disk, some text editors compress strings of blanks into tab characters
(character code 9) when writing files to disk. (If you set TABSOUT ON, KEDIT will
also perform this compression.) When TABSIN ON is in effect, KEDIT automatically
handles this situation, expanding to strings of blanks any tabs that it finds when it reads
afile in.

When TABSIN ON causes tab expansion, KEDIT normally assumes tab stops every 8
columns (columns 1, 9, 17, etc.). These are standard tab settings used by many pro-
grams. The DOS TYPE command, for example, processes tab characters using these
tab stops. You can, however, set the tab increment used by TABSIN to some number 7
other than 8 if you need to process files stored with different tab stops. Note that the tab
columns used with TABSIN processing are independent of the tab columns used while
you are editing your file (which are controlled by SET TABS) or when you write a file
out (when SET TABSOUT is relevant).

SET TABSIN

263

SET Options

See also

TABSIN OFF is the default. You would want to leave TABSIN OFF if your file con-
tains tab characters that you want to leave intact and unexpanded. To take effect when
your file is read in, TABSIN ON must be one of your saved settings or must be issued
from your profile.

With TABSIN ON, KEDIT expands all tab characters, including those found after the
first single quote or double quote character on a line. With TABSIN TABQUOTE,
KEDIT expands all tab characters in a line up to the first single or double quote, but
leaves tabs after the first quote on a line unexpanded.

SET TABSIN also affects how KEDIT expands tab characters in text from other appli-
cations pasted into KEDIT via the CLIPBOARD. If TABSIN ON or TABSIN
TABQUOTE (which in this situation is treated like TABSIN ON) is in effect, tabs are
expanded according to TABSIN’s tab stops. With TABSIN OFF, tabs are expanded
according to the current SET TABS setting.

User’s Guide Chapter 12, “File Processing”, CLIPBOARD, COMPRESS, EXPAND,
SET TABSAVE, SET TABSOUT

SET TABSOUT

Format

Description

[Set] TABSOut ON|OFF [n]
KEDIT default: OFF §

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

If you set TABSOUT ON, KEDIT will compress strings of blanks into tab characters
(character code 9) when it writes your file to disk. Your file may then take up less disk
space. If TABSIN ON is in effect when such a file is read back in by KEDIT, the tab
characters will be expanded back into blanks.

When TABSOUT ON causes blank compression, KEDIT normally assumes tab stops
every eight columns (columns 1, 9, 17, etc.). These are standard tab settings used by
many programs. The DOS TYPE command, for example, processes tab characters
using these tab stops. You can, however, set the tab increment used by TABSOUT to
some number 7 other than 8 if you need to store files with different tab stops. Note that
the tab columns used with TABSOUT processing are independent of the tab columns
used when your file is read in (SET TABSIN controls this) and while you are editing
your file (where SET TABS is relevant).

You may want to leave the default value of TABSOUT OFF in effect because many
programs do not properly handle files with tab compression, and the disk space saved
may not be worth the extra confusion.

264

Chapter 4. The SET Command

See also

Even with TABSOUT ON, KEDIT does not compress blanks appearing after the first
single quote or double quote on a line. Also, even with TABSOUT ON, single blanks
are not changed to tabs.

User’s Guide Chapter 12, “File Processing”, COMPRESS, EXPAND, SET
TABSAVE, SET TABSIN

SET THIGHLIGHT

Format

Description

[Set] THIGHlight ON|OFF
KEDIT default: ON

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

SET THIGHLIGHT (““Target HIGHLIGHT, pronounced ’tee highlight’’) controls
KEDIT’s target highlighting facility.

With THIGHLIGHT ON, when the LOCATE, CLOCATE, or TFIND commands, or
the Edit Find dialog box find a string target, KEDIT highlights it on your display.

The target remains highlighted until you issue another command from the command
line, until another LOCATE, CLOCATE, or TFIND command is executed, until
another Edit Find operation takes place, until you add or delete a line in your file,
change the highlighted line, mark a block, or you issue the RESET THIGHLIGHT
command (normally assigned, along with RESET BLOCK, to Alt+U).

The color used to highlight the target is determined by SET COLOR THIGHLIGHT.

SET TIMECHECK

Format

[Set] TIMECHECK ON|OFF
KEDIT default: ON

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET TIMECHECK 265

SET Options

Description

See also

Every disk file has associated with it a timestamp, indicating when the file was last
changed. (This is the same as the date and time displayed for a file by the DIR
command.)

SET TIMECHECK controls what happens when the timestamp that a file had when
you began to edit it differs from the timestamp that the disk copy has when you try to
FILE or SAVE it. With TIMECHECK ON, the default, you get a message warning you
that the timestamp has changed. This lets you know that some other program or
network user may have changed the disk file while you were editing it. You can use the
FFILE or SSAVE commands if you want to write the file to disk despite this. With
TIMECHECK OFF, the check is not performed.

If you use File Save or a related menu item to save your file to disk with TIMECHECK
ON and the timestamps do not match, KEDIT displays a dialog box that asks whether
you want to save the file anyway.

After a successful FILE or SAVE, both the disk file’s timestamp and KEDIT’s internal
record of the timestamp are updated.

SET TIMECHECK lets other programs or users change a file you are editing, and then
warns about what has happened when you try to write the file to disk. You can use
KEDIT’s file locking facility, controlled by SET LOCKING, to prevent such changes
from occurring.

User’s Guide Chapter 12, “File Processing”, SET LOCKING

SET TOFEOF

Format

Description

[Set] TOFEOF ON|OFF
KEDIT default: ON

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

With TOFEOF ON, the default, KEDIT displays the top-of-file and end-of-file lines on
your display in the usual way. With TOFEOF OFF, KEDIT does not display the normal
top-of-file and end-of-file lines, but instead displays blank lines in their place.

You can control the color of the top-of-file and end-of-file lines with the SET COLOR
TOFEOF command.

SET TOFEOF is provided for specialized situations and is rarely used.

266

Chapter 4. The SET Command

SET TOOLBAR

Format [Set] TOOLBAR ON|OFF Top|Bottom|BOTH
KEDIT default: ON TOP
Level: Global
Dialog box: Options SET Command
Save Settings handling: Savable
Description SET TOOLBAR determines whether KEDIT displays toolbars, which are sets of but-
tons that you can select with the mouse to carry out common operations.
The first operand, ON or OFF, determines whether toolbars are displayed at all. The
second operand determines whether, when toolbars are displayed, they should be dis-
played at the TOP, the BOTTOM, or BOTH the top and bottom of the frame window.
The top and bottom toolbars display different sets of buttons. Useful default toolbar
layouts are built into KEDIT, and you can use the SET TOOLSET command (in con-
nection with the SET TOOLBUTTON command) to define your own toolbar contents.
See also SET TOOLBUTTON, SET TOOLSET
SET TOOLBUTTON
Format [Set] TOOLButton name visual [COND ccc] /helpl/[help2/]
KEDIT default: See the table below
Level: Global
Dialog box: None
Save Settings handling: Not savable
Description Use SET TOOLBUTTON to define the buttons and other items that can appear on a

toolbar. For each button, you specify the name of that button, how it will look when it is
displayed on a toolbar, any conditions under which the button should be disabled, and
the help information displayed for the button.

A number of TOOLBUTTON definitions are built into KEDIT and are used on the
default toolbars. Use QUERY TOOLBUTTON * to see all of the current toolbutton
definitions. You can use the SET TOOLBUTTON command to modify these default
TOOLBUTTON definitions or to define new buttons of your own. You can then use the

SET TOOLBUTTON 267

SET Options

SET TOOLSET command to specify which of your buttons will appear on the top or
bottom toolbar and how they will be arranged on the toolbar.

Here is a sample TOOLBUTTON command:
SET TOOLBUTTON ADDLINE ADDLINE.BMP /Add Line/

This tells KEDIT to define a button called ADDLINE. When displaying this button on
the toolbar, KEDIT uses the image in the bitmap file ADDLINE.BMP. The COND
operand, which specifies conditions in which the button should be disabled, is omitted
here, so the button is always enabled. When the mouse pointer is positioned over this
button, KEDIT will display the help information ““Add Line” in a popup box and in the
status line.

Here are the components of the SET TOOLBUTTON command:

Name
The name is used for two things:

First, when you use the SET TOOLSET command to control which buttons appear
on the toolbar, you give the names of all of the buttons involved. In the example
above, ADDLINE is the name of the button and ADDLINE must be specified in a
SET TOOLSET command before the button will be displayed on a toolbar.

Second, whenever you click on a toolbar button, KEDIT runs a macro called
TOOL_name (that is, “TOOL_" followed by the name of the button). Macros for
the default toolbar buttons are built into KEDIT, but you are free to redefine them.
If you define your own toolbar buttons, you will also need to define the
TOOL _name macros involved, which must be in-memory macros. In the above
example, you would need to define a macro called TOOL_ADDLINE.

Visual
The visual representation of a toolbar button can be specified in four ways:

e Builtin

You can give the name of one of the predefined toolbar bitmap images built
into KEDIT, for example the NEW bitmap (used for the New File toolbar but-
ton) or the OPEN bitmap (used for the Open File toolbar button).

e Filename. BMP

You can give the name of a bitmap file on disk. The file extension is normally
.BMP, and KEDIT uses the same search order to look for these files as it does
for macros.

You can create your own bitmaps using a paint program or a resource editing
program that can handle .BMP files. The bitmaps can be any size that you like,
but all of KEDIT’s built-in buttons are 16 pixels wide by 15 pixels high, and it
is possible that in future versions of KEDIT we will need to standardize on a
fixed bitmap size like this. Two sample bitmap files, ADDLINE.BMP and
DELLINE.BMP are supplied with KEDIT and installed by default in the

268

Chapter 4. The SET Command

SAMPLES subdirectory of the main KEDITW directory. The example above
uses the sample ADDLINE.BMP file.

o /Text/

Instead of a bitmap image, KEDIT can display a button containing the fext you
specify. Slash (““/*’) characters are normally used to delimit the text, but you
can use any special character other than backslash (“\’’) that does not appear
within the text.

e QUICKFIND

The name QUICKFIND is given special handling; it designates the Quick
Find combo box on the default toolbar, used to search for text. All of the other
toolbar items are buttons that run the TOOL name macro in response to a
mouse click. When you select the Quick Find toolbar item, no macro is exe-
cuted; Quick Find is instead handled directly by special code within KEDIT.
Quick Find can only appear on the top toolbar, and can only appear there once.

COND ccc

Use COND, followed by a string of one or more characters, to specify conditions
under which the button will be disabled. COND is used by all of KEDIT’s default
toolbutton definitions, but it is optional and you may want to ignore it if you are
just getting started with SET TOOLBUTTON. If COND is omitted, the toolbutton
is always enabled and the associated TOOL name macro is always run when the
button is selected.

The table near the end of this description lists each of the conditions that you can
specify, and the character corresponding to the condition. For example, condition
A means the current document window is minimized and condition B means that
the current file is empty. So a SET TOOLBUTTON command specifying COND
AB would mean that the button should be disabled if the document window is min-
imized or the file is empty. If you do aQ TOOLBUTTON * to look at KEDIT’s de-
fault toolbutton definitions, you will see that many of the default buttons are
disabled under exactly these conditions.

When a button is disabled, KEDIT displays the reason why (that is, the reason cor-
responding to the first condition in the list that you specified that turns out to be
true) on the status line, instead of the normal help for the button, and beeps at you if
you try to select that button. The TOOL_name macro associated with the button is
not executed.

/helpl/[help2/]

TOOLBUTTON definitions also include the help text displayed by KEDIT when
the mouse pointer is positioned over the button. Help is displayed in two places: in
a popup box near the tool button, and on the status line. You can specify either a
single help string to be displayed in both places, or you can specify a pair of help
strings, with the first string displayed in the popup box and the second string, usu-
ally the longer of the two, displayed on the status line. Slash (““/””) characters are
normally used to delimit the text, but you can use any special character that does
not appear within the text.

SET TOOLBUTTON

269

SET Options

Conditions

In our example above, the help text is given as
/Add Line/

The string ““Add Line” is used as the help text in both the popup box and on the
status line. Had the example instead used

/Add Line/Add a new line below the focus line/

the second string would be used as the status line help. The default toolbuttons all
use the popup help box to display a short title for the toolbutton, and use the status
line for more detailed information.

The file DEFTOOLB.KEX, in the SAMPLES subdirectory of the main KEDITW
directory, has commands corresponding to all of the default SET TOOLSET and SET
TOOLBUTTON definitions.

Here is a table of the conditions, and the character corresponding to them, used with the
optional COND operand of SET TOOLBUTTON:

Char Condition

A Current document window is minimized

Current file is empty

No files in the ring

Only one file in the ring

Only one document window

No minimized document windows

No non-minimized document windows

No selection (non-persistent block) in the current file

No block (persistent or non-persistent) in the current file

No block in any file

No block or command line selection in the current file

No block or command line selection in any file

No line block in the current file

No line block in any file

No box block or one-line stream block in the current file

No box block or one-line stream block in any file

No stream block in the current file

No stream block in any file

No line

Hwn mBROMEOIZECR—w—~Z|QMHo”0w

Nothing to Undo

270

Chapter 4. The SET Command

See also

Examples

Char Condition

U Nothing to Redo

There is no text in the clipboard

Clipboard Cut and Copy not currently possible

Bookmark]1 is not defined

Bookmark? is not defined

N [< X = |<

Bookmark3 is not defined

If any conditions at all are specified, condition C is also applied and the toolbutton is
disabled if there are no files in the ring. You would therefore only need to specify con-
dition C for a button that is disabled only when there are no files in the ring.

SET TOOLBAR, SET TOOLSET

"TOOLB BLKUPPER BLKUPPER COND AI /Uppercase Block/Uppercase block/"
"DEF TOOL_BLKUPPER 'uppercase block'"

This is the default definition for the Uppercase Block button on KEDIT’s default bot-
tom toolbar and for its associated macro. The two commands are quoted as they would
be if included in a macro. The button’s name is BLKUPPER; it is displayed as a
bitmapped icon called BLKUPPER (this icon is built into KEDIT); the button is dis-
abled if conditions A (the document window is minimized) or I (there is no block in the
current file) are true.

"TOOLB REV /Reverse/ /Reverse Line/Reverse line"s contents/"
"DEF TOOL REV 'replace' reverse(curline.3())"
“TOOLSET TOP ADD REV”

These three lines, if included in a macro, would define a toolbutton called REV and its
associated macro, TOOL_REV, and would add the button to the top toolbar. The button
is not displayed as a bitmapped icon, but instead as the text “‘Reverse”, with ”’Reverse
Line* as the popup toolbar help and ”’Reverse line’s contents’ as the status line help.
No COND operand is specified, so the button is always enabled.

Note that the delimiters for the button text (“Reverse”) are separate from the delimiters
for the help text, and that the following would not be valid:

"TOOLB REV /Reverse/Reverse Line/Reverse line"s contents/"

The TOOL_REV macro replaces the focus line with the reverse of its current contents.

SET TOOLBUTTON 271

SET Options

SET TOOLSET

Format [Set] TOOLSet [Top|Bottom|NOFiles] DEFAULT
[Set] TOOLSet [Top|Bottom|NOFiles] USER toolbuttons
[Set] TOOLSet [Top|Bottom|NOFiles] ADD toolbuttons
[Set] TOOLSet [Top|Bottom|NOFiles] DELete toolbuttons

KEDIT default: TOP BOTTOM|NOFILES DEFAULT

Level: TOP and BOTTOM, File level; NOFILES, Global level

Dialog box: None

Save Settings handling: Not savable

Description Use SET TOOLSET to determine which buttons will appear on one of KEDIT’s
toolbars, and how the buttons will be arranged.

Here are the components of the SET TOOLSET command:

TOP | BOTTOM | NOFILES

The first operand determines which toolbar’s contents you want to set. You can
specify the TOP or BOTTOM toolbar for the current file. These are controlled on a
per-file basis, so that each file in the ring can potentially have different toolbar
contents. You can also specify the special NOFILES toolset, displayed as the top
toolbar when no files are in the ring; the bottom toolbar is empty when no files are
in the ring. If this operand is omitted, the TOP toolbar is assumed.

DEFAULT

If the second operand is DEFAULT, the specified toolbar displays a default toolset
that is built into KEDIT.

USER toolbuttons

If the second operand is USER, the list specified via the toolbuttons operand deter-
mines the toolbar’s contents. 7oolbuttons is a list with the names of the buttons that
should appear on the toolbar. Each item in the list must be the name of a button that
is either one of the predefined toolbar buttons built into KEDIT, or has been previ-
ously defined via the SET TOOLBUTTON command. Periods (*“.””) can also ap-
pear in the list to indicate spacing between toolbar buttons, which otherwise
appear immediately adjacent to one another.

ADD toolbuttons
DELete toolbuttons

If you want to make minor adjustments to the current toolbar contents, you can use
the ADD or DELETE operands. With ADD, the toolbuttons that you specify are
added to the end of the current toolbar contents. With DELETE, the toolbuttons
that you specify are removed from the current toolbar contents. If you include a
blank-delimited period (**.””) following any item in your list of buttons to be de-
leted, KEDIT not only removes the specified toolbutton from the toolbar, but also
any spacing that follows that toolbutton on the toolbar.

272

Chapter 4. The SET Command

See also

Examples

The file DEFTOOLB.KEX, in the SAMPLES subdirectory of the main KEDITW
directory, has commands corresponding to all of the default SET TOOLSET and SET
TOOLBUTTON definitions.

SET TOOLBAR, SET TOOLBUTTON

TOOLSET TOP USER . OPEN NEW . UNDO REDO . GET PUT

This example specifies a user-defined top toolbar that displays some spacing, the
OPEN and NEW buttons, more spacing, the UNDO and REDO buttons, more spacing,
and then the GET and PUT buttons. OPEN, NEW, UNDO, and REDO are all default
tool buttons whose definitions are built into KEDIT. Before issuing this command, you
would need to use the SET TOOLBUTTON command to define GET and PUT buttons,
since these are not default buttons. You can use QUERY TOOLBUTTON * to see all
of the current toolbutton definitions.

TOOLSET TOP DEFAULT
TOOLSET TOP ADD . COMPILE DEBUG

Here, KEDIT’s default toolbar contents are displayed, followed by some spacing, and
then COMPILE and DEBUG buttons, both of which must have been previously
defined via the SET TOOLBUTTON command. If you wanted to display these buttons
only when you were editing C programs, and otherwise display only the default top
toolbar, you might have something like the following in your KEDIT profile:

'reprofile on'

if initial() then do
'set toolbutton compile /Compile/ /Compile file/'
'set toolbutton debug /Debug/ /Debug file/'
'define toolmacs.kml'

end
'set toolset top default'
if fext.1() = 'C' then

'set toolset top add . compile debug'

You would also need to define the macros TOOL COMPILE and TOOL DEBUG.
You would most likely put them in a . KML file (like TOOLMACS.KML in this exam-
ple) that is loaded via the DEFINE command during the initial execution of your profile
at the start of a KEDIT session.

SET TOOLSET

273

SET Options

SET TRAILING

Format

Description

See Also

[Set] TRAILING ON|OFF | SINGLE | EMPTY
KEDIT default: OFF

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET TRAILING controls how trailing blanks in the files that you edit are handled.

[Set] TRAILING ON
If you put TRAILING ON into effect, you can work with files that contain trailing
blanks. Trailing blanks are kept when files are read from disk, you can work with

them as you edit the file, and they are included as part of your file when it is written
back to disk.

[Set] TRAILING OFF
This is the default, and it specifies that KEDIT will not process trailing blanks in
your files. Trailing blanks are eliminated as your file is read in from disk. The lines
of your file are stored internally without any trailing blanks, and any trailing
blanks that you add while editing your file are ignored. When your file is written to
disk, it contains no trailing blanks.

[Set] TRAILING SINGLE
This is a rarely-used operand that works like TRAILING OFF, except that a single
trailing blank is added to each line as it is written to disk.

[Set] TRAILING EMPTY
This is a rarely-used operand that works like TRAILING OFF, except that a single
trailing blank is added to each blank line as it is written to disk. Nonblank lines are
written to disk with no trailing blanks.

Note that when RECFM FIXED is in effect, lines in your file can be truncated or pad-
ded with blanks when they are written to disk so that they will be exactly LRECL bytes
long. So in this case, SET TRAILING does not control the number of trailing blanks
written to disk.

User’s Guide Chapter 12, “File Processing”

274

Chapter 4. The SET Command

SET TRANSLATEIN, TRANSLATEOUT

Format

Description

See also

[Set] TRANSLATEIn NONE | OEMTOANSI
[Set] TRANSLATEOut NONE |ANSITOOEM

KEDIT default: NONE
Level: File
Dialog box: Options SET Command

Save Settings handling: Not savable

SET TRANSLATEIN controls whether KEDIT converts a file from ANSI to OEM as it
reads the file in. With the default of TRANSLATEIN NONE, no translation is done.
But with TRANSLATEIN OEMTOANSI in effect, KEDIT translates text from OEM
to ANSI as it loads new files into the ring and when processing the GET command.

A related command, SET TRANSLATEOUT, controls whether KEDIT converts a file
from ANSI to OEM as it writes the file to disk. With the default of TRANSLATEOUT
NONE, no translation is done. But with TRANSLATEOUT ANSITOOEM in effect,
KEDIT translates text from ANSI to OEM as it writes files to disk during File Save and
related operations and when processing the PUT and PUTD commands.

You should be cautious about using SET TRANSLATEIN and SET
TRANSLATEOUT, because OEM to ANSI conversion on a file that is already in
ANSI, and ANSI to OEM conversion on a file that is already in OEM, can leave you
with a garbled file. Before using SET TRANSLATEIN or SET TRANSLATEOUT, be
sure to read User’s Guide Section 3.7, “Character Sets”, which discusses the ANSI and
OEM character sets and KEDIT’s facilities for dealing with them, and which has a dis-
cussion of the proper use of SET TRANSLATEIN and SET TRANSLATEOUT.

ANSITOOEM, OEMTOANSI, User’s Guide Section 3.7, “Character Sets”

SET TRUNC

Format

[Set] TRunc n|*

KEDIT default: * (WIDTH value)
Level: View

Dialog box: Options SET Command

Save Settings handling: Not savable

SET TRUNC

275

SET Options

Description

Use SET TRUNC to control which column serves as KEDIT’s ““truncation column”.
You can specify a column number # or can specify an asterisk (““*’’) to indicate that the
truncation column should be set equal to the value of the WIDTH initialization option.

The truncation column is the rightmost column of text that is affected by most KEDIT
commands. You cannot input, overtype, change, or delete characters to the right of the
truncation column. Depending on the VERIFY setting, you may be able to see text
beyond the truncation column, but most KEDIT commands act as if text to the right of
the truncation column was not there.

SET TRUNC does not affect how text is read in from disk or written out to disk by
KEDIT. The value of the WIDTH initialization option normally controls the maximum
length of lines read in, and the LRECL setting controls the maximum length of lines
that are written out.

Normally, the truncation column is equal to the value of the WIDTH initialization
option, so there are normally no columns of your file to the right of the truncation col-
umn. Therefore, unless you change the default TRUNC value, it has no effect on
KEDIT’s operation. The TRUNC value is rarely changed, and is provided for use in
specialized situations.

You cannot set your MARGINS or ZONE columns to the right of the truncation col-
umn. If you issue a SET TRUNC command that specifies a column to the left of the cur-
rent MARGINS or ZONE columns, KEDIT automatically resets these columns to be
equal to the new truncation column. If you specify a truncation column to the right of
the current MARGINS or ZONE columns, they are not reset.

SET UNDOING

Format

Description

[Set] UNDOING ON|OFF [n [k]]
KEDIT default: ON 200 512

Level: File

Dialog box: Options SET Command

Save Settings handling: Savable

SET UNDOING controls, whether the undo facility is enabled or disabled for the cur-
rent file, how many undo levels KEDIT attempts to keep, and the maximum amount of
memory that KEDIT will use to hold the undo information.

By default, KEDIT will try to save up to the last 200 levels of changes to your file, with
a maximum of 512K of undo information per file.

Whenever KEDIT reaches the limits specified by SET UNDOING, it automatically dis-
cards as much undo information as necessary so that editing can continue. No message

276

Chapter 4. The SET Command

is given telling you that this happened, but you can always tell how many levels of
changes are available to the UNDO command by looking at the counter displayed on
the status line as the third number after ALT=. QUERY UNDO gives more informa-
tion, telling you how many levels of changes are available for the UNDO command,
how many levels are available for the REDO command, and how many kilobytes of
memory are occupied by the undo information for the current file.

See also User’s Guide Chapter 3, “Using KEDIT for Windows”, REDO, UNDO

Examples SET UNDOING ON 400 1024
Tells KEDIT to save up to 400 levels of changes to the current file, with a maximum of
1024K for the data involved.

SET VARBLANK

Format [Set] VARblank ON|OFF
KEDIT default: OFF
Level: View
Dialog box: Options SET Command
Save Settings handling: Savable

Description With VARBLANK ON, a blank in a string target or column string target will match any
string of one or more blanks. This is useful if, for example, the FLOW command has
justified text and you are looking for a group of words that may have had extra blanks
sprinkled among them.
With VARBLANK OFF, there is no special handling of blanks during searches. A
blank will only match exactly one blank.

SET VERIFY

Format [Set] Verify [Hex] 11 rl [[Hex] 12 r2 ...]

KEDIT default: 1 * (Column 1 through WIDTH value)
Level: View
Dialog box: Options SET Command

Save Settings handling: Not savable

SET VERIFY

277

SET Options

Description

Use SET VERIFY to control which columns of your file KEDIT displays in the current
view of your file.

SET VERIFY has no effect on the contents of your file; it merely affects how KEDIT
displays your file while you are editing it.

In a window 80 columns wide, KEDIT normally displays columns 1 through 80 of your
file. Columns of text to the right of column 80 are not displayed. With SET VERIFY,
you can specify a pair of columns that are the leftmost and rightmost columns that you
want KEDIT to display. For example, to have KEDIT display columns 20 through 99 of
your file, you could enter

SET VERIFY 20 99
To view only columns 30 through 40, you could enter
SET VERIFY 30 40

Since the columns specified do not fill the 80-column width of the window, most of the
document window would be empty. If, on the other hand, you specify a column range
wider than the window, KEDIT displays only as many columns as will fit. So in an 80
column window,

SET VERIFY 100 200

would cause KEDIT to display columns 100 through 179.

If the rightmost column to display is specified as an asterisk (““*’’) or is omitted,
KEDIT displays as many columns of your text as will fit. So, in an 80-column window,
all three of the following would cause display of columns 1 through 80:

SET VERIFY 1 *
SET VERIFY 1
SET VERIFY 1 80

A very powerful aspect of SET VERIFY is that it lets you specify more than one pair of
columns at a time. For example,

SET VERIFY 30 40 10 20 50 *

tells KEDIT to display columns 30 through 40 of your text, followed by columns 10
through 20 of your text, and then all text from column 50 on that will fit.

You can precede specification of a pair of columns for SET VERIFY with the word
“HEX” to tell KEDIT that you want to display and work with the hexadecimal value of
the character codes involved, rather than the characters themselves. The display of each
column of your file will then occupy two columns on your display: the first column has
the high order hexadecimal digit of the character code for the character and the second
column has the low order digit of the code. For example,

SET VERIFY HEX 1 20 1 20

tells KEDIT to display columns 1 through 20 of your file in hexadecimal format, and
then to display the same columns again in the normal character format.

278

Chapter 4. The SET Command

The value of VERSHIFT, which is controlled by the LEFT and the RIGHT commands
and by autoscrolling the display, interacts with the SET VERIFY setting to determine
which columns are actually displayed by KEDIT. If, for example, you have an
80-column window and you issue the command

SET VERIFY 1 40 70 *

KEDIT will display columns 1 through 40 and 70 through 109 of your file. If you then
tell KEDIT to shift the window to the right by issuing the command RIGHT 10,
VERSHIFT will be set to 10 and the columns displayed will be offset by 10 columns
from what you specified with SET VERIFY. KEDIT will therefore display columns 11
through 50 and 80 through 119 of your file.

See also LEFT, RIGHT, SET AUTOSCROLL

SET WINMARGIN

Format [Set] WINMARgin ON|OFF [n]
KEDIT default: ON 6
Level: Global
Dialog box: Options SET Command
Save Settings handling: Savable

Description Use SET WINMARGIN to control the display of a margin area that you can use to
mark line blocks.
When WINMARGIN ON is in effect, a margin area—normally 6 pixels wide—is dis-
played to the left of the first column of each document window. You can use this margin
area to mark line blocks by placing the mouse pointer in the margin (the mouse pointer
will become an arrow pointing upward and to the right) and dragging with mouse but-
ton 1 down. With WINMARGIN OFF, this margin area is not displayed.
The second operand to SET WINMARGIN controls the width, in pixels, of the margin
area.

Examples WINMARGIN ON 6

Display a margin area 6 pixels wide.
WINMARGIN ON

Turn on display of the margin area, using whatever pixel width value is currently in
effect.

SET WINMARGIN 279

SET Options

SET WORD

Format

Description

[Set] WORD NONBlank |ALPHAnum [TRAILing|NOTRAILing]

KEDIT default: NONBLANK TRAILING
Level: View
Dialog box: Options SET Command

Save Settings handling: Savable

The first operand of SET WORD, NONBLANK or ALPHANUM, controls what
KEDIT considers to be a “word” when you use Shift+Ctrl+W (SOS DELWORD),
Ctrl+Curr (SOS TABWORD), Ctrl+Curl (SOS TABWORDB)), use the mouse to mark
words, or use the MARK STREAM WORD command. (Most other areas of KEDIT,
such as wordwrap facility, paragraph reformatting, and KEXX built-in functions,
always consider groups of consecutive nonblank characters to be words and are unaf-
fected by SET WORD. Word targets look for strings bordered by nonalphanumeric
characters and are also unaffected by SET WORD.)

With WORD NONBLANK, the default, KEDIT considers any group of consecutive
nonblank characters to be a word.

With WORD ALPHANUM, KEDIT considers a group of consecutive alphanumeric
characters (that is, letters and numbers) to be a word. (Underscore characters and spe-
cial characters with character codes greater than 127 are also grouped with the alphanu-
meric characters here. Underscores are frequently used within variable names in
programming languages, and many languages use accented characters with character
codes above 127.) KEDIT also treats a sequence of nonblank characters that are not
alphanumeric (that is, a sequence of punctuation characters) as a word.

Consider the following example, which might come from a FORTRAN program:
CALL PROCESS (PI**2)

With WORD NONBLANK, KEDIT would treat this line as having three words:
“CALL”, “PROCESS”, and “(PI**2)”. If you placed the cursor on the “P””in “PI”
and deleted a “word” with Shift+Ctrl+W, then ““(PI**2)”* would be deleted.

With WORD ALPHANUM, KEDIT would treat this line as having seven words:
“CALL”, “PROCESS”, “(>, “PI”, “**»_<2” and ““)”. Placing the cursor on the
“P” in “PI”” and pressing Shift+Ctrl+W would delete only “PI”.

The second operand of SET WORD, TRAILING or NOTRAILING, controls whether
marking a word (usually done by double-clicking on the word) does or does not cause
trailing blanks following the word to also be marked.

280

Chapter 4. The SET Command

SET WORDWRAP

Format

Description

See also

[Set] WORDWrap ON|OFF
KEDIT default: OFF

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

With WORDWRAP ON, whenever text that you are entering with KEDIT would
extend beyond the right margin, a new line is automatically added to the file, with the
word you are typing placed starting at the left margin and the cursor positioned so that
you can continue with your typing.

With WORDWRAP OFF, KEDIT allows text entry to continue beyond the right
margin.

User’s Guide Chapter 3, “Using KEDIT for Windows”, FLOW, SET MARGINS

SET WRAP

Format

Description

[Set] WRap ON|OFF
KEDIT default: OFF

Level: View

Dialog box: Options SET Command

Save Settings handling: Savable

The WRAP option affects how far KEDIT searches for a string target when you issue a
LOCATE, TFIND, FIND, NFIND, FINDUP, or NFINDUP command, and when you
use the Edit Find dialog box.

If WRAP is OFF, KEDIT searches from the line below the focus line through the bot-
tom of the file for the desired string. (For a backward search, KEDIT searches back-
ward from the line above the focus line to the top of the file.) If the string is not found,
you get a ’Target not found” error message.

If WRAP is ON, no error occurs when the bottom of the file is hit. Instead, KEDIT
wraps around to the top of the file and continues to search from there. You get an error
message if KEDIT goes full circle and hits the focus line again without finding the

SET WRAP

281

SET Options

string. (With a backward search, when KEDIT hits the top of the file it will wrap around
to the bottom of the file and continue the search.) If the string is located after wrapping
around to the top of the file, KEDIT indicates this by displaying the message
“Wrapped...”.

The WRAP option has a similar effect on string column searches carried out by the
CLOCATE command when STREAM ON is in effect.

SET ZONE

Format [Set] Zone nl n2
KEDIT default: 1 * (Column 1 through the truncation column)
Level: View
Dialog box: Options SET Command
Save Settings handling: Not savable

Description The ZONE setting affects which columns KEDIT looks in when it searches for strings
during target searches and during the CHANGE and related commands, and when you
use the Edit Find, Edit Replace, and Edit Selective Editing dialog boxes. When KEDIT
looks for a string, it only looks within the columns specified by the ZONE setting. Nor-
mally, ZONE is set so that all columns of text on a line will be searched.
The ZONE setting involves two numbers. The first number you give is the left end of
the zone you want to search. The second number is the right end of the zone. The left
zone value must be less than or equal to the right zone value. The right zone value must
be less than or equal to the truncation column. For example,
ZONE 10 20
says that searches should only look in columns 10 through 20 of each line. If all or part
of the string you are looking for were outside of columns 10 through 20, the string
would not be found.
You can specify an asterisk (“*””) for the right zone setting, and KEDIT will set the
right zone column equal to the truncation column.
ZONE also affects the handling of column commands such as CLOCATE and affects
the processing of the CMATCH, FILL, LOWERCASE, UPPERCASE, SHIFT,
ANSITOOEM, OEMTOANSI, and SORT commands.

Examples ZONE 5 30
String searches should only look in columns 5 to 30.

282 Chapter 4. The SET Command

ZONE 1 *

String searches should look in all columns of your file through the truncation column.

SET =

Format Set = text
KEDIT default: Empty string
Level: View
Dialog box: None

Save Settings handling: Not savable

Description SET = can be used to set the contents of the equal buffer, which is normally set to repeat
the most recently completed command executed from the KEDIT command line. The
contents of the equal buffer determine the command that is re-executed when you use
the = command or the REPEAT command. SET = is useful mainly from within a
KEDIT macro, and provides the only way to change the contents of the equal buffer
from within a macro.

Note that toolbar and menu operations, such as use of the Edit Find dialog box, do not
affect the contents of the equal buffer.

See also =, REPEAT

SET Options

SET = 283

Chapter 5. QUERY and EXTRACT

This chapter discusses the QUERY command, which displays on your screen informa-
tion about internal KEDIT settings. It discusses the EXTRACT command and the
related implied EXTRACT functions, which return information to a macro about inter-
nal KEDIT settings. Finally, it gives details on each of the operands accepted by these
commands and the information they return.

5.1

QUERY

You can use the QUERY command to find out the current value of any KEDIT SET
option. KEDIT displays the result of your QUERY on the message line. The format of
the QUERY command is:

Query option

For example, if you have entered
set zone 5 65

then the command

query zone

will display

zone 5 65

You can use the same minimal truncations for option that the SET command accepts.

In addition to the values of KEDIT SET options, you can QUERY the values of some
KEDIT initialization options, such as ISA and WIDTH. You can also QUERY a num-
ber of values that you cannot directly set at all, such as the SIZE of your file, or the
VERSION of KEDIT that you are using. Section 5.3, “QUERY and EXTRACT
Operands”, gives full details on all values that you can QUERY.

The MODIFY command does the same thing as the QUERY command, except that it
displays the result on the command line, preceded by the word “SET”, so that you can
easily change the value of a SET option and re-enter it.

The STATUS command displays, in a dialog box, the values of most SET options.

284

Chapter 5. QUERY and EXTRACT

5.2 EXTRACT and Implied EXTRACTs

EXTRACT
command

The EXTRACT command, valid only when issued from a macro, provides one method
for the macro to obtain information from KEDIT.

This discussion shows how the EXTRACT command works, giving the general pattern
followed with most operands of the command. Section 5.3, “QUERY and EXTRACT
Operands”, gives specific details on the variables set and information returned for all
EXTRACT operands.

-
o
<
14
|]
x
o
>
14
Ll
2
(¢}

Most things that you can QUERY can be EXTRACTed. The EXTRACT command is
given a list of one or more QUERY operands, surrounded by delimiter characters (a
slash (“°/”’) is used here, but any nonalphanumeric character is acceptable). The main
difference between EXTRACT and QUERY is that, with EXTRACT, the results are
not displayed, but are instead used to set the values of variables within your macro. For
example, if ZONE 5 65 is in effect,

query zone
would display

zone 5 65

while

extract /zone/

which would normally be within quotes in your macro:
"extract /zone/’

will return the current zone setting: The variable ZONE.1 is set to 5 (the left zone col-
umn) and ZONE.2 is set to 65 (the right zone column). ZONE.O is set to 2, indicating
that two pieces of information have been returned to your macro.

extract /zone/wrap/

sets ZONE.1 to the left zone, ZONE.2 to the right zone, ZONE.O to 2, WRAP.1 to the
value of WRAP (““ON” or “OFF”, in uppercase), and WRAP.0 to 1. In general, if

query option

would display

option wordl word2 word3 ... wordn
then

extract /option/

sets option.1 to wordl, option.2 to word2, etc., and option.0 to n.

EXTRACT and Implied EXTRACTSs 285

Case of
EXTRACT
results

Implied
EXTRACT
functions

The results of a QUERY command are usually displayed in lowercase, while results
from EXTRACT are usually in uppercase. In a few cases, where it is important to return
text exactly as it exists in your file or as it was entered from the keyboard, the result is
returned in mixed case.

When you give an option to the EXTRACT command, you can truncate the option in
the same way that you can truncate it with the SET or QUERY command. So, since
“wr” is an acceptable truncation for WRAP,

extract /wr/
is acceptable. (Note, however, that WRAP.0 and WRAP.1 would be set in this case, and
not WR.0 and WR.1)

Macros can also extract information from KEDIT by using special functions known as
implied EXTRACT functions. The name of each implied EXTRACT function corre-
sponds to the name of a variable that would be set by the EXTRACT command. An
implied EXTRACT function returns as its value the same information that the
EXTRACT function would place in the corresponding variable. For example,

say zone.1l()
displays the same thing as

'extract /zone/’
say zone.l

Note that for EXTRACT operands that consist of more than a single word, for example,
"extract /color arrow/’

the additional words must be passed to the implied EXTRACT as a parameter. For
example:

color.1l(’arrow’)

286

Chapter 5. QUERY and EXTRACT

5.3 QUERY and EXTRACT Operands

ALT

ARBCHAR

ARROW

ATTRIBUTES

The following QUERY and EXTRACT operands, supported in earlier text mode ver-
sions of KEDIT, are not used by this version of KEDIT for Windows: BLINK, BOR-
DER, CURSORSHAPE, EAPRESERVE, ISA, KEYBOARD, LOGO, MOUSE,
MOUSEBAR, MOUSETEXT, PSCREEN, RETRACE, REXXIO, SCREEN,
SHIFTSTATE, SWAP, SYSRC, and TOPVIEW. Any QUERY or MODIFY commands
involving these options will yield an error message. EXTRACT commands and
implied EXTRACT functions involving these options will return default information;
avoiding an error message in this situation means that many existing macros that use
these options will continue to work.

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

Query ALT displays two numbers: the number of alterations to your file since the last
AUTOSAVE or SAVE and the number of alterations since the last SAVE.

EXTract /ALT/ sets these variables:

alt.o 2
alt.1 Number of alterations since last AUTOSAVE or SAVE
alt.2 Number of alterations since last SAVE

Query ARBchar displays whether ARBCHAR is ON or OFF, and the first and second
ARBCHAR characters.

EXTract /ARBchar/ sets these variables:

arbchar.0 3

arbchar.1 ON|OFF

arbchar.2 First ARBCHAR character
arbchar.3 Second ARBCHAR character

Query ARRow displays whether ARROW is ON or OFF.

EXTract /ARRow/ sets these variables:

arrow.0 1
arrow.1l ON|OFF

QUERY and EXTRACT ATTRIBUTES are supported mainly for compatibility with
older versions of KEDIT; the corresponding SET ATTRIBUTES command is also still
available but is no longer documented. SET/QUERY COLOR is now preferred.

Query ATTRibutes displays the 30 current attribute values.

QUERY and EXTRACT Operands 287

EXTract /ATTRibutes/ sets these variables:

attributes.0 30

attributes.1 Filearea attribute value
attributes.2 Curline attribute value
attributes.3 Block attribute value
attributes.4 Cblock attribute value
attributes.5 Cmdline attribute value
attributes.6 Idline attribute value
attributes.?7 Msgline attribute value
attributes.8 Arrow attribute value
attributes.9 Prefix attribute value
attributes.10 Pending attribute value
attributes.1l1 Scale attribute value
attributes.12 Tofeof attribute value
attributes.13 Ctofeof attribute value
attributes.14 Tabline attribute value
attributes.15 Shadow attribute value
attributes.16 Statarea attribute value
attributes.17 Divider attribute value
attributes.18 Scrollbar attribute value
attributes.19 Slider attribute value
attributes.20 Mousebar attribute value
attributes.21 Highlight attribute value
attributes.22 Chighlight attribute value
attributes.23 Thighlight attribute value
attributes.24 Cthighlight attribute value
attributes.25 Dialog attribute value
attributes.26 Alert attribute value
attributes.27 Tooltip attribute value
attributes.28 Currbox attribute value
attributes.29 Boundmark attribute value
attributes. 30 Colmark attribute value

AUTOCOLOR Query AUTOCOLOR ext displays the name of the parser associated with the specified

extension, or NULL if there is no such parser.
EXTract/AUTOCOLOR ext/ sets these variables:

autocolor.0 2
autocolor.1 Extension (with a leading period)
autocolor.2 Name of associated parser, or NULL

Query AUTOCOLOR * or simply Query AUTOCOLOR displays, for each extension
that has an associated parser, the extension involved and the name of the parser.

288 Chapter 5. QUERY and EXTRACT

AUTOEXIT

AUTOINDENT

AUTOSAVE

AUTOSCROLL

BACKUP

BEEP

EXTract /AUTOCOLOR/ or EXTRACT /AUTOCOLOR */ sets the following

variables: -
(&)
autocolor.0 number of extensions with associated parsers é
autocolor. i ith extension (with a leading period) and parser ;
Ll
Query AUTOEXIT displays whether AUTOEXIT is ON or OFF. E
L
EXTract /AUTOEXIT/ sets these variables: 8
autoexit.0 1
autoexit.1 ON|OFF

Query AUTOIndent displays whether AUTOINDENT is ON or OFF.
EXTract /AUTOIndent/ sets these variables:

autoindent.0 1
autoindent.1 ON|OFF

Query AUtosave displays the alteration count at which an AUTOSAVE is triggered, or
OFF.

EXTract /AUtosave/ sets these variables:

autosave.O 1
autosave.l n|OFF

Query AUTOSCroll displays the current setting of AUTOSCROLL: HALF, OFF, or n
columns.

EXTract /AUTOSCroll/ sets these variables:

autoscroll.O 1
autoscroll.l HALF|OFF|n

Query BACKup displays the current setting of BACKUP: OFF, TEMP, or KEEP.
EXTract /BACKup/ sets these variables:

backup.0 1
backup.1 OFF|TEMP|KEEP

Query BEEP displays whether BEEP is ON or OFF.
EXTract /BEEP/ sets these variables:

beep.0 1
beep.1 ON|OFF

QUERY and EXTRACT Operands 289

BLOCK

BOUNDMARK

CASE

CLICK

Query BLOCK displays the type of block currently marked (LINE, BOX, STREAM,
or NONE) and, if a block is defined, the file line and column of the start of the block,
the file line and column of the end of the block, the fileid of the file containing the
block, and whether the block is PERSISTENT or is a SELECTION.

EXTract /BLOCK/ sets these variables:

block.0 8
block.1 LINE|BOX|STREAMNONE
block.2 Line number of start of block (this and following values

are set to the null string if no block is marked)

block.3 Column number of start of block

block.4 Line number of end of block

block.5 Column number of end of block

block.6 Fileid of file containing marked block

block.7 PERSISTENT|SELECTION

block.8 Contents of the currently marked one-line block, or the

null string if there is no marked block or the marked block
occupies multiple lines

Query BOUNDMark displays a list of the types of boundary marker that are currently
active (ZONE, TRUNC, MARGINS, TABS, VERIFY, and/or WINMARGIN) or dis-
plays OFF if no boundary markers are active.

EXTract / BOUNDMark/ sets these variables:

boundmark.0 1

boundmark.1l One or more of ZONE, TRUNC, MARGINS, TABS,
VERIFY, and WINMARGIN; or OFF

Query CASE displays whether text is entered in MIXED case or UPPER case, whether
string searches RESPECT or IGNORE case, and whether comparisons made during the
CHANGE command RESPECT or IGNORE case.

EXTract /CASE/ sets these variables:

case.0 3

case.l MIXED|UPPER
case.2 RESPECT|IGNORE
case.3 RESPECT|IGNORE

Query CLICK displays which mouse button was last pressed, the mouse pointer’s line
and column position within the document window when the button was pressed, MAR-
GIN (if WINMARGIN ON is in effect and the mouse pointer was in the window mar-
gin when the button was pressed) or NOMARGIN, and the line and column of the file
at which the cursor was located when the button was pressed.

290

Chapter 5. QUERY and EXTRACT

EXTract /CLICK/ sets these variables:

[

click.0 6 2
click.1 Number of the mouse button pressed o/
click.2 Line number of mouse pointer within document window ;

when the button was pressed w
click.3 Column number of mouse pointer within document win- E

dow when the button was pressed w
click.4 MARGIN (if WINMARGIN ON in effect and mouse o]

pointer was in window margin when button was pressed)

or NOMARGIN
click.5 Line number within the file of cursor location when but-

ton was pressed (or -1 if the cursor is not on a line of the

file)
click.6 Column number within the file of cursor location when

button was pressed (or -1 if the cursor is not on some col-
umn of the file)

CLIPBOARD Query CLIPboard displays information about the Windows clipboard.

When there is no text in the clipboard, Query CLIPboard returns NONE. Otherwise,
Query CLIPboard returns the following information:

e The type of text in the clipboard: LINE if the text came from a line block, BOX if
the text came from a box block, STREAM if the text came from a stream block,
from a command line selection, or from the CLIPBOARD PUT command, and
FOREIGN if the text came from an application other than KEDIT.

e Ifthe clipboard text came from a box block, the width of the box block; otherwise,
this item is omitted.

e The size of the clipboard text, in characters

e The size of the clipboard text, in lines

EXTract /CLIPboard/ sets these variables:

clipboard.0 5

clipboard.1 LINEBOX|STREAM|FOREIGN or NONE

clipboard.2 If CLIPBOARD.1 = BOX, width of the box block; other-
wise, the null string

clipboard.3 Size of clipboard text, in characters

clipboard.4 Size of clipboard text, in lines

clipboard.5 Contents of the clipboard, if the length of the text is less

than or equal to the WIDTH setting, and otherwise the
null string. The text may contain multiple lines of data,
with carriage return and linefeed characters marking the
end of each line.

QUERY and EXTRACT Operands 2901

CLOCK

CMDLINE

COLMARK

COLOR

Query CLOCK displays whether display of the time of day on the status line is turned
ON or OFF.

EXTract /CLOCK! sets these variables:

clock.0 1
clock.1 ONJ|OFF

Query CMDline displays whether CMDLINE is set to ON, OFF, TOP, or BOTTOM.

EXTract /CMDline/ sets these variables:

cmdline.O 3

cmdline.l ON|OFF|TOPIBOTTOM

cmdline.2 Line number within window of command line, or 0 if
CMDLINE OFF

cmdline.3 Contents of command line, in mixed case, or the null
string, if CMDLINE OFF

Query COLMark displays a list of the file columns at which column markers are dis-
played, or OFF if column marking is not active.

EXTract /COLMark/ sets these variables:

colmark.O0 1
colmark.1l List of one or more column numbers, or OFF

Query COLOR field displays the color setting for field, where field is one of the follow-
ing: Arrow, Block, BOUNDMark, CBlock, CHIghlight, Cmdline, COLMark,
CTHIghlight, CTofeof, CUrline, CURRBox, Filearea, Hlghlight, Idline, Msgline,
Pending, PRefix, Scale, SHadow, Tabline, THIghlight, TOfeof, TOOLTip.

EXTract /COLOR field/ sets these variables:

color.0 1
color.1 Field name followed by the field’s color

Query COLOR * or simply Query COLOR displays the color setting for all of the fields
that KEDIT uses, in alphabetical order.

If MONITOR WINDOWS is in effect, KEDIT uses 18 field types: ARROW, BLOCK,
BOUNDMARK, CMDLINE, COLMARK, CURRBOX, FILEAREA, HIGHLIGHT,
IDLINE, MSGLINE, PENDING, PREFIX, SCALE, SHADOW, TABLINE,
THIGHLIGHT, TOFEOF, and TOOLTIP. If MONITOR COLOR or MONITOR
MONO is in effect, KEDIT uses 5 additional field types: CBLOCK, CHIGHLIGHT,
CURLINE, CTHIGHLIGHT, and CTOFEOF.

EXTract /COLOR/ or EXTract /COLOR */ sets the following variables:

color.0 18 (if MONITOR WINDOWS is in effect) or 23 (if
MONITOR COLOR or MONITOR MONO are in effect)

292

Chapter 5. QUERY and EXTRACT

COLORING

COLUMN

CURLINE

color. i ith alphabetical field type, followed by its color

Query COLORING displays whether the syntax coloring facility is ON or OFF for the
current file and displays the name of the parser for the current file, or AUTO if KEDIT
determines the parser from the current file extension.

EXTract /COLORINGY sets these variables:

coloring.0 3
coloring.1 ON|OFF
coloring.2 AUTO|parser (parser specified via SET COLORING)

coloring.3 parser (actual parser; same as COLORING.2 unless COL-
ORING.2 is AUTO)

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

Query COLumn displays the column number of the focus column.
EXTract /COLumn/ sets these variables:

column.O 1
column.1 Column number of the focus column

Query CURLine displays the desired current line location, as specified by SET
CURLINE.

EXTract /CURLine/ sets the variables listed below. Note that CURLINE.1 and
CURLINE.2 have information about the location of the current line, while
CURLINE.3, CURLINE.4, CURLINE.5, and CURLINE.6 have information about the
focus line.

curline.O 6

curline.1l Value of CURLINE setting

curline.2 Line number within window of current line

curline.3 Contents of the focus line, in mixed case

curline.4 “ON” if the focus line has been changed during the edit-
ing session (the line’s new or change bit is set); otherwise
“OFF”

curline.5 “NEW CHANGED?” if the focus line has been added dur-
ing the editing session, “OLD CHANGED” if the focus
line has simply been changed during the editing session,
and “OLD?” otherwise, as determined from the line’s new
and change bits

curline.6 Selection level of the focus line. (Same value as
SELECT.1, but using CURLINE.6 is much more effi-
cient)

Related information: LINE.1 has the line number within the file of the focus line;
LINE.2 has the line number within the file of the current line; LENGTH.1 has the
length of the focus line; LINEFLAG.1, LINEFLAG.2, and LINEFLAG.3 have the flag

QUERY and EXTRACT Operands 293

bits for the focus line; NBSCOPE.2 has the line number within the current scope of the
focus line.

CURRBOX Query CURRBox displays two values indicating whether display of a box around the
current line is ON or OFF when the cursor is on the command line and when it is in the
file area.

EXTract /CURRBox/ sets these variables:

currbox.0 2

currbox.1 ONJ|OFF (for box drawn when cursor is on command line)
currbox.2 ON|OFF (for box drawn when cursor is in file area)

CURSOR Query CURSor displays information about the current location of the cursor: the line
and column location in the window and also the line and column location within your
file (or -1 and -1 if the cursor is not in the file area). The same four numbers are also
given for the position the cursor occupied when the last SOS EXECUTE command
issued began execution.

EXTract /CURSor/ sets these variables:

cursor.0 8

cursor.1l Line number of cursor in window

cursor.2 Column number of cursor in window
cursor.3 Line number of cursor in file, or -1
cursor.4 Column number of cursor in file, or -1
cursor.5 Previous line number of cursor in window
cursor. 6 Previous column number of cursor in window
cursor.7 Previous line number of cursor in file, or -1
cursor.8 Previous column number of cursor in file, or -1

CURSORSIZE Query CURSORSIze displays information about the size of the cursor, as a percentage
of the height or width of a character in the current font. Four numbers are displayed: the
width used for a vertical cursor when Overtype Mode and then when Insert Mode are in
effect, and the height used for a horizontal cursor when Overtype Mode and then when
Insert Mode are in effect.

EXTract /CURSORSIze/ sets these variables:

cursorsize.O 4

cursorsize.l Width (as percentage of width of characters in current
font) of vertical cursor in Overtype Mode

cursorsize.2 Width of vertical cursor in Insert Mode

cursorsize.3 Height of horizontal cursor in Overtype Mode

cursorsize.4 Height of horizontal cursor in Insert Mode

CURSORTYPE Query CURSORType displays the type of cursor being used: VERTICAL,
HORIZONTAL, or dependent on the INTERFACE setting.

294 Chapter 5. QUERY and EXTRACT

DEBUGGING

DEFEXT

DEFPROFILE

DEFSORT

DIRECTORY

EXTract /CURSORTYype/ sets these variables:

cursortype.0 1 IG

cursortype.1 VERTICAL|HORIZONTAL|INTERFACE Izt—:

Query DEBUGGing displays whether or not the debugging window is ON or OFF, the ﬁ

height of the debugging window, and the trace setting for macros run with the DEBUG E

command. w
=2

EXTract /DEBUGGing/ sets these variables: o

debugging.0 3

debugging.1 ON|OFF

debugging.2 Height of the debugging window in lines

debugging.3 Initial trace setting in effect for macros run with the

DEBUG command

Query DEFEXT displays whether DEFEXT is ON or OFF.
EXTract /DEFEXT/ sets these variables:

defext.O0 1
defext.1 ON|OFF

Query DEFPROFile displays the fileid of the default profile.
EXTract /DEFPROFile/ sets these variables:

defprofile.O 1
defprofile.1l Fileid of default profile

Query DEFSORT displays information on how DIR.DIR files are sorted: either OFF
or some combination of DATE, EXTENSION, NAME, PATH, and SIZE.

EXTract /DEFSORTY/ sets these variables:

defsort.0 1

defsort.1 OFF or one or more of DATE, EXTENSION, NAME,
PATH, and SIZE

Query DIRectory [d:] displays the name of the current directory of the specified drive.
If no drive is specified, the current directory of the current drive is displayed.

EXTract /DIRectory/ sets these variables:

directory.0 2
directory.1 Current directory of current drive, in uppercase.
directory.2 Current directory of current drive, in mixed case

QUERY and EXTRACT Operands 295

DIRFILEID

DIRFORMAT

DISPLAY

EXTract /DIRectory d:/ sets these variables:

directory.O0 2
directory.1 Current directory of drive d:, in uppercase
directory.2 Current directory of drive d:, in mixed case

Query DIRFileid displays information about a file in a directory listing. The focus line
is assumed to contain a file description. If the current file was created by the DIR com-
mand or has an extension of .DIR, the description is assumed to be in the usual
DIR.DIR format. Otherwise, the focus line is assumed to have a complete fileid, start-
ing in column 1. Information returned is the full fileid involved, and then each of the
four components of the fileid: the drive specifier (with a trailing colon; a null string is
returned if the fileid is a UNC name), the directory specification (with no trailing back-
slash added), the file name, and the file extension.

Note that invalid fileids yield unpredictable results, except that if the focus line is the
top-of-file or end-of-file line or has a blank in column 1, null strings will always be
returned for all values.

EXTract /DIRFileid/ sets these variables:

dirfileid.O 5

dirfileid. Full fileid

dirfileid. Drive specifier, or null string if fileid is a UNC name
dirfileid. Directory specification

dirfileid. File name

dirfileid. File extension

b WD PR

Query DIRFORMat displays the number of columns used to display a file’s name,
extension, and year of last modification in a DIR.DIR file.

EXTract /DIRFORMat/ sets these variables:

dirformat.O 3
dirformat.1l The number of columns used to display the file’s name

dirformat.2 The number of columns used to display the file’s exten-
sion (or 0 if the name and extension are displayed in a
single combined field)

dirformat.3 The number of columns used to display the year that the
file was last modified

Query DISPlay displays the minimum and maximum displayable selection levels.
EXTract /DISPlay/ sets these variables:

display.0 2
display.1 Minimum displayable selection level
display.2 Maximum displayable selection level

296

Chapter 5. QUERY and EXTRACT

DOCSIZING

DRAG

ECOLOR

EFILEID

Query DOCSIZing indicates whether new and cascaded document windows are sized
using STANDARD or EXTENDED rules, and displays the column width used for doc-
ument windows sized according to extended rules.

EXTract /DOCSIZing/ sets these variables:

docsizing.0 2
docsizing.1 STANDARD|EXTENDED
docsizing.2 Column width for document windows sized according to

extended rules

Query DRAG displays the type of block marking or other operation invoked by drag-
ging the mouse (LINE, BOX, STREAM, CMDLINE, DRAGDROP, or NONE),
whether a block to be marked is PERSISTENT or a SELECTION, the ANCHOR or
WORD option in effect, and RESET if dragging will reset any existing block.

EXTract /DRAG sets these variables:

drag.0 1 if DRAG NONE or DRAG DRAGDROP in effect, oth-
erwise 4

drag.1 BOX|LINE|STREAM|CMDLINE|DRAGDROP|NONE

drag.2 PERSISTENT|SELECTION (this and the following items
not set if DRAG NONE or DRAG DRAGDROP in ef-
fect)

drag.3 ANCHOR|WORD

drag.4 RESET or null string

Query ECOLOR c displays the ECOLOR setting for the specified item, which must be
in the range A—Z or 1—9.

EXTract /ECOLOR ¢/ sets these variables:

ecolor.0 1
ecolor.1 The letter or number that you specified, followed by the
corresponding color.

Query ECOLOR * or simply Query ECOLOR displays the ECOLOR setting for each
of the characters, A—Z and 1—9, used with ECOLOR.

EXTract /ECOLOR/ or EXTract /ECOLOR */ sets the following variables:

ecolor.0 35

ecolor. i ith character (A—Z or 1—9), followed by the corre-
sponding color

Query EFILEId displays the fileid that the current file had when it was added to the
ring.

QUERY and EXTRACT Operands 297

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

EOF

EOFIN

EOFOUT

EOL

EOLIN

EXTract /EFILEId/ sets these variables:

efileid.O 2
efileid.1 Original fileid of current file, in uppercase
efileid.2 Original fileid of current file, in mixed case if FCASE

ASIS in effect or lowercase if FCASE LOWER in effect

Query EOF displays whether or not the focus line location is ON or OFF the end-of-file
(or end-of-range) line.

EXTract /EOF/ sets these variables:

eof.0 1
eof.1 ON|OFF

Query EOFIN displays the current setting of EOFIN: ALLOW or PREVENT.

EXTract /EOFIN/ sets these variables:

eofin.0 1
eofin.1 ALLOW|PREVENT

Query EOFOUT displays the current setting of EOFOUT: EOL, EOLEOF, EOF, or
NONE.

EXTract /EOFOUT/ sets these variables:

eofout.0 1
eofout.1l EOL|EOLEOF|EOF|NONE

Query EOL displays whether or not the focus column is located ON or OFF the
end-of-line column (which is one column to the right of the right zone column, by anal-
ogy with the end-of-file line).

EXTract /EOL/ sets these variables:

eol.0 1
eol.1l ON|OFF

Query EOLIN displays the current setting for EOLIN: CR, CRORLF, LF, or NONE.

EXTract /EOLIN/ sets these variables:

eolin.O 1
eolin.1 CR|CRORLF|LFINONE

298

Chapter 5. QUERY and EXTRACT

EOLOUT

FCASE

FEXT

FIELD

FIELDWORD

Query EOLOUT displays the current setting for EOLOUT: CR, CRLF, LF, or NONE.

EXTract /EOLOUTY/ sets these variables:
eolout.0 1
eolout.1 CR|CRLF|LFINONE

Query FCASE displays whether KEDIT is keeping fileids in all LOWER case, or
whether fileids are kept ASIS (“as is”).

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

EXTract /FCASE/ sets these variables:

fcase.O 1
fcase.1l ASISILOWER

Query FExt displays the extension of the current fileid.

EXTract /FExt/ sets these variables:

fext.0 2
fext.1 Extension of current fileid in uppercase
fext.2 Extension of current fileid, in mixed case if FCASE ASIS

is in effect or lowercase if FCASE LOWER is in effect

Query FIELD displays the contents of the cursor field, the character at the cursor loca-
tion, the location of the cursor within the data of the cursor field, and the type of field
involved (COMMAND, TEXT, or PREFIX).

EXTract /FIELD/ sets these variables:

field.O 4

field.1l Contents of cursor field

field.2 Character at cursor location

field.3 Location of cursor within data of cursor field
field.4 COMMANDITEXT|PREFIX

Query FIELDWORD displays the word nearest the cursor location in the cursor field.
Two interpretations of a word are displayed. For the first, KEDIT considers any group
of consecutive alphanumeric characters, or any group of nonblank characters that are
all non-alphanumeric, to be a word. For the second, KEDIT considers any group of
nonblank characters to be a word.

EXTract /FIELDWORDY/ sets these variables:

fieldword.O 2

fieldword.1 Field word consisting of any group of consecutive alpha-
numeric characters or a group of nonblank characters that
are not alphanumeric

fieldword.2 Field word consisting of a group of nonblank characters

QUERY and EXTRACT Operands 299

FILEID

FILESEARCH

FILESTATUS

Query FILEId displays the fileid of the current file: drive specifier, path, name,
extension.

EXTract /FILEId/ sets these variables:

fileid.O 2
fileid.1 Fileid of current file, in uppercase
fileid.2 Fileid of current file, in mixed case if FCASE ASIS is in

effect or lowercase if FCASE LOWER is in effect

When you use QUERY FILESEARCH fileid, KEDIT searches for fileid in the same
way that it would if you issued a KEDIT command using that specified fileid. QUERY
FILESEARCH returns information about the result of that search, but does not actually
edit the specified file, as the KEDIT command would do.

QUERY FILESEARCH fileid returns ERROR if an error is encountered in searching
for the file, RING if the specified file is already in the ring, DISK if the file is on disk
and would be loaded into the ring by a KEDIT command, or NEW if the file does not
already exist and would be edited as a new file.

When QUERY FILESEARCH fileid returns DISK, RING, or NEW, it also returns the
fully-qualified name of the fileid involved, which can be affected by the path search
KEDIT carries out for the file, and by settings like FCASE and DEFEXT.

For example, if SAMPLE.FIL is found in the current directory, the current directory is
C:\TEST, and SAMPLE.FIL is not currently in the ring,

QUERY FILESEARCH SAMPLE.FIL

would return

DISK C:\TEST\SAMPLE.FIL

EXTract /FILESEARCH fileid/ sets these variables:

filesearch.0 1 if FILESEARCH.1 is ERROR, else 2
filesearch.1 DISK|RINGINEW|ERROR

filesearch.2 If FILESEARCH.1 is not ERROR, set to fully qualified
fileid in the case (lower or mixed, as determined by the
FCASE setting) that KEDIT would store the fileid inter-
nally

Query FILESTATUS displays three items:

e The sharing mode under which the current file is locked: DENYWRITE
or DENYREADWRITE, with NONE for a file that is not locked.

e The type of access KEDIT has to the file: READONLY or
READWRITE. KEDIT considers itself to have read-only access to a file
if the file’s directory entry was marked as read-only when KEDIT began
editing the file. Otherwise, KEDIT considers itself to have read-write ac-
cess to the file.

300

Chapter 5. QUERY and EXTRACT

FLSCREEN

FMODE

FNAME

FOCUSWORD

e The third item is the end-of-line sequence KEDIT found at the end of the
first line of the file when it read the file in. This can be CR, LF, or CRLF,
indicating a carriage return, linefeed, or carriage return-linefeed pair. It
can also be NONE, indicating that the file is a new file that did not exist
on disk, that the file contained no end-of-line sequences, or that the file
was read in with EOLIN NONE in effect.

EXTract /FILESTATUS/ sets these variables:

filestatus.0 3

filestatus.1 DENYWRITEDENYREADWRITE|NONE
filestatus.2 READONLYREADWRITE
filestatus.3 CR|LF|CRLF|NONE

Query FLscreen displays the line numbers of the first and last lines of the file that are
visible in the current window (or which would be visible if the display were refreshed).

EXTract /FLscreen/ sets these variables:

flscreen.O 2
flscreen.l1 File line number of first file line in window
flscreen.2 File line number of last file line in window

Query FMode displays the drive specifier of the current fileid as a drive letter followed
by a colon, or displays NONE if the current fileid is a UNC name.

EXTract /FMode/ sets these variables:

fmode . 0 2

fmode .1 Drive specifier of current fileid, in uppercase, or the null
string if the current fileid is a UNC name.

fmode. 2 Drive specifier of current fileid, in uppercase if FCASE

ASIS is in effect or lowercase if FCASE LOWER is in ef-
fect, or the null string if the current fileid is a UNC name

Query FName displays the file name of the current file.

EXTract /FName/ sets these variables:

fname.O 2
fname.1 File name of current file, in uppercase
fname.2 File name of current file, in mixed case if FCASE ASIS is

in effect or lowercase if FCASE LOWER is in effect

Query FOCUSWORD displays the word on the focus line nearest the cursor or nearest
the current column if the cursor is not on the focus line. Two interpretations of a word
are displayed. For the first, KEDIT considers any group of consecutive alphanumeric
characters, or any group of nonblank characters that are all non-alphanumeric, to be a
word. For the second, KEDIT considers any group of nonblank characters to be a word.

QUERY and EXTRACT Operands 301

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

When the cursor is in the file area, QUERY FOCUSWORD returns the same informa-
tion as QUERY FIELDWORD.

EXTract /FOCUSWORDY sets these variables:

focusword.O 2

focusword. 1 Focus word consisting of any group of consecutive alpha-
numeric characters or a group of nonblank characters that
are not alphanumeric

focusword.2 Focus word consisting of a group of nonblank characters

FORMAT Query FORMAT displays the values controlling paragraph justification (JUSTIFY or
NOJUSTIFY), how paragraph boundaries are determined (BLANK or EXTENDED),
and whether sentences are followed by SINGLE or DOUBLE blanks when
reformatted.

EXTract /[FORMATY/ sets these variables:

format.O 3
format.1 JUSTIFYNOJUSTIFY
format.2 BLANK|EXTENDED
format.3 DOUBLE|SINGLE
FPATH Query FPath displays the directory path of the current fileid. No trailing backslash is

added to the directory path.

EXTract /FPath/ sets these variables:

fpath.0 2
fpath.1 Directory path of current fileid, in uppercase
fpath.2 Directory path of current fileid, in mixed case if FCASE
ASIS is in effect or lowercase if FCASE LOWER is in ef-
fect
FTYPE Query FType displays the extension of the current fileid.

EXTract /FType/ sets these variables:

ftype.O 2
ftype.1 Extension of current fileid, in uppercase
ftype.2 Extension of current fileid, in mixed case if FCASE ASIS

is in effect or lowercase if FCASE LOWER is in effect

302 Chapter 5. QUERY and EXTRACT

HELPDIR

HEX

HEXDISPLAY

HIGHLIGHT

IDLINE

IMPMACRO

Query HELPDIR displays the Help file directory name if it has been specified via SET
HELPDIR, or else displays *COMMAND.

EXTract /HELPDIR!/ sets these variables:

helpdir.0 2

helpdir.1 SET HELPDIR directory name, in mixed
case, or *COMMAND

-
o
<
14
|]
x
o
>
14
Ll
2
(¢}

Query HEX displays whether HEX is ON or OFF.
EXTract /HEX/ sets these variables:

hex.0 1
hex.1 ON|OFF

Query HEXDISPlay displays whether HEXDISPLAY is ON or OFF.
EXTract /HEXDISPlay/ sets these variables:

hexdisplay.0 1
hexdisplay.1 ON|OFF

Query HIGHIight displays the current setting of HIGHLIGHT: OFF, ALTERED,
SELECT n m, or TAGGED.

EXTract /HIGHIight/ sets these variables:

highlight.0 3 if HIGHLIGHT SELECT is in effect; otherwise 1

highlight.1 OFF|ALTEREDI|SELECT|TAGGED

highlight.2 If HIGHLIGHT SELECT is in effect, the lowest selection
level highlighted

highlight.3 If HIGHLIGHT SELECT is in effect, the highest selec-
tion level highlighted

Query IDline displays whether IDLINE is ON or OFF.
EXTract /IDline/ sets these variables:

idline.O 1
idline.1 ON|OFF

Query IMPMACro displays whether IMPMACRO is ON or OFF.
EXTract /IMPMACTro/ sets these variables:

impmacro.0 1
impmacro.1 ON|OFF

QUERY and EXTRACT Operands 303

INISAVE

INITIALDIR

INITIALDOCSIZE

Query INISAVE displays whether state information will be saved in the Windows
registryat the end of the editing session (STATE[NOSTATE) and whether history infor-
mation will be saved (HISTORY|NOHISTORY).

EXTract /INISAVE/ sets these variables:

inisave.0 2
inisave.1l STATENOSTATE
inisave.2 HISTORY|NOHISTORY

QUERY/EXTRACT REGSAVE, which returns the same information as
QUERY/EXTRACT INISAVE, is now the preferred form.

Query INITIALDIR displays how the current directory is determined at the start of an
editing session when no initial fileid is specified (PRESERVE or RECALL) and when
an initial fileid is specified (PRESERVE, RECALL, or FIRSTFILE).

EXTract /INITIALDIR/ sets these variables:

initialdir.0 2
initialdir.1l PRESERVERECALL
initialdir.2 PRESERVERECALL|FIRSTFILE

Query INITIALDOC size displays whether the initial document window created at the
start of a session is MAXIMIZED, NORMAL (non-maximized) or RECALL (maxi-
mized or non-maximized depending on the state of the last document window in the
preceding editing session).

EXTract /INITIALDOCSsize/ sets these variables:

initialdocsize.O 1
initialdocsize.1l MAXIMIZEDNORMAL|RECALL

INITIALFRAMESIZE Query INITIALFRAMEsize displays whether KEDIT’s frame window is initially

MAXIMIZED, NORMAL (non-maximized) or RECALL (maximized or non-maxi-
mized depending on its state at the end of the preceding editing session).

EXTract /INITIALFRAMESize/ sets these variables:

initialframesize.O 1

initialframesize.l MAXIMIZEDNORMALRECALL
INITIALINSERT Query INITIALINSert displays whether Insert Mode is ON or OFF at the start of a

KEDIT session.

EXTract /INITIALINSert/ sets these variables:

initialinsert.0 1

initialinsert.1 ON|OFF
304 Chapter 5. QUERY and EXTRACT

INITIALWIDTH

INPUTMODE

INSERTMODE

INSTANCE

INTERFACE

INTERNATIONAL

Query INITIALWidth displays the WIDTH value that KEDIT puts into effect by
default at the start of an editing session.

EXTract /INITIALWidth/ sets these variables:

initialwidth.O 1
initialwidth.1 INITIALWIDTH value

Query INPUTMode displays the current setting of INPUTMODE: OFF, FULL, or
LINE.

EXTract /INPUTMode/ sets these variables:

inputmode.0 1
inputmode.1 OFF|FULL|LINE

Query INSERTmode displays whether INSERTMODE is ON or OFF.
EXTract /INSERTmode/ sets these variables:

insertmode. O 1
insertmode.1l ON|OFF

Query INSTANCE displays the current setting of INSTANCE: SINGLE if only a sin-
gle instance of KEDIT will run at a time, or else MULTIPLE.

EXTract /INSTANCE/ sets these variables:

instance.0 1
instance.l SINGLEMULTIPLE

Query INTERFACE displays the type of interface conventions in effect, either CUA or
CLASSIC.

EXTract /INTERFACE!/ sets these variables:

interface.0 1
interface.1l CUA|CLASSIC

Query INTERNATi onal displays the values controlling whether international case con-
ventions are in use (CASE or NOCASE) and whether international sorting conventions
are in use (SORT or NOSORT).

EXTract /INTERNATIonal/ sets these variables:

international.O 2
international.l CASE|NOCASE
international.2 SORT|NOSORT

QUERY and EXTRACT Operands 305

-
o
<
14
|]
x
o
>
14
Ll
2
(¢}

KEYSTYLE

LASTKEY

Query KEYSTYLE displays whether the STANDARD or ADJUSTED behavior of the
of the Enter, Home, Delete, Backspace, and Alt keys will be used when INTERFACE
CUA is in effect.

EXTract /KEYSTYLE/ sets these variables:

keystyle.O 5

keystyle.1 STANDARDI|ADJUSTED (Enter key)
keystyle.2 STANDARDI|ADJUSTED (Home key)
keystyle.3 STANDARDI|ADJUSTED (Delete key)
keystyle.4 STANDARDI|ADJUSTED (Backspace key)

keystyle.5 STANDARD|ADJUSTED (Al key)

The default definitions for these keys test the relevant KEYSTYLE setting and use it to
decide how they will operate. In fact, none of KEDIT’s ‘“hard-coded” behavior de-
pends on the value of KEYSTYLE; KEYSTYLE is only used within these default key
definitions.

Query LASTKEY displays information about the last key read from the keyboard by
KEDIT’s keyboard handler. (This is normally the key that KEDIT is currently process-
ing. For example, if you press the F4 key and the macro assigned to that key issues the
QUERY LASTKEY command, it is F4 that is reported on.) QUERY LASTKEY does
not report on keys read with the READV CMDLINE, DIALOG, or ALERT commands,
but does report on keys read via READV KEY.

KEDIT gives you the name of the last key read (as described in Chapter 7, “Built-in
Macro Handling”), the character associated with the key (or a null string for function
keys, etc.), the scan code (a decimal number from 0 to 255) of the key, and the Shift Sta-
tus at the time KEDIT read the key. See the description of the READV KEY command
for more information on the information returned.

Query LASTKEY 7, where n can range from 1 to 8, gives similar information for the
nth most recently read key. That is, Query LASTKEY 1 gives information on the most
recently read key (this is the same as Query LASTKEY), Query LASTKEY 2 gives
information on the second most recently read key, etc.

If no keys (or not enough keys) have been read yet by KEDIT, null strings are returned
for the key name and character code 0 is returned for the scan code and Shift Status.

EXTract /[LASTKEY [n]/ sets these variables:

lastkey.O 5 under Windows XP/2000/Vista;
4 under Windows 98/Me
lastkey.1 Key name (in uppercase, with possible "C-", "S-", "A-",

"S-C-", or"A-C-" prefix; "-" is always used in the prefix
rather than "+" for compatibility with earlier versions of

KEDIT)
lastkey.2 Character (or null string)
lastkey.3 Scan code

306

Chapter 5. QUERY and EXTRACT

LASTMSG

LASTOP

LASTRC

lastkey.4 Shift Status (see the table given with the READV com-
mand on page 111)

lastkey.5 Extended Shift Status (see the table given with the
READV command on page ; not set on Windows 98/Me)

Query LASTmsg displays the text of the last message or error message generated for
display in the current window. If MSGMODE OFF is in effect, the message may not
actually have been displayed. KEDIT truncates the text of messages that are longer
than 160 characters.

EXTract /LASTmsg/ sets these variables:

lastmsg.0 1
lastmsg.1 Text of last message, in mixed case

Query LASTOP command displays the operand used when command was last issued
from the command line. The command can be ALter, Change, CLocate, COUnt, Find,
Locate, SCHange, or TFind.

EXTract /LASTOP command)/ sets these variables:

lastop.0 1
lastop.1 name of the command and, in mixed case, its last operand

Query LASTOP * or simply QUERY LASTOP displays a list of the names and last
operands for all eight commands that have remembered operands.

EXTract /[LASTOP */ sets these variables:

lastop.0 8

lastop.1 ALTER and, in mixed case, its last operand
lastop.2 CHANGE and, in mixed case, its last operand
lastop.3 CLOCATE and, in mixed case, its last operand
lastop.4 COUNT and, in mixed case, its last operand
lastop.5 FIND and, in mixed case, its last operand
lastop.6 LOCATE and, in mixed case, its last operand
lastop.7 SCHANGE and, in mixed case, its operand
lastop.8 TFIND and, in mixed case, its last operand

Query LASTRC displays the return code generated by the last command issued from
the command line (that is, the return code in effect when an SOS EXECUTE command
last completed execution).

EXTract /[LASTRC/ sets these variables:

lastrc.0 1

lastrc.1 Return code from last command line command. (The
macro variable RC, set after each command to the return
code from that command, is more frequently useful.)

QUERY and EXTRACT Operands 307

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

LENGTH

Query LENgth displays the length of the focus line, with trailing blanks ignored.

EXTract /[LENgth/ sets these variables:

length.0 1
length.1 Length of focus line
LINE Query Llne displays the line number within the current file of the focus line.
EXTract /LIne/ sets these variables:
line.O 2
line.1 Line number within current file of focus line. (See
NBSCOPE.2 for line number within current scope)
line.2 Line number within current file of the current line
LINEFLAG Query LINEFLAG displays the flags associated with the focus line: NEW|NONEW,
CHANGENOCHANGE, and TAG|NOTAG.
EXTract /[LINEFLAG/ sets these variables:
lineflag.0 3
lineflag.1 NEW|NONEW
lineflag.2 CHANGENOCHANGE
lineflag.3 TAG|INOTAG
LINEND Query LINENd displays whether LINEND is ON or OFF, and displays the linend
character.
EXTract /[LINENJ/ sets these variables:
linend.O 2
linend.1 ON|OFF
linend.2 Linend character
LOCKING Query LOCKING displays whether LOCKING is ON or OFF.
EXTract /[LOCKING/ sets these variables:
locking.0 1
locking.1 ON|OFF
LRECL Query LRecl displays the LRECL (logical record length) value.
EXTract /LRecl/ sets these variables:
lrecl.O 1
lrecl.1 LRECL value
308 Chapter 5. QUERY and EXTRACT

LSCREEN

MACRO

MACROPATH

MACROSEARCH

MARGINS

Query LScreen displays the height in lines and width in columns of the current window.

EXTract /LScreen/ sets these variables:

lscreen.0 4

lscreen.1 Height in lines of current document window

lscreen.2 Width in columns of current document window

lscreen.3 Serial number of current document window (same as
UNIQUEID.3)

lscreen.4 Serial number of current document window (same as
UNIQUEID.3)

LSCREEN.3 and LSCREEN .4 are supplied for compatibility with text mode KEDIT.
In text mode KEDIT these give the line and column of the upper left corner of the win-
dow. This specific information is not relevant under Windows, but some macros use it
only to uniquely identify a particular window. Returning the window’s serial number in
LSCREEN.3 and LSCREEN.4 lets these macros work without change in KEDIT for
Windows.

Query MACRO macroname displays the definition of the specified in-memory macro.

EXTract /MACRO/ is not currently supported.

Query MACROPath displays ON, OFF, the name of the environment variable used for
macro searches, or the directory list used for macro searches.

EXTract /MACROPath/ sets these variables:

macropath.0 1
macropath.1l ON|OFF|envvar|dirlist

Query MACROSEARCH fileid [defaultextension] causes KEDIT to look for a file in
the same directories it looks in when searching for a macro. It then displays the fully
qualified name of the resulting file, or the null string if an error is encountered or the
file can’t be found. If fileid has no extension then defaultextension, if specified, is
assumed.

EXTract MACROSEARCH fileid [defaultextension)/ sets these variables:

macrosearch.0 1
macrosearch.1l Fully qualified file name, or the null string

Query MARgins displays the current margin settings: left margin, right margin, and
paragraph indent.

EXTract /MARgins/ sets these variables:

margins.O 3
margins.1 Left margin column

QUERY and EXTRACT Operands 309

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

margins.2 Right margin column

margins.3 Paragraph indent value
MARKSTYLE Query MARKSTYLE displays whether line blocks, box blocks, and stream blocks
marked with the mouse under INTERFACE CUA are marked as persistent blocks or as
selections.
EXTract MARKSTYLE/ sets these variables:
markstyle.O 3
markstyle.1l SELECTION|PERSISTENT (Line blocks)
markstyle.2 SELECTION|PERSISTENT (Box blocks)
markstyle.3 SELECTIONI|PERSISTENT (Stream blocks)
KEDIT’s default mouse macros test the relevant MARKSTYLE setting and use it to
decide how they will operate. In fact, none of KEDIT’s ““hard-coded” behavior de-
pends on the value of MARKSTYLE; MARKSTYLE is only used within these default
mouse macros.
MEMORY Query MEMory displays information about KEDIT’s memory usage.
Seven values are displayed; most of them are present only for compatibility with earlier
versions of KEDIT.
EXTract /MEMory/ sets these variables, with all values in kilobytes:
memory.0 7
memory.1 0
memory .2 0
memory .3 Always 10 (for compatibility with earlier versions of
KEDIT)
memory .4 Approximate amount of memory, in kilobytes, being used
by KEDIT to hold the contents of your files and related
internal data structures.
memory .5 0
memory. 6 0
memory .7 Approximate amount of memory, in kilobytes, holding
undo information
MONITOR Query MON.itor displays whether MONITOR is set to WINDOWS, COLOR, or
MONO.
EXTract /MONitor/ sets these variables:
monitor.0 1
monitor.1 WINDOWS|COLORMONO
MOUSEBEEP Query MOUSEBEEP displays whether MOUSEBEEP is ON or OFF.
310 Chapter 5. QUERY and EXTRACT

EXTract MOUSEBEEP/ sets these variables:

|—
mousebeep. 0 1 (&
mousebeep.1 ON|OFF é
|—
MSGLINE Query MSGLine displays whether MSGLINE is ON or OFF (it is currently always ﬁ
ON), your specification for the first line used for messages, the number of lines that can >
be used for messages, and OVERLAY if the first message line can overlay a file line. 5
=2
EXTract /MSGLine/ sets these variables: (¢}
msgline.O 4
msgline.1 ON
msgline.2 Message line location
msgline.3 Number of message lines
msgline. 4 OVERLAY|null string
MSGMODE Query MSGMode displays whether MSGMODE is ON or OFF.

EXTract /MSGMode/ sets these variables:

msgmode. 0 1
msgmode. 1 ON|OFF
NBFILE Query NBFile displays both the number of files in the ring and the maximum number of

files allowed in the ring.

EXTract /NBFile/ sets these variables:

nbfile.O0 2
nbfile.1l Number of files in the ring
nbfile.2 The maximum number of files allowed in the ring (cur-
rently 500)
NBSCOPE Query NBScope displays the number of lines within the current scope (which is the

number of lines in the current range if SCOPE ALL is in effect, and the number of lines
selected for display if SCOPE DISPLAY is in effect), and the line number within the
current scope of the focus line.

EXTract /NBScope/ sets these variables:

nbscope. 0 2
nbscope.1 Number of lines in current scope
nbscope. 2 Line number of focus line within current scope

QUERY and EXTRACT Operands 311

NBWINDOW

Query NBWindow displays the number of document windows that currently exist.

EXTract /NBWindow/ sets these variables:

nbwindow. 0 1
nbwindow.1 Number of document windows
NEWLINES Query NEWLines displays where new lines are input into your file: SAMELINE,
BELOW, or BELOWCURR.
EXTract /NEWLines/ sets these variables:
newlines.0 1
newlines.1 SAMELINE|BELOWBELOWCURR
NOVALUE Query NOVALUE displays ON or OFF, depending on whether use of uninitialized
variables in KEXX macros causes an error.
EXTract /NOVALUE/ sets these variables:
novalue.0 1
novalue.l ON|OFF
NUMBER Query NUMber displays whether display of line numbers in the prefix area is ON or
OFF.
EXTract /NUMber/ sets these variables:
number. 0 1
number.1 ON|OFF
OFPW Query OFPW displays ON or OFF, depending on whether ‘““one-file-per-window”
mode, in which each file added to the ring gets its own document window, is in effect.
EXTract /OFPW/ sets these variables:
ofpw.0 1
ofpw.1 ON|OFF
OPENFILTER Query OPENFilter displays the current open filter string, which can be used in the File
Open dialog box to determine the types of files listed.
EXTract /OPENFilter/ sets these variables:
openfilter.0 1
openfilter.1 Open filter string
OPMODE Query OPMODE displays information on the mode in which KEDIT is running. The
result can be: FULLSCREEN (OS/2 KEDIT in fullscreen session), TEXTWINDOW
(OS/2 KEDIT in Presentation Manager text window), DETACHED (OS/2 KEDIT in
detached session), REAL (DOS KEDIT), WINDOWS (DOS KEDIT running under
312 Chapter 5. QUERY and EXTRACT

OPSYS

PARSER

Windows 3.0 or above), GUI (Graphical-User-Interface version of KEDIT, in particu-
lar KEDIT for Windows), or UNKNOWN. For the GUI version of KEDIT, additional
information is displayed: the windowing system involved (for KEDIT for Windows,
this is “Windows”), the version of the windowing system (for example, under Win-
dows Vista, 6.00), and possibly some additional identifying text.

EXTract /OPMODE/ sets these variables:

opmode. 0 4 (for KEDIT for Windows) or 1 (for text mode versions
of KEDIT)

opmode. 1 GUI (for KEDIT for Windows); or else
FULLSCREEN|ITEXTWINDOW | DETACHED|
REAL|WINDOWS|UNKNOWN

opmode. 2 WINDOWS (for KEDIT for Windows); this and the fol-
lowing values are not set in text mode versions of KEDIT

opmode. 3 Windows version (for example, 6.00)

opmode. 4 Additional identifying text or null string

A macro can determine whether it is running under a graphical version of KEDIT by
testing whether OPMODE.1 equals GUI. Once it has been established that
OPMODE.1 is GUL, OPMODE.2, OPMODE.3, and OPMODE .4 can be checked to get
further information about the windowing system involved. Note that OPMODE.2,
OPMODE.3, and OPMODE 4 are not set in text mode versions of KEDIT, so macros
intended to run under both text mode and GUI versions of KEDIT should reference
them only after establishing that OPMODE.1 equals GUI. Note also that if
OPMODE.1 equals WINDOWS, it does not mean that you are running KEDIT for
Windows; it means that the DOS version of KEDIT is running under Windows.

If you simply want to test from within a macro whether you are running under KEDIT
for Windows, we recommend that you test whether VERSION.1 is equal to
“KEDIT/WINDOWS”.

Query OPSYS displays the name of the operating system KEDIT is running under and
the operating system version number. For example, running under Windows Vista,
KEDIT would display “Windows Vista 6.00”.

EXTract /OPSYS/ sets these variables:

opsys.0 3

opsys.1 Name of operating system

opsys.2 Version number of operating system
opsys.3 Additional identifying text or null string

If you want to test in a macro whether you are running under KEDIT for Windows, we
recommend that you test whether VERSION.1 is equal to “KEDIT/WINDOWS”.

Query PARSER parser displays the fileid of the KEDIT Language Definition file from
which the specified parser was loaded, as specified on the SET PARSER command that
defined the parser.

QUERY and EXTRACT Operands 313

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

EXTract /PARSER parser/ sets these variables:

parser.0 2
parser.1l Parser name
parser.2 Fileid of .KLD file

Query PARSER * or simply Query PARSER displays, for each defined parser, the
name of the parser and the fileid of the associated KLD file.

EXTract /PARSER/ or EXTRACT /PARSER */ sets the following variables:

parser.0 Number of parsers currently defined
parser. i Name of ith parser, and fileid of associated KLD file
PATH Query PATH displays ON, OFF, the name of the environment variable used for file
searches, or the directory list used for file searches.
EXTract /PATH/ sets these variables:
path.0 1
path.1 ON|OFF|envvar|dirlist
PCOLOR Query PCOLOR c displays the PCOLOR setting for the specified item, which must be
in the range A—Z or 1—9.
EXTract /PCOLOR ¢/ sets these variables:
pcolor.0 1
pcolor.1 The letter or number that you specified, followed by the
corresponding color.
Query PCOLOR * or simply Query PCOLOR displays the PCOLOR setting for each of
the characters, A—Z and 1—9, used with PCOLOR.
EXTract /PCOLOR/ or EXTract /PCOLOR */ sets the following variables:
pcolor.0 35
pcolor.i ith character (A—Z or 1—9), followed by the corre-
sponding color
POINT Query Point displays names currently assigned to the focus line.
EXTract /Point/ sets these variables:
point.0 0 if focus line is not a named line; otherwise, 1
point.1 Line number and names of the focus line, if focus line is
named
Query Point * displays the line number and assigned names of all named lines in the
current file.
314 Chapter 5. QUERY and EXTRACT

PREFIX

PREFIXWIDTH

PRINTCOLORING

PRINTER

EXTract /Point */ sets these variables:

-
point.0 Number of named lines 2
point.i Line number and names of the ith named line o’
|]
x
Query PREfix displays whether the prefix area is ON or OFF or displaying NULLS, w
and whether the prefix area displays on the LEFT or RIGHT of the window. E
L
EXTract /PREfix/ sets these variables: 8
prefix.0 2
prefix.1 ONJ|OFF|NULLS
prefix.2 LEFT|RIGHT

Query PREfix Synonym displays, for each defined prefix synonym, the newname and
oldname of the prefix command.

EXTract /PREfix Synonym/ sets these variables:

prefix.0 Number of prefix command synonyms
prefix.i Newname and oldname for ith prefix synonym

Query PREFIXWIDTH displays the width of the prefix area.
EXTract /PREFIXWIDTHY/ sets these variables:

prefixwidth.0 1
prefixwidth.1 Width of prefix area

Query PRINTCOLORIng displays whether PRINTCOLORING is ON or OFF.
EXTract /PRINTCOLORIing/ sets these variables:
printcoloring.0 1

printcoloring.1l ONJ|OFF

Query PRINTER displays whether printer output is being sent to WINDOWS, LPT1:,
LPT2:, LPT3:, COMI:, or COM2:. It also displays whether the CLOSE[NOCLOSE
option, the FORM|NOFORM option, and the CONVERT|NOCONVERT options are
in effect.

EXTract /PRINTER/ sets these variables:

printer.0 4

printer.1 WINDOWS|LPT1:|LPT2:|LPT3:[COM1:|COM2:
printer.2 CLOSE|NOCLOSE

printer.3 FORM|NOFORM

printer.4 CONVERT|NOCONVERT

QUERY and EXTRACT Operands 315

PRINTPROFILE

Query PRINTPROFile displays the fileid of the default printer profile macro.

EXTract /PRINTPROFile/ sets these variables:

printprofile.O 1
printprofile.1l Fileid of default printer profile macro

PRINTSIZE Query PRINTSIZE displays the number of lines per page, and the number of columns
per page, used for print operations, based on the currently selected printer, font, and
margins. If KEDIT cannot determine the result, -1 will be returned for the lines and/or
columns. -1 will always be returned if PRINTER WINDOWS is not in effect, and can
also be returned if, for example, no printers are installed.
EXTract /PRINTSIZE/ sets these variables:
printsize.0 2
printsize.l Number of lines per printed page, or -1
printsize.2 Number of columns per printed page, or -1

QUICKFIND Query QUICKFIND displays information on the search string displayed in the Quick
Find toolbar item: whether, if that string is searched for, case will be respected or
ignored, whether the search will be limited to whole words only, and whether the string
is a regular expression, followed by the string itself.
EXTract /QUICKFIND/ sets these variables:
quickfind.O 4
quickfind.1 IGNORERESPECT
quickfind.2 WORD|NOWORD
quickfind.3 REGEXPNOREGEXP
quickfind.4 Quick Find search string

RANGE Query RANge displays the line numbers within the current file of the first and last lines
in the current range.
EXTract /RANge/ sets these variables:
range.O0 2
range.1l Line number of first line in range
range.2 Line number of last line in range. (Equal to one less than

RANGE.1 if no lines in current range)

RECENTFILES Query RECENTFiles the maximum number of recently-edited files that KEDIT will
display on the File menu.
EXTract /RECENTFiles/ sets these variables:
recentfiles.O 1
recentfiles.1 RECENTFILES value

316 Chapter 5. QUERY and EXTRACT

RECFM

REPROFILE

REGSAVE

RESERVED

RIGHTCTRL

RING

Query RECFm displays whether the current record format is FIXED or VARYING.

|—
EXTract /RECFm/ sets these variables: 2
recfm.0 1 E
recfm.1 FIXED|VARYING x

=
Query REPROFile displays whether REPROFILE is ON or OFF. ﬁ

=2
EXTract /REPROFile/ sets these variables: (¢}
reprofile.O 1
reprofile.l ON|OFF

Query REGSAVE displays whether state information will be saved in the Windows
registryat the end of the editing session (STATE|[NOSTATE) and whether history infor-
mation will be saved (HISTORY|NOHISTORY).

EXTract /REGSAVE/ sets these variables:

regsave.0 2
regsave.l STATENOSTATE
regsave.2 HISTORY|NOHISTORY

Query RESERved displays a list of lines within the current window occupied by
reserved lines.

EXTract /RESERved/ sets these variables:

reserved.0 0 if no reserved lines; otherwise 1
reserved.1l List of reserved line numbers, if any

Query RIGHTCTRL displays whether RIGHTCTRL is ON or OFF.

EXTract /RIGHTCTRLY/ sets these variables:

rightctrl.O 1
rightectrl.1 ON|OFF

Query RING displays the number of files in the ring and gives information on each
file’s fileid, current line, current column, size, and alteration counts.

EXTract /RING/ sets these variables:

ring.0 Number of files in the ring

ring. i Information on the ith file in the ring: fileid (in uppercase
and possibly containing blanks), current line, current
column, size, and alteration count

Query RING FILEID displays the number of files in the ring and the fileid of each of
the files in the ring.

QUERY and EXTRACT Operands 317

EXTract /RING FILEID/ sets these variables:

ring.0 Number of files in the ring
ring. i The fileid of the ith file in the ring, in mixed case and
possibly containing blanks.

QUERY/EXTRACT RING and QUERY/EXTRACT RING FILEID consider the cur-
rent file to be the first file in the ring.

SCALE Query SCALe displays whether SCALE is ON or OFF, and the scale line’s specified
location in the window.
EXTract /SCALe/ sets these variables:
scale.O 2 if SCALE OFF, 3 if SCALE ON
scale.1l ONJ|OFF
scale.2 Scale line location specification
scale.3 Line number within window occupied by scale line (set
only if SCALE ON)
SCOPE Query SCOPE displays the current scope setting, either DISPLAY or ALL.
EXTract /SCOPE/ sets these variables:
scope. 0 1
scope.1l DISPLAY|ALL
SCROLLBAR Query SCROLLbar displays whether SCROLLBAR is ON or OFF and whether, if
SCROLLBAR ON is in effect, the HORIZONTAL scrollbar only, the VERTICAL
scrollbar only, or BOTH kinds are displayed.
EXTract /SCROLLDbar/ sets these variables:
scrollbar.0 2
scrollbar.1 ON|OFF
scrollbar.2 HORIZONTAL|VERTICAL|BOTH
SELECT Query SELect displays the selection level of the focus line, and the maximum selection
level of all lines in the current file.
EXTract /SELect/ sets these variables:
select.0 2
select.1 Selection level of focus line. (Same value as CURLINE.6,
but using CURLINE.6 is much more efficient)
select.2 Maximum selection level of all lines in current range in
current file
318 Chapter 5. QUERY and EXTRACT

SHADOW

SHARING

SIZE

STARTUP

Query SHADow displays whether SHADOW is ON or OFF.

EXTract /SHADow/ sets these variables:
shadow.0 1
shadow.1 ON|OFF

Query SHARING displays the file sharing modes used by KEDIT when it reads a file
into memory (DENYWRITE or DENYNONE), and when it locks a file
(DENYWRITE or DENYREADWRITE).

-
o
<
14
|]
x
o
>
14
Ll
2
(¢}

EXTract /SHARING/ sets these variables:

sharing.0 2
sharing.1 DENYWRITEDENYNONE
sharing.2 DENYWRITEDENYREADWRITE

Query Slze displays the number of lines in the current file.

EXTract /Slze/ sets these variables:
size.O 1

size.1l Number of lines in current file. (See NBSCOPE.1 for
number of lines in current scope)

Query STARTUP displays information about how KEDIT was invoked:

The fully qualified name of the KEDIT module that is executing

e The command line arguments passed to KEDIT or, if there were none, *“(none)”

The value of the KEDITW environment variable, or “‘(none)”

The fully qualified name of the profile executed at the start of the current editing
session, or “‘(none)”’

EXTract /STARTUP/ sets these variables:

startup.0 4

startup.1 The fully qualified name of the KEDIT module that is ex-
ecuting

startup.2 The command line arguments passed to KEDIT, or the
null string

startup.3 The value of the KEDITW environment variable, or the
null string

startup.4 The fully qualified name of the initial profile, or the null
string

QUERY and EXTRACT Operands 319

STATUSLINE

Query STATUSLine displays whether the status line display is ON or OFF.

EXTract /STATUSLIine/ sets these variables:

statusline.O 2
statusline.1l ON|OFF
statusline.2 BOTTOM
STAY Query STAY displays whether STAY is ON or OFF.
EXTract /STAY/ sets these variables:
stay.O0 1
stay.1 ON|OFF
STREAM Query STReam displays whether STREAM is ON or OFF.
EXTract /STReam/ sets these variables:
stream.0 1
stream.1 ON|OFF
SYNONYM Query SYNonym displays whether SYNONYM is ON or OFF.
EXTract /SYNonym/ sets these variables:
synonym. 0 1
synonym. 1 ON|OFF
Query SYNonym * displays, for all defined synonyms, the newname, the minimal trun-
cation, and the synonym definition.
EXTract /SYNonym */ sets these variables:
synonym. 0 Number of synonyms defined
synonym. i Newname, truncation, and definition of ith synonym
TABLINE Query TABLine displays whether TABLINE is ON or OFF, and its specified location
in the window.EXTract /TABLine/ sets these variables:
tabline.O 2 if TABLINE OFF, 3 if TABLINE ON
tabline.1l ON|OFF
tabline.2 Tabline location specification
tabline.3 Line number within window occupied by tab line (set
only if TABLINE ON)
320 Chapter 5. QUERY and EXTRACT

TABS

TABSAVE

TABSIN

TABSOUT

TARGET

Query TABs displays the current tab setting (a list of specific tab columns, INCR n, or

both) -
(&)

EXTract /TABs/ sets these variables: é
tabs.0 2 E
tabs.1 Current tab setting (a list of specific tab columns, INCR =
n, or both) (14

tabs.2 Current tab columns (up to a maximum response length of g
(¢

approximately 1000 characters)

Query TABSAVE displays whether the TABSAVE facility is ON or OFF.

EXTract /TABSAVE/ sets these variables:

tabsave.0 1
tabsave.1l ON|OFF

Query TABSIn displays whether TABSIN is ON, OFF, or set to TABQUOTE, and the
tab increment used for TABSIN processing.

EXTract /TABSIn/ sets these variables:

tabsin. 0 2
tabsin.1l ON|OFF|TABQUOTE
tabsin.2 Tab increment

Query TABSOut displays whether TABSOUT is ON or OFF, and the tab increment
used for TABSOUT processing.

EXTract /TABSOut/ sets these variables:

tabsout.0 2
tabsout.1 ON|OFF
tabsout.2 Tab increment

Query TARGet displays information about the target of the last CLOCATE, LOCATE,
or TFIND command issued for any file in the ring: the line and column number within
the file of the start of the matching target, and the line and column number of the end of
the matching target. If the target was not a string target, the column pointer value is
returned for both column numbers. In the current version of KEDIT, the line number of
the start and end of the matching target will always be the same.

EXTract /TARGet/ sets these variables:

target.O 5
target.1 Line number of start of target
target.2 Column number of start of target

QUERY and EXTRACT Operands 321

target.3 Line number of end of target
target.4 Column number of end of target

target.5 Set equal to the text of the last string target. Valid only if
your macro issues EXTRACT /TARGET/ immediately
(that is, no intervening KEDIT commands) after success-
ful use of the LOCATE, CLOCATE, or TFIND com-
mands to search for a string target

THIGHLIGHT Query THIGHIight displays whether THIGHLIGHT is ON or OFF.
EXTract /THIGHIight/ sets these variables:
thighlight.0 1
thighlight.1 ON|OFF
TIME Query TIME displays the current date and time.
EXTract /TIME/ sets these variables:
time.O 5
time.1 Date in country-dependent format
time.2 Time in hh:mm format
time.3 Date in mm-dd-yy format
time.4 Time in hh:mm:ss.hh format
time.5 Date in yyyy-mm-dd format
TIMECHECK Query TIMECHECK displays whether TIMECHECK is ON or OFF.
EXTract /TIMECHECK! sets these variables:
timecheck.0 1
timecheck.1 ON|OFF
TOF Query TOF displays whether the focus line location is ON or OFF the top-of-file (or
top-of-range) line.
EXTract /TOF/ sets these variables:
tof.0 1
tof.1 ON|OFF
TOFEOF Query TOFEOF displays whether display of the top-of-file and end-of-file lines is ON
or OFF.
EXTract /TOFEOF/ sets these variables:
tofeof.0 1
tofeof.1 ON|OFF
322 Chapter 5. QUERY and EXTRACT

TOL

TOOLBAR

TOOLBUTTON

Query TOL displays whether or not the focus column is located ON or OFF the
top-of-line column (which is one column to the left of the left zone column, by analogy
with the top-of-file line).

EXTract /TOL/ sets these variables:

tol.0 1
tol.1 ON|OFF

-
(&)
<
14
-
x
u
>
14
L
2
(¢}

Query TOOLBAR displays toolbar display is ON or OFF, and whether toolbars are set
to appear at the TOP of the frame window, the BOTTOM, or BOTH.

EXTract /TOOLBAR/ sets these variables:

toolbar.0 2
toolbar.1 ON|OFF
toolbar.2 TOPBOTTOM|BOTH

Query TOOLButton name displays information about the specified toolbutton: the but-
ton name, how it appears on the toolbar (bitmap name or delimited text string), any con-
ditions under which the button is disabled, and the tooltip and status line help for the
button.

EXTract /TOOLButton name/ sets these variables:

toolbutton.0 4

toolbutton.1 Button name

toolbutton.2 Built-in or on-disk bitmap file, or delimited string used
for button text

toolbutton.3 COND ccc (conditions under which button is disabled, if
any), or null string

toolbutton. 4 Delimited text of tooltip and status line help for button, if

any, or null string

Query TOOLButton * or simply Query TOOLButton displays a line of information for
each of the currently-defined toolbuttons: the button name, bitmap name or delimited
text string, conditions under which button is disabled, delimited text of tooltip and sta-
tus line help.

EXTract /TOOLButton */ or simply EXTract /TOOLButton/ sets these variables:

toolbutton. 0 Number of toolbuttons
toolbutton. i Information about the ith toolbutton

QUERY and EXTRACT Operands 323

TOOLSET

TRAILING

TRANSLATEIN

TRANSLATEOUT

Query TOOLSet or Query TOOLSet TOP gives information about the top toolbar;
Query TOOLSet BOTTOM gives information about the bottom toolbar. TOP or
BOTTOM is displayed, followed by DEFAULT or USER, followed by the contents of
the toolset.

EXTract/TOOLSet [TOP BOTTOM]/ (where TOP is the default) sets these variables:

toolset.0 3

toolset.1 TOP|BOTTOM

toolset.2 DEFAULT|USER

toolset.3 Contents of default or user-defined toolset

Query TRAILING displays the current setting of TRAILING: ON, OFF, SINGLE, or
EMPTY.

EXTract /TRAILING/ sets these variables:

trailing.0 1

trailing.1 ON|OFF|SINGLE|JEMPTY

Query TRANSLATEIn displays the current setting of TRANSLATEIN, which is either
NONE or OEMTOANSI.

EXTract TRANSLATEIn/ sets these variables:

translatein.O 1
translatein.1l NONE|OEMTOANSI

Query TRANSLATEOut displays the current setting of TRANSLATEOUT, which is
either NONE or ANSITOOEM.

EXTract TRANSLATEOut/ sets these variables:

translateout.0 1
translateout.1l NONE|ANSITOOEM

TRUNC Query TRunc displays the column number of the truncation column.
EXTract /TRunc/ sets these variables:
trunc.0 1
trunc.1l Truncation column
324 Chapter 5. QUERY and EXTRACT

UNDO

UNDOING

UNIQUEID

VARBLANK

VERIFY

Query UNDO displays, for the current file, how many levels of changes can be undone,

how many levels of changes can be redone, and the amount of storage (in kilobytes) -
being used to hold the file’s undo information. 2
EXTract /UNDOY/ sets these variables: E
undo.0 3 U;J
undo.1 Levels of undoable changes for current file 5
undo.2 Levels of redoable changes for current file =)
undo. 3 Amount of memory, in kilobytes, holding undo informa- o

tion for current file

Query UNDOING displays whether UNDOING is ON or OFF, the maximum number
of undo levels that will be kept when it is ON, and the maximum amount of memory (in
Kbytes) that KEDIT will set aside to hold undo information.

EXTract /UNDOING/ sets these variables:

undoing.0 3

undoing.1 ON|OFF

undoing.2 The maximum number of undo levels KEDIT will attempt
to keep in memory

undoing.3 The maximum amount of memory (in Kbytes) that

KEDIT will use to hold undo information.

Query UNIQueid displays the unique serial numbers corresponding to the current file,
view, and window.

EXTract /UNIQueid/ sets these variables:

uniqueid.O 3

uniqueid.1l Serial number of current file
uniqueid.2 Serial number of current view
uniqueid.3 Serial number of current window

KEDIT assigns a unique serial number to each new file that it creates, to each new view
of a file that it creates, and to each new window that it creates. You can use this informa-
tion to tell if a file, view, or window is the ““‘same” one that you worked with at some
earlier point, despite changes to the fileid involved, window position, etc.

Query VARDlank displays whether VARBLANK is ON or OFF.
EXTract /VARblank/ sets these variables:

varblank.0 1
varblank.1 ON|OFF

Query Verify displays the current VERIFY setting, as a list of one or more column
pairs, each possibly preceded by an H if they are displayed in hexadecimal.

QUERY and EXTRACT Operands 325

VERSHIFT

VERSION

WIDTH

WINDIR

EXTract /Verify/ sets these variables:

verify.0 1
verify.1 VERIFY column pairs

Query VERShift displays the number of columns the VERIFY setting has been offset
by the LEFT or RIGHT commands, or by autoscrolling.

EXTract /VERShift/ sets these variables:

vershift.0 1
vershift.1l VERSHIFT offset

Query VERSION displays KEDIT’s version string. The first word of the version string
identifies the product (“KEDIT/Windows””). Next is the version number in the form of
a major version number, a decimal point, and a two digit minor version number (for
example, 1.50). Next is a two character revision level (for example, W1) and possible
additional identifying text. Finally, there is the date of this version of KEDIT, in the
form “Mmm dd yyyy”.

EXTract /VERSION/ sets these variables:

version.O0 4

version.1l “KEDIT/WINDOWS” (this is returned for KEDIT for
Windows; the DOS and OS/2 text mode versions of
KEDIT return “KEDIT”).

version.2 Version number
version.3 Revision level and possible additional identifying text
version. 4 Date of this KEDIT version, in the form “MMM dd yyyy”

If you want to test in a macro whether you are running under KEDIT for Windows, we
recommend that you test for VERSION.1 equal to “KEDIT/WINDOWS”.

Query Width displays the value of the WIDTH setting, which is set via the WIDTH ini-
tialization option. Itis the length of the longest line that KEDIT can process in this edit-
ing session.

EXTract /Width/ sets these variables:

width.O0 1
width.1 Value of the WIDTH setting

Query WINDIR displays the fully-qualified name of your Windows directory, and of
your Windows system directory.

EXTract /WINDIR/ sets these variables:

windir.0 2
windir.1 Fully-qualified name of Windows directory
windir.2 Fully-qualified name of Windows system directory

326

Chapter 5. QUERY and EXTRACT

WINDOWNAME

WINMARGIN

WORD

WORDWRAP

WRAP

Query WINDOWNAME tells you the name of the current document window. This is
usually simply the name of the file that you are editing, for example
"C:\MyDir\MyFile.txt". But if you have multiple views of the same file in different
windows (these are normally created with the Window/New Window menu item), the
title bars of the windows involved include a colon (":") followed by a window number.
And the output from Query WINDOWNAME includes this window number, giving
for example "C:\MyDir\MyFile.txt:2".

EXTract/ WINDOWNAME/ sets these variables:

-
o
<
14
|]
x
o
>
14
Ll
2
(¢}

windowname. 0 1
windowname.l Name of the current document window, in mixed case

Query WINMARgin displays whether the ability to drag the mouse in the window mar-
gin area to mark line blocks is turned ON or OFF, and displays the width in pixels of the
window margin area.

EXTract /WINMARgin/ sets these variables:

winmargin.O 2
winmargin.1l ON|OFF
winmargin.2 Width of window margin area, in pixels

Query WORD displays whether “words” are strings of NONBLANK characters or
strings of ALPHANUMeric characters,, and TRAILING or NOTRAILING depending
on whether word selection does or does not include trailing blanks.

EXTract /WORDY/ sets these variables:

word. O 2
word.1l NONBLANK|ALPHANUM
word.2 TRAILING|NOTRAILING

Query WORDWrap displays whether WORDWRAP is ON or OFF.

EXTract /WORDWrap/ sets these variables:

wordwrap.0 1
wordwrap.1l ON|OFF

Query WRap displays whether WRAP is ON or OFF.

EXTract /WRap/ sets these variables:

wrap.0 1
wrap.1l ON|OFF

QUERY and EXTRACT Operands 327

ZONE Query Zone displays the current left and right zone columns.

EXTract /Zone/ sets these variables:

zone.0 2
zone.l Left zone column
zone.2 Right zone column

= Query = displays the contents of the equal buffer for the current file.

EXTract /=/ sets these variables:

equalsign.0 1
equalsign.1l Contents of equal buffer, in mixed case

328 Chapter 5. QUERY and EXTRACT

Chapter 6. Macro Reference

See also

This chapter presents a somewhat formal description of the KEXX macro language. A
tutorial introduction to KEXX is given in User’s Guide Chapter 10, “Using Macros”.
Other aspects of how to use KEDIT’s macro facilities, such as the DEFINE command,
KEX and .KML files, and the KEXX debugging facility, are also discussed there.

If you want more information about KEXX, you may want to look at books about the
REXX language, since KEXX includes a large enough subset of REXX for these to be
helpful. The definitive reference for the REXX language is The REXX Language:
A Practical Approach to Programming by Michael Cowlishaw (Second Edition,
Prentice-Hall, 1990), which is recommended for all “power users” of KEDIT’s macro
facilities. Several IBM REXX manuals include somewhat similar reference
information.

User’s Guide Chapter 10, “Using Macros”, User’s Guide Chapter 11, “Sample
Macros”, DEFINE, IMMEDIATE, MACRO, MACROS, SET IMPMACRO, SET
MACROPATH

6.1 Program Structure

Comments

Each line of a KEXX macro can be up to 250 characters long, and you can have up to
4000 lines in a KEXX macro.

Except within literal strings, case is not significant in the text of KEXX macros. The
names of variables, keywords, and functions can be given in uppercase, in lowercase,
or in mixed case.

KEXX clauses are the equivalent of statements in other languages. You can have one or
more clauses on a line. If you have more than one clause on a line, you must use a semi-
colon (““;”) to separate each pair of clauses. The last or only clause on a line can
optionally be followed by a semicolon. Clauses must fit on a single line; you cannot
have a clause that extends over two or more lines.

There are two ways to indicate comments within a KEXX macro:

ek

e Whenaline of a KEXX macro has an asterisk (
the entire line is taken as a comment.

) as its first nonblank character,

* this is a comment line

e You can also use REXX style comments, enclosing comment text between
slash-asterisk (““/*) asterisk-slash (““*/°”) pairs. This type of comment must begin
and end on the same line, but need not occupy the entire line.

/* this is a comment */
X =17 /* this comment follows a clause */
/* and this comment precedes one */ N = 19

Program Structure 329

@
Q
c
o
S

2
)

(14
o
S
o
®

=

6.2 Tokens

Symbols

Numbers

Literal strings

The clauses in a KEXX macro are built up from fokens, which fall into these groups:

Symbols are used as the names of KEXX variables, as the names of functions that
KEXX macros can call, and as keywords for instructions like IF, DO, and EXIT. Sym-
bols are made up of groups of alphabetic characters (“‘a—z*, >’ A—Z"’), numeric char-
acters (“0—9”") and special characters (““!”*, “?”, © ” and ““.””). Examples:

EXIT WRAP.1 VarName _x .Al

Numbers are a special type of symbol. They are composed of one or more digits and
can optionally include a decimal point. Numbers are optionally preceded by a plus sign
or a minus sign. You can use floating point notation by appending to a number “E” or

e”’, an optional plus or minus sign, and one or more additional digits to represent the
power of ten involved.

Examples:

24 -54 +081 1234.5678901 142.36el2 15E-5

This documentation will sometimes refer to whole numbers. These are numbers that
can be expressed within the current number of NUMERIC DIGITS (which is normally
nine digits) without a decimal point and without using exponential notation.

Literal strings are strings that are delimited by single or double quotes. For example,
'Error in data entry’ "Please enter your name" v

If you have a literal string delimited by single quotes that contains single quotes the
embedded single quotes must be doubled, as in this example:

'Mary''s book'

And similarly, with any literal string delimited by double quotes that contains double
quotes, the embedded double quotes also must be doubled:

"He said, ""Hello"" to Bob."

A special type of literal string is a hexadecimal string. When used in a KEXX macro, a
hexadecimal string is equivalent to a string consisting of the characters whose character
codes are given in the string. For instance, the hexadecimal string '0C'x specifies a
one-character string containing the character whose character code in hexadecimal is
0C.

Hexadecimal strings are made up of pairs of hexadecimal digits (“0—9”°, “a—ft"’,
“A—F""), with each pair representing one character. Multiple pairs can be concate-
nated together or can be separated by blanks. The entire string must be delimited by sin-

[I3 1)

gle or double quotes and followed by the character “x”* or “X”.

330

Chapter 6. Macro Reference

Operators

Miscellaneous

Binary strings are also available. They consist of strings of binary digits (““0 or 1),
with each group of four binary digits representing one hexadecimal digit. Binary
strings are delimited by single or double quotes and are followed by the character ““b>
or “B”.

'0C'X '0lecf8'x "0l ec £8"x '0010 0100'b '11010111'B

Operators, such as “+”” and “*”, are used in KEXX expressions and are discussed
below in Section 6.5, “Operators and Expressions”.

KEXX also uses parentheses (for grouping within expressions and in function calls),
commas (to separate arguments to functions), equal signs (in assignments), and colons
(to indicate labels).

6.3 Symbols and Variables

Constant
symbols

Variable

symbols

Simple

variables

Stem variables

As discussed above, symbols are made up of groups of alphabetic characters (“a—z",
“A—Z"), numeric characters (“0—9”") and special characters (““!”’, “?”,) and

113 ”)

Symbols that begin with a period or with a number are known as constant symbols. The
value of a constant symbol is always the name of the symbol in uppercase, and cannot
be changed. Examples of constant symbols:

0 19 .ABC 54321 9g 4.2

All other symbols (that is, symbols whose first character is non-numeric and is not a
period) are known as variable symbols, and can be used to refer to variables. The value
of all variables is initially equal to the name of the variable, in uppercase, but variables
can be assigned new values when used on the left side of assignments, as discussed in
the next section.

There are three types of variable symbols: simple symbols, stem symbols, and com-
pound symbols, and they can be used to refer to the three types of variables: simple
variables, stem variables, and compound variables.

Simple symbols are variable symbols that contain no periods. They are used to name
simple variables, which correspond most closely to ordinary variables in other lan-
guages. Examples:

A WRAP CDe7

Stem symbols are variable symbols that contain a single period, which is the last char-
acter of the symbol. Examples:
A. WRAP. CDe7.

Stem symbols, which correspond most closely to the names of arrays in other lan-
guages, can be used in expressions just as simple symbols and compound symbols can,

Symbols and Variables 331

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Compound
variables

but when used on the left side of an assignment, special handling applies, as discussed
in the next section.

Compound symbols are formed by taking a stem symbol and concatenating a symbol
that contains no periods. Examples:

A.12 A.I

In these examples, A. is known as the stem component of the compound symbol and 12
and I are known as the tail component. When you use a compound symbol, KEXX
derives the name of the variable referred to (known as the derived name of the variable)
by taking the stem component of the symbol as is, but replacing the symbol in the tail
by its value. So the compound symbol A4.12 refers to the variable 4.12, since the stem
A. istaken as is, and 12 is a constant symbol with the value 12. Assuming that / has the
value 9, A.I refers to the variable 4.9, since A. is taken as is, and the variable 7 is
replaced by its value, 9.

Compound variables correspond most closely to array elements in other languages.
You can think of 4.2 as referring to the twelfth element of the array A, and you can
think of 4.7, where [is a variable whose value can vary, as letting you loop through the
elements of the array A.

You can use multiple symbols in the tail of a compound symbol, separating them by
periods, to make compound variables act like arrays with two or more dimensions.
Examples:

A.11.12 B.I.J C.I.J.1

KEXX derives the name of the compound variable referred to in these cases by substi-
tuting, for each symbol in the tail, the value of the symbol. So if / is 3 and J is 5, the
derived name of 4.11.121s A.11.12, the derived name of B.1.Jis B.3.5, and the derived
name of C.1.J.1is C.3.5.1.

Compound variables are actually more general than arrays in most other languages,
because the values of the symbols in the tail need not be numeric. For example, if
NAME has the value “Fred”, A.NAME refers to A.Fred.

The values of symbols in the tail can contain any characters, including blanks and spe-
cial characters. However, KEXX does not properly handle symbols in the tail whose
values are null or contain the null character (character code 0).

332

Chapter 6. Macro Reference

6.4 Assignments

You can use assignments to change the values of variables. Assignments have the form
variable = expression

Examples of assignments:

X.1 =17
A = SUBSTR(B, 1, 2)
CH2 =C || D || E

Stem assignment is a special case. When you assign a value to a stem, that value is also
assigned to all possible compound variables whose name begins with that stem. (If you
think of compound variables as corresponding to the array elements found in other lan-
guages, you can think of stem assignment as initializing an entire array to a given
value.) For example,

A. = 'XYZ'

assigns “XYZ” to 4.0, A.1, A.2, etc. KEXX uses special internal logic to handle stem
assignments, and they use no more time or memory than assignments to other variables.

All variables always have values. If you use a variable that your macro has not yet
assigned a value to, the value of the variable is the name of the variable in uppercase.

The values of all variables (simple, compound, and stem) are always character strings.
Even numeric values are stored by KEXX as character strings.

6.5 Operators and Expressions

Arithmetic
operators

AKEXX expression can consist of a single variable, literal string, or function call. You
can also use operators (along with parentheses for grouping) to combine these together
into more complex expressions. This section discusses the different types of operators
that you can use in KEXX: arithmetic operators, comparison operators, concatenation
operators, and logical operators.

Arithmetic operations performed by KEXX are:
e Addition (“+7)

e Subtraction (“-)

e Multiplication (““**)

e Division (*/”)

e Integer division (“%")

e Remainder (“//")

Operators and Expressions 333

@
Q
c
o
S

2
)

(14
o
S
o
®

=

e Exponentiation (““**°*)
e Unary plus (“+7)
e Unary minus (“_”)

Some examples:

5+ 3 = '8!’

5 -3 = '2"
5 * 3 = '15"
5/ 3 = '1.66666667"
5% 3 = 'l
5% -3 = -1
5// 3 = 2"
5 // -3 = 2!
5 *%x 3 = '125"
+(-5) = '-5"
-(-5) = '5"

Some rules that KEXX follows when processing arithmetic operations:

e KEXX stores all values, including those that appear to be “numeric”, as character
strings. As a result, all values can take part in “character” operations like concate-
nation and substring. When KEXX needs to do an arithmetic operation, it converts
the operands from character to numeric form, giving you an error if the operands
cannot be converted. Then KEXX does the operation and converts the result back
to character form. For example, all of the following assignments have the effect of
setting X to the string “103”.

'99V + V4V
99 + 4

X
X
X 99 + '4'

e The NUMERIC DIGITS instruction controls how many significant digits are re-
tained in arithmetic results. The default for NUMERIC DIGITS is 9, and results
involving more digits than this are rounded to 9 digits. You can use NUMERIC
DIGITS to specify up to 1000 significant digits.

numeric digits 9

say 123456 + .123456 /* result is 123456.123 */

say 123456**3 /* result is 18816403E+15 */
numeric digits 50

say 123456 + .123456 /* result is 123456.123456 */
say 123456**3 /* result is 1881640295202816 */

e Superfluous leading zeros are removed from all results. Trailing zeros after a deci-
mal point are removed from the results of division and exponentiation but are re-
tained after other arithmetic operations. However, arithmetic results that are equal
to zero always return '0', with no leading zeros, trailing zeros, or decimal point.

334

Chapter 6. Macro Reference

say 4.00 * 2
say 4.00 / 2
say 4.00 * 0

/* result is 8.00 */
/* result is 2 */
/* result is 0 */

e Exponential notation is used for results that would otherwise require a large num-
ber of digits before or after the decimal point. Specifically, if the number of digits
before the decimal point would be greater than the current NUMERIC DIGITS
value (normally 9) or the number of digits after the decimal point would be more
than twice that value (that is, more than 18 digits), KEXX expresses the result in
exponential notation.

/* assuming default of NUMERIC DIGITS 9 */

say 1234567*100 /* result is 123456700 */

say 1234567*10000 /* result is 1.23456700E+10 */
say .1234567/1E2 /* result is 0.001234567 */
say .1234567/1E20 /* result is 1.234567E-21 */

(]
(3}
Comparison The comparison operators compare two values to see if the first is equal to the second, %
operators greater than the second, etc., yielding 1 if so and 0 if not. o
S
(]
KEXX has two sets of comparison operators. The normal comparison operators ignore o
leading and trailing blanks in the strings to be compared and, if the strings to be com- o
pared contain valid KEXX numbers, do numeric comparisons. Strict comparison com- g
pares two strings character by character, without any special handling of blanks and =
numbers. Here are some examples using the normal equality operator (““="") and the
strict equality operator (““=="", consisting of two equal signs):
'abc' = 'abce' = 'l
'abc' == 'abc' 'l
'ABC' = 'abc' 0"
'ABC |l = A\l abc A\l |l 0 |l
Al abc A\l = A\l abc A\l Al 1 Al
! abc ' == 'abc' '’
'abc =" abc' = 'l
'abc '== abc' = '’
Al 99 A\l = A\l 99 Al Al 1 Al
|l 99 A\l —] 99 A\l |l 1 |l
'099' = '99' = 'l
099" == '99" = o
Normal The normal comparison operators are:
comparison
operators

e Equal (“=")

e Greater than (“>")

Operators and Expressions 335

Strict
comparison
operators

Concatenation
operators

Less than (“<”
NOt equal (“\:’7’ ‘6<>’?’ 66><?’)
Greater than or equal to (““>=*, ”\<”")

Less than or equal to (““<=*‘, ”\>"")

The strict comparison operators are:

Strictly equal (“=="

Strictly greater than (““>>"

Strictly less than (“‘<<”

Not strictly equal (“\=="")

Strictly greater than or equal to (“>>=", “’\<<”")

Strictly less than or equal to (“<<=", “\>>"’)

Some examples:

v

'abc' < 'cde' = 'l
'abc' << 'cde' = 'l
'012' >= '9! = 'l
'012' >>= '9! = '0’
abc ' \< 'abc' = 1
abc ' \<< 'abec' = 0!

The concatenation operators join two strings together to form a longer string. The con-
catenation operators are:

Blank
When KEXX encounters, within an expression, two values separated by one or
more blanks, KEXX concatenates the two values, placing a single blank between
them.

Abuttal
When KEXX encounters, within an expression, two values immediately adjacent
to each other, KEXX concatenates the two values, with no blank between them.

Two values that you want to concatenate cannot always be unambiguously placed
immediately adjacent to each other. For example, if the variable name X is placed
immediately adjacent to the variable name ¥, KEXX does not concatenate the val-
ues of X and Y, but instead takes this as a reference to the variable XY. For these

336

Chapter 6. Macro Reference

Logical
operators

Operator
precedence

cases, KEXX provides the concatenation operator ||, which also concatenates two
values, placing no blanks between them. (The concatenation operator consists of
two occurrences of character code 124, which appears on most U.S. keyboards as a
split vertical bar, located on the backslash key.)

In the following examples, assume that X has the value “Hello” and Y has the value
“there.”, while XY has the value “Goodbye”:

XY = 'Hello there.'
X Y = 'Hello there.'
X'='Y = 'Hello=there.'
XY = 'Goodbye'

X||Y = 'Hellothere.'
X ||l Y = 'Hellothere.'

Only the values 1 and 0, representing logical true and false values, are valid as operands
of the logical operators. The results of the logical operations are themselves either 1 or

0.

Negation (“\”)
Negation, a unary operator, yields 0 if its operand has the value 1, and yields 1 if'its
operand has the value 0.

And (44&’7)
And takes two operands, yielding 1 if both operands have the value 1, and yielding
0 if either operand has the value 0.

Inclusive or (“|”)

Inclusive or takes two operands, yielding 1 if either operand has the value 1, and
yielding 0 if both operands have the value 0. (The inclusive or operator has charac-
ter code 124, and appears on most U.S. keyboards as a split vertical bar, located on
the backslash key.)

Exclusive or (“&&”)

Exclusive or takes two operands, yielding 1 if exactly one of the operands has the
value 1, and yielding 0 if both operands have the value 0 or both operands have the
value 1.

Some examples:

\'1
1
1
1
1

] j lol
& '0' = 0!
| ‘o’ N SR
&& '0’ = 1
&& '1° N 0!
(4 <6) & (7>0) = 1
\('012' == '12') N "1

Operators of higher precedence are evaluated before operators of lower precedence.
When operators of equal precedence are encountered, KEXX evaluates expressions

Operators and Expressions 337

@
Q
c
o
S

2
)

(14
o
S
o
®

=

left-to-right. You can use parentheses to group subexpressions together if you need to
change the normal order of evaluation. Operator precedence, from highest to lowest:

e Unary plus, unary minus, negation

e Exponentiation

e Multiplication, division, integer division, remainder
e Addition, subtraction

e Concatenation

e Comparison

e And

e Or, exclusive or

6.6 Commands

Any clause that is not recognized as an assignment and is not one of the keyword
instructions discussed in the next section is taken as an expression that is to be evalu-
ated and passed to KEDIT as a command. It is only by issuing commands to KEDIT
that a macro can cause KEDIT to take any action (for example, move the cursor, locate
a string, or delete a line).

When the content of a KEDIT command string that you want to issue from a macro is
fixed in advance, it should appear in the macro as a literal string enclosed in quotes.
This prevents KEXX from interpreting parts of the command as KEXX keywords,
variables, or operators. Some examples:

'save \total.dat'
17!
'i 27!

Note the problems that could occur if you left out the quotes in these examples. The
first two examples would be invalid KEXX expressions. The third example would
cause unexpected results in a macro that happened to use / as a variable.

A command string passed to KEDIT from a KEXX macro need not be determined in
advance. The result of evaluating any KEXX expression can be passed to KEDIT as a
command. For example:

'i' date() time()
'fileid' fn'.'fext
l:ln

After a command issued from a macro completes, a return code is placed in the variable
RC indicating success or failure of the command. Chapter 9, “Error Messages and
Return Codes”, has a discussion of the return codes set by KEDIT commands.

338

Chapter 6. Macro Reference

6.7 Keyword Instructions

Ifa clause is not an assignment, KEXX checks to see if it begins with a KEXX keyword
and is a KEXX keyword instruction. (A clause that is neither an assignment nor a key-
word instruction is taken as an expression whose value is passed to KEDIT as a
command.)

Below are the keyword instructions that you can use.

ARG [template]

The ARG instruction takes the arguments of a KEXX macro, internal routine, or exter-
nal routine and parses their values, in uppercase, according to the specified template.
ARG is a shorthand equivalent of PARSE UPPER ARG. See Section 6.9, “The Parse
Instruction”, for a discussion of the PARSE instruction.

When executed from a KEXX macro while no internal routine is active, ARG parses
the argument string passed to the macro when it was invoked. When executed from an
internal routine within a KEXX macro, or from an external routine, ARG parses the
arguments to that routine.

* ARG example

call test 2,4,6

exit

test:

* this internal routine expects three arguments
arg a,b,c

say a*b*c

return

This example would output the value 48.

CALL name [expr [,expr ...]]
CALL ON condition [NAME trapname]
CALL OFF condition

The first form of the CALL instruction invokes a KEXX function as a subroutine. The
values of any expressions that you specify are passed as arguments to the function.

See Section 6.8, “Functions”, for more about KEXX functions.

If KEXX finds a label within the currently executing macro equal to the name of the
function you want to call, KEXX sets the variable SIGL equal to the line number of the
CALL instruction and then passes control to the internal routine beginning at that label.
(This step is bypassed if the name is specified in quotes.)

If name is not an internal routine, KEXX looks for a built-in function by that name, then
(although in practice this would rarely be useful) for a KEDIT Boolean function or
Implied EXTRACT function, and finally for an external routine, giving an error if the
function cannot be found.

Keyword Instructions 339

@
Q
c
o
S

2
)

(14
o
S
o
®

=

The variable RESULT is set equal to the value returned by the function; if no value is
returned, the variable RESULT is dropped.

* CALL Example

* call internal routine to input 5 lines
call multi 'This is one',5

* call internal routine to input 10 lines
call multi 'This is another',10

exit
multi:

parse arg s,n

doi=1=¢%ton

'input' s
end
return

Two other forms of the CALL instruction are
CALL ON condition [NAME trapname]
and

CALL OFF condition

They are discussed in Section 6.10, “Conditions”.

DO [repetitor] [conditional]

clause(s)
END
The DO instruction executes a set of clauses as a unit. There are several ways to specify
how many times the clauses are to execute:
DO
A simple DO group is executed once. This construct allows you to group together
several clauses that are to be executed as a unit, normally within
IF—THEN—ELSE constructs. For example:
if x > 100 then do
'down 20'
'delete’
end
DO expr

You can give an expression specifying the number of times the loop is to be exe-
cuted. For example:

* move the cursor three characters to right
do 3; 'cursor right'; end

DO var = initexpr |TO toexpr] |BY byexpr] [FOR forexpr]
This construct is closest to the “DO loop” in other languages. A control variable
(var), which must be a simple variable and not a stem or compound variable, is
given an initial value (initexpr). While the value of var is less than or equal to the

340 Chapter 6. Macro Reference

DO FOREVER

value of foexpr, the loop is executed and then the var is incremented by the value of
byexpr (or by 1, if this is not specified). (If byexpr is negative, the loop repeats
while var is greater than or equal to foexpr.) An optional forexpr expression speci-
fies the maximum number of times that the loop will be executed. For example:

* uppercase every second line of the file
do i = 2 to size.1l() by 2

'locate :'i

'uppercase'’

end

On a DO loop involving a control variable, the terminating END can optionally be
followed by the name of the control variable (END var). This forces an error if the
variable name does not correspond to the control variable for the loop being ended,
helping you track down mismatched DO/END pairs.

You can specify that a loop repeat indefinitely, until it is terminated by a LEAVE,
EXIT, or RETURN instruction within the loop.

* loop until user enters a number
do forever
say 'Enter a number'
'readv cmdline'
if datatype(readv.1l)
end

@
Q
c
o
S

2
)

(14
o
S
o
®

=

= 'NUM' then leave

DO WHILE expr

You can use DO WHILE to specify that a loop repeat for as long as some specified
expression is true (that is, evaluates to 1). The expression will be evaluated at the
start of each iteration of the loop, and the loop will terminate if the expression is
false.

* loop while file has < 1000 lines
do while size.1l() < 1000

'get data.fil'

end

DO UNTIL expr

You can use DO UNTIL to specify that a loop repeat until an expression becomes
true. The expression will be evaluated at the end of each iteration of the loop, and
the loop will terminate if the expression is true.

* loop until user enters a number
do until datatype(readv.l) = 'NUM'
say 'Enter a number'
'readv cmdline'
end

You can also combine repetitive DO loops with conditional loops:

Keyword Instructions

341

* read 10 files, stopping after any error
do i =1 to 10 until rc \= 0

'get file.'i

end

DROP var1 [var2 ...]

The DROP instruction resets the specified variables to their default values (that is, the
name of the variables in uppercase), freeing up any space used to hold the variables and
their current values. If you DROP a stem, the values of all compound variables whose
names begin with the specified stem are also dropped.

The list of variables can also include variable names in parentheses. When a variable
name in parentheses is encountered, the variable itself is not dropped, but its value is
taken as a list of variables that should themselves be dropped. For example:

list = 'a b c.19"
drop vl v2 (list) =xyz

would drop the variables V1, V2, A, B, C.19, and XYZ.

EXIT [expr]

The EXIT instruction terminates execution of a KEXX macro. If expr is given, it speci-
fies a numeric return code in the range -32767 to 32767 to be passed back from the
macro. (A return code of 0 is passed back if expr is not specified or has an invalid
value.)

'locate /abc/'
if rec \= 0 then
exit rc
else
'input def'

IF expr THEN clause

[ELSE clause]

The IF instruction looks at the value of the specified expression, which must evaluate to
0 or 1. If the expression is true (evaluates to 1), KEXX executes the THEN clause. If
the expression is false (evaluates to 0), KEXX evaluates the optional ELSE clause. The
THEN and ELSE clauses can be assignments, instructions, or commands; multiple
clauses can be executed by embedding them in a DO—END pair. You can begin a new
line before or after THEN and before or after ELSE. If you want to have both a THEN

clause and an ELSE clause on the same line, though, a semicolon (*‘;””) must follow the
THEN clause.

Some examples:

342

Chapter 6. Macro Reference

if size.1l() = 0 then 'qquit'; else say 'File is not empty’

if size.l() = 0 then
'qquit’

else
say 'File is not empty'

if x < 100 then do
'down 20'
'delete’
end

else
ltopl

INTERPRET expr
The INTERPRET instruction takes the value of the expression expr and executes it, as
if it were one of the lines of your macro. This lets you construct and execute KEXX in-
structions ““on the fly”” while your macro is running.

The text that you execute can consist of a single clause or multiple clauses separated by
semicolons. It can contain DO instructions if it contains the complete DO construct,
including the terminating END instruction.

@
Q
c
o
S

2
)

(14
o
S
o
®

=

* INTERPRET Example

a = 'say 5'

b="4+6"'

* the next line would output 11
interpret a b

v = 'test'
* the next line would set the variable test to 17
interpret v '= 17'

Note that the KEDIT IMMEDIATE command works much like the INTERPRET
instruction. The difference is that INTERPRET executes instructions as part of the cur-
rent macro, while IMMEDIATE executes instructions as a separate one-line macro.
When your macro uses INTERPRET, the instructions that are executed can access and
change variables in your macro and, if they contain syntax errors, can terminate execu-
tion of your macro. If your macro instead uses the IMMEDIATE command, the instruc-
tions that are executed cannot access or change variables in your macro, and if they
contain syntax errors, a bad return code will be passed back to your macro, but the
macro will continue to execute.

ITERATE [var]
The ITERATE instruction can be used only within a repetitive DO loop (as opposed to
a simple DO group). If var is not specified, ITERATE ends execution of the current it-
eration of the innermost DO loop. If var is specified, ITERATE ends execution of the
current iteration of the innermost DO loop using var as its control variable. Control re-
turns to the top of the loop for execution of the next iteration, if any.

Keyword Instructions 343

* ITERATE Example
doi=1 to 10
if i = 3 then iterate
* next line skipped when i is 3
say i 'is not equal to 3'
end

LEAVE [var]

The LEAVE instruction can be used only within a repetitive DO loop (as opposed to a
simple DO group). If var is not specified, LEAVE ends execution of the innermost DO
loop. Ifvaris specified, LEAVE ends execution of the innermost DO loop using var as
its control variable. Control passes to the clause after the END instruction at the end of
the loop.

* LEAVE Example
doi=1 to 10
'down' i
* loop terminates on nonzero return code
if rc \= 0 then leave
'change /abc/def/'
end
'add 5'

NOP

NOP (“no operation”) is a dummy instruction that does nothing.

NUMERIC DIGITS [expression]
NUMERIC FUZZ [expression]

With NUMERIC DIGITS expression, the value of expression, which must be a positive
whole number, determines the precision used in arithmetic operations. By default, 9
significant digits will be used for results of arithmetic operations, but you can specify
that KEXX should use up to 1000 significant digits. NUMERIC DIGITS values of less
than 9 can be specified but are generally not useful. If expression is omitted, the default
of NUMERIC DIGITS 9 is put into effect.

Less often used than NUMERIC DIGITS is NUMERIC FUZZ. With NUMERIC
FUZZ expression, the value of expression, which must be a non-negative whole num-
ber less than the current NUMERIC DIGITS setting, determines how many low-order
digits are ignored during numeric comparisons. By default, NUMERIC FUZZ is 0 and
no digits are ignored. But if, for example, NUMERIC DIGITS 9 and NUMERIC FUZZ
1 are in effect and two nine-digit numbers are compared, KEXX actually rounds these
numbers to 8 digits and compares the two eight-digit numbers. This allows for compar-
isons that yield useful results when comparing numbers that are only approximately
equal due to rounding that occurs during arithmetic operations. [f NUMERIC FUZZ is
used and no expression is specified, the default of NUMERIC FUZZ 0 is put into effect.

The NUMERIC settings are preserved and restored across calls to internal routines.

344

Chapter 6. Macro Reference

OPTIONS expression
OPTIONS is a REXX instruction that allows you to pass special options to the lan-
guage processor. KEXX does not use any such special options, so the OPTIONS in-
struction is allowed within KEXX programs, but is ignored.

PARSE [UPPER] origin [template]
The PARSE instruction takes character strings and assigns portions of their values to a
set of KEXX variables according to a template that you provide.

UPPER is optional and specifies that the strings are to be converted to uppercase before
being parsed according to the template.

Origin specifies where the PARSE instruction is to obtain the data to be parsed.

Template is a set of pattern specifications that controls the parsing process, intermixed
with lists of variables to which the parse data is to be assigned.

The PARSE instruction is discussed in detail in Section 6.9, “The Parse Instruction”.

PROCEDURE [EXPOSE var1 var2 ...]

The PROCEDURE instruction is valid only at the start of a KEXX internal routine; it
must be the first instruction encountered after the label that begins the internal routine.
The PROCEDURE instruction tells KEXX to make all variables used in the routine lo-
cal to the routine. Variables in the routine do not inherit values from the calling routine
and variables set in the routine do not affect the values of variables of the same name in
the calling routine. In contrast, when PROCEDURE is not the first instruction of an in-
ternal routine, all variables used in the routine are shared with the calling routine.

@
Q
c
o
S
2
)
(14
o
S
o
®
=

* PROCEDURE Example
do i =1 to 10
say sum(i)
end
exit
sum: procedure
* i in this procedure doesn’t affect i in main routine
total = 0
do i =1 to arg(l)
total = total + i
end
return total

PROCEDURE can optionally be followed by the keyword EXPOSE and a list of vari-
ables that should not be local to the procedure, but should instead be shared with the
caller of the procedure. That is, references to variables in the list are treated as refer-
ences to variables of the same name in the calling procedure. For example:

Keyword Instructions 345

x =1
y =2
call test

say x y
exit

test: procedure expose x
x = 55

y = 66

return

would display <55 27, because changes made within TEST to the value of X are
exposed to the caller, while changes made to Y are not.

The list of variables to be exposed can include simple variables, compound variables,
and stem variables. Items in the list can also be variable names in parentheses. In this
case, the variable in parentheses is first exposed, and then its value is taken to be a list of
additional variables to be exposed. For example:

height = 12

width = 13

depth = 14

globals = 'height width'
call test

exit

test: procedure expose (globals)
say height width depth
return

would display ““12 13 DEPTH™, since height and width are exposed, but depth is not.

PULL [template]

The PULL instruction waits for a line of input to be entered on the KEDIT command
line, uppercases it, and then parses it according to the specified template. PULL is a
shorthand equivalent of PARSE UPPER PULL. See Section 6.9, “The Parse
Instruction”, for a discussion of the PARSE instruction.

RETURN [expr]

The RETURN instruction ends execution of an internal or external KEXX routine and
returns control to the caller. If the routine was invoked as a function, expr is required
and its value is used as the result of the function. If the routine was invoked through the
CALL instruction as a subroutine, expr is optional and, if it is specified, the special
variable RESULT is set equal to its value. If no internal routine is active and RETURN
is executed from the main body of a macro, RETURN is equivalent to EXIT and serves
to terminate execution of the macro.

SAY [expr]

The SAY instruction displays the value of the specified expression on the KEDIT mes-
sage line. If no expression is given, a blank line is displayed. When the KEXX

346

Chapter 6. Macro Reference

debugger is active, SAY instructions issued from the debugging command line send
output to the debugging window rather than the KEDIT message line.

say 'There are' size.l() 'lines in this file.'

SELECT

WHEN expr THEN clause

[OTHERWISE instructionlist]

END

The SELECT instruction lets you execute one sequence of instructions out of a set of
possible alternatives. SELECT offers a cleaner way of specifying what would other-
wise be a sequence of [FTHEN—ELSE instructions.

An example of a SELECT instruction:

select
when option = 'A' then call optiona
when option = 'B' then call optionb
when option = 'C' then do
say 'Option C selected'
call optionc
end
otherwise
say 'Unknown option specified'
return
end

SELECT constructs begin with a SELECT instruction and end with an END instruc-
tion. In between, you use one of more instructions of the form

WHEN expression THEN instruction

Each WHEN expression is tested in sequence. As soon as one is found to be true (that
is, has the value 1), the corresponding THEN instruction is executed. To execute more
than one instruction when an expression is found to be true, group them together within
a DO—END pair. After the THEN instruction corresponding to the true expression has
been executed, no additional WHEN expressions are evaluated, and execution contin-
ues with the instruction following the END that terminates the SELECT construct.

OTHERWISE instructionlist

The set of WHEN—THEN instructions can be followed by the keyword OTHERWISE
and a sequence of zero or more instructions to be executed if none of the WHEN
expressions are true. If you know that at least one of the WHEN expressions will
always be true you can omit the OTHERWISE construct, but KEXX generates an error
if none of the WHEN expressions are true and OTHERWISE is not present.

Keyword Instructions 347

@
Q
c
o
S

2
)

(14
o
S
o
®

=

SIGNAL label

SIGNAL ON condition [NAME trapname]
SIGNAL OFF condition

Use the SIGNAL instruction to immediately transfer control to some other location
within a KEXX program. To do this, use

SIGNAL label

where label is the label to which you want to transfer control. Execution of any active
DO, IF, SELECT, and INTERPRET instructions in the current routine is terminated,
and execution continues at the specified label.

Also available are

SIGNAL ON condition [NAME trapname]
and

SIGNAL OFF condition

They are discussed in Section 6.10, “Conditions”.

TRACE setting

The TRACE instruction controls the type of trace output displayed while you are de-
bugging a KEXX macro and whether tracing is done interactively or non-interactively.
The TRACE instruction has no effect when the KEXX debugging window, controlled
by the SET DEBUGGING command, is not active.

The level of trace output produced by the debugger is controlled by the KEXX TRACE
instruction. The TRACE instruction can appear within a KEXX macro and it can be
entered when the debugger pauses for interactive trace input. When interactive debug-
ging is active, TRACE instructions issued from your macro are ignored so that interac-
tive debugging will not be unexpectedly interrupted.

The tracing level is preserved and restored across calls to internal routines, so changes
to the tracing level in a subroutine do not affect the tracing level in the calling routine.

Here are the tracing levels that you can use. Note that only the first character of the
TRACE setting is significant:

TRACE Off
No trace output is produced. (TRACE Off also turns off interactive tracing if it is
in effect.)

TRACE Error
Any command passed to KEDIT that yields a nonzero return code is traced, along
with its return code.

TRACE Command
All clauses that cause commands to be issued to KEDIT are traced, as well as the
commands themselves and any nonzero return codes.

348

Chapter 6. Macro Reference

TRACE All
All clauses are traced as they are executed, as well as all commands issued to
KEDIT and any nonzero return codes.

TRACE Results
Same as TRACE All, except that the final results of all expressions evaluated are
also traced.

TRACE Intermediates
Same as TRACE All, except that both the intermediate and final results of all ex-
pressions evaluated are also traced.

TRACE Labels
Traces labels in the macro as they are encountered during execution of the macro.

In addition to controlling the level of trace output, you can also use the TRACE instruc-
tion to turn interactive tracing on or off.

TRACE + turns interactive tracing on.
TRACE - turns interactive tracing off.
TRACE ? toggles the interactive tracing on if it is off, or off if it is on.

You canuse +, -, or ? in combination with one of the trace settings discussed above. For
example,

TRACE +R turns on interactive tracing of results, while

TRACE -C causes noninteractive tracing of commands.

You can also use the TRACE instruction to tell the debugger to temporarily stop paus-
ing for interactive input, or to temporarily stop displaying trace output. To do this,
specify a numeric value with the TRACE instruction:

TRACE nnnn A positive number tells the debugger to continue executing your
macro, and to continue displaying trace output, but that at the next
nnnn places where it would ordinarily pause for interactive input, it
should instead continue without a pause.

TRACE -nnnn A negative number works like a positive number, in that the next
nnnn pauses for interactive input are skipped. The difference is that
during this period the display of trace output is also suppressed.

6.8 Functions

To call a function from within a KEXX expression, use the name of the function,
followed by a left parenthesis, followed by any arguments to the function (the argu-
ments are themselves KEXX expressions, and are separated from each other by
commas), followed by a right parenthesis. There can be no intervening blanks between
the name of the function and the left parenthesis that follows it. All functions invoked

Functions

349

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Internal
routines

in this manner return a value, which KEXX uses to evaluate the expression involving
the function. Some examples:

lastchr = substr(s, length(s))
if size.1() = 0 then say 'File is empty'
if after() then 'sos endchar'

Instead of using the value of a function within an expression, you can use the CALL
instruction to invoke a function as a subroutine. This is usually done when the function
is called for its side effects, and the function either does not return a value or the
returned value is of secondary importance. If a function invoked via the CALL instruc-
tion does return a value, the value is assigned to the special variable RESULT. Note that
while parentheses are required around the parameter list when invoking a function
from within an expression, parentheses are not allowed around the parameter list
passed with the CALL instruction.

call time r
call process 'Some data', 'More data’'

When searching for a function, KEDIT looks first for an internal routine with the speci-
fied name, then for a built-in function, an implied EXTRACT function, a Boolean
function, and finally an external routine. (The search for an internal routine is bypassed
if the name of the function is in quotes.)

You can write your own functions, place them inside a KEXX macro as internal rou-
tines, and call them from elsewhere in the same KEXX macro.

An internal routine must begin with a label—the name of the routine followed by a
colon. Control is returned from the internal routine to the calling routine with a
RETURN instruction. The internal routine can return a value to its caller (and is
required to do so if it was invoked as a function) by specifying a result expression with
the RETURN instruction.

Here is an example of an internal routine:

say sum3(2,4,6)

say sum3(6,8,10)

exit

sum3:

* add up three numbers and return the sum
arg nl, n2, n3

return nl+n2+n3

This sample macro would output 12 and 24 on the KEDIT message line.

An internal routine can normally access all of the caller’s variables, and all variables set
in the internal routine are normally accessible to the caller after the internal routine
returns. With PROCEDURE as the first instruction of an internal routine, variables
used in the internal routine will instead be local to the routine and the routine will not
have access to the variables of its caller. You can use PROCEDURE EXPOSE to share
specific variables between the caller and the internal routine, leaving all other variables
as local to the internal routine.

350

Chapter 6. Macro Reference

Built-in
functions

Implied
EXTRACT
functions

Boolean
functions

External
routines

The current NUMERIC and TRACE settings, and the value of the elapsed-time clock
used with the TIME() function, are saved whenever an internal routine is invoked and
are restored on return from that routine, so that changes made to these settings by an
internal routine do not affect the environment of its caller.

Some functions are “built into” KEXX in the sense that they perform generic opera-
tions on their arguments, independent of the status of your KEDIT session. KEXX’s
built-in functions are documented in the next section.

KEXX macros can use KEDIT’s EXTRACT command to obtain information about the
status of KEDIT, with the results placed into KEXX variables. Implied EXTRACT
functions, documented in Section 5.2, “EXTRACT and Implied EXTRACTs”, gener-
ally provide a more direct and efficient way to access this information within a KEXX
expression.

KEXX macros can obtain additional information about the status of KEDIT by using
KEDIT’s Boolean functions, which return 1 or 0 depending on whether certain condi-
tions within KEDIT are true or false. Boolean functions are documented in
Section 6.8.3, “Boolean Functions”.

A KEXX macro can call another KEXX macro as an external subroutine. The external
subroutine can use PARSE ARG to access the arguments passed to it, and can use the
RETURN instruction to pass a result back to the caller.

When searching for an external routine, the order of searching is the same as it is with
the MACRO command: in-memory macros loaded via the DEFINE command are
searched for first, and then macros in disk files (with a default extension of .KEX) are
searched for, with the search order controlled by the current SET MACROPATH
setting.

External routine names with drive or path components, or including special characters,
must be specified as quoted names.

For example,
CALL 'F:\MACROS\SAMPLE' X, Y, Z
or

SAY '&&&' (17)

6.8.1 Built-in Functions

KEXX supports all of the built-in functions described in Cowlishaw’s The REXX
Language: A Practical Approach to Programming (Second Edition, Prentice-Hall,
1990), with the exception of the STREAM() function. It also supports the following
functions, which are not included in Cowlishaw’s book: BEEP(), DATECONV(),
DELIMIT(), DOSENV(), DOSDIR(), ANSIUPPER(), ANSILOWER(),
ANSIDATATYPE(), ANSITOOEM(), OEMTOANSI(), UPPER(), LOWER(),
COUNTSTR(), CHANGESTR(). LONGNAME(), and SHORTNAME().

Functions

351

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Some general rules for the arguments to these built-in functions:

Where a function accepts an option argument, only the first character of option is
significant and it may be specified in uppercase or in lowercase.

Where a function accepts a pad argument, the argument must be a single character.

Where an optional argument is omitted, you should specify nothing, not even a
null string, in its place. For example, to omit the third argument to the SUBSTR()
function, you could use

t = substr(s,3,,'.")

The two adjacent commas in the above example are required to indicate that it is
the third argument that is omitted and that the fourth is supplied. However, if the fi-
nal argument or arguments are omitted, trailing commas are not necessary and are
usually not supplied. So here is a valid way of omitting the third and fourth
arguments for SUBSTR():

t = substr(s,3,))
But here is the form in which this function call would normally appear:

t = substr(s, 3)

ABBREV(string1,string2[,length])

ABS(number)

Returns 1 if string? is equal to the first characters in string/; otherwise, 0 is returned. If

length is specified, string2 must be at least length characters long or 0 will be returned.

abbrev('clocate','cl’') =
abbrev('clocate', 'clo',2) = 1
abbrev('clocate','c',2) =

1

0

Returns the absolute value of number, formatted according to the current NUMERIC

settings.

abs (-3.2) = 3.2
abs (0) = 0

abs (' +32760") = 32760

ANSIDATATYPE(string[,option])

ANSIDATATYPE() works in exactly the same way as the more-commonly-used
DATATYPE() function, except that the “A”,“L”, “M”, and “U” options assume that
string uses the ANSI character set and they treat all alphabetic characters, including ac-
cented letters with character codes above 127, as alphabetic. DATATYPE(), on the
other hand, treats only the 26 characters of the English alphabet as alphabetic.

352

Chapter 6. Macro Reference

If option is not specified, ANSIDATATYPE() returns “NUM” if string is a valid
KEXX number or “CHAR” if itis not. If option is specified, it is handled as follows:

A (““Alphanumeric”) Returns 1 if string consists entirely of ANSI alphabetic and/or
numeric (““0—9”) characters, else returns 0;

B (“Binary”) Returns 1 if string consists entirely of the characters “0””and ““1”°, else
returns 0;

L (“Lowercase’) Returns 1 if string consists entirely of lowercase ANSI alphabetic
characters , else returns 0;

M (“Mixed case”) Returns 1 if string consists entirely of ANSI alphabetic charac-
ters, else returns 0;

N (“Numeric”’) Returns 1 if string is a valid KEXX number, else returns 0;

(““‘Symbol”’) Returns 1 if string consists entirely of characters that are valid in
KEXX symbols, else returns 0;

U (“Uppercase’) Returns 1 if string consists entirely of uppercase ANSI alphabetic
characters, else returns 0;

@
Q
c
o
S

2
)

(14
o
S
o
®

=

W (“Whole number’”) Returns 1 if string is a whole number. That is, 1 is returned if
string 1s a valid KEXX number that can be expressed as an integer, with no deci-
mal point or exponential notation, under the current NUMERIC DIGITS setting.
Otherwise returns 0;

X (“heXadecimal™) Returns 1 if string is the null string or consists entirely of valid
hexadecimal digits (“a—f"’, “A—F”, “0—9”"), with optional blanks between
pairs of hexadecimal digits. Otherwise returns 0.

ANSILOWER(string)
Returns the value of string with any uppercase letters translated to lowercase. String is
assumed to be in the ANSI character set and characters “A—Z"", as well as accented
uppercase characters with ANSI character codes above 127, are affected.

ansilower ('AbCdl23"') = 'abcdl23"

ANSITOOEM(string)

Returns the result of converting string, which is assumed to be in the ANSI character
set, to the OEM character set.

Functions 353

ANSIUPPER(string)

ARG([n[,option]])

Returns the value of string with any lowercase letters translated to uppercase. String is
assumed to be in the ANSI character set and characters “a—z"’, as well as accented
lowercase characters with ANSI character codes above 128, are affected.

ansiupper ('AbCd123"') = 'ABCD123"

ARG() returns information about the arguments passed to a macro or, when used within
an internal routine, about arguments to the internal routine.

ARG() with no parameters returns the number of arguments passed to the macro or
internal routine. Macros can have either 0 or 1 arguments. Internal routines can have 0
to 10 arguments.

ARG(n) returns the value of the nth argument, or returns a null string if the nth argu-
ment was omitted.

ARG(n,option) accepts the option “E” (““Exists’’), returning 1 if the nth argument to
the macro or internal routine is present and 0 if it was omitted, and accepts the option
“O” (““Omitted”), returning 1 if the nth argument was omitted and 0 if it is present.

In the first group of examples, assume that the macro TEST is invoked via the follow-
ing KEDIT command:

macro test I think, therefore, I am.

arg() = 1
arg (1) = 'TI think, therefore, I am.'
arg(2) = "
arg(l,'e') = 1
arg(l,'o') = 0

In the next group of examples, assume that ARG() is used within an internal routine
INTEST invoked by

call intest 'I think', 'therefore', 'I am.'

arg() = 3

arg (1) = 'I think'
arg(2) = 'therefore'
arg(3) = 'I am.'
arg(l,'e') = 1
arg(l,'o"') = 0

354

Chapter 6. Macro Reference

BEEP()

Causes the PC’s speaker to beep and returns a null string as its value.

call beep

BITAND(string1[,string2[,pad]])
Returns the result of the logical ANDing of the bits in string! with those in string2,
which defaults to the null string. The shorter string is padded with the pad character, if
specified, prior to the ANDing. If pad is not specified, the remaining characters of the
result are the remaining characters in the longer string.

bitand('31ff'x, 'f£30'x) = '10' /* ('3130'x) */
bitand('ABC', 'abc') = 'ABC'
bitand('0011'x, '0101'x) = '0001'x
bitand('ABC', 'abcef') = 'ABCef'’
bitand('ABCEF', 'abc') = ' ABCEF''

@
Q
c
o
S
2
)
(14
o
S
o
®
=

BITOR(string1[,string2[,pad]])
Returns the result of the logical ORing of the bits in string ! with those in string2, which
defaults to the null string. The shorter string is padded with the pad character, if speci-
fied, prior to the ORing. If pad is not specified, the remaining characters of the result
are the remaining characters in the longer string.

bitor (135,222) = 337
bitor('313335'x, '323232'x) = '333337'x
bitor('ABC’,’’," ') = " abe’
bitor('0011'x, '0101'x) = '0111'x

BITXOR(string1[,string2[,pad]])
Returns the result of the logical eXclusive ORing of the bits in string! with those in
string2, which defaults to the null string. The shorter string is padded with the pad
character, if specified, prior to the operation. If pad is not specified, the remaining
characters of the result are the remaining characters in the longer string.

bitxor('abc', ' ") = 'ABC'
bitxor(3579,,'01'x) = 2468
bitxor('0011'x, '0101'x) = '0110'x

B2X(binary-string)
Converts a string in binary notation (that is, consisting of zeroes and ones) into the
equivalent hexadecimal string. Blanks may be included in binary-string, at four char-
acter boundaries.

Functions 355

b2x('1101") = 'D’
b2x('00001101") = '0D’
b2x('1011010011111") = '169F"'

CENTER(string,length[,pad])

CENTRE(string,length[,pad])
Returns a string of length length with string centered within it, padded if necessary with
the pad character, which defaults to a blank.

center ('title',12) = ! title !
center('title',12,'*") = 'hkktitlekkkk!
center ('title ',12) = ' title '
center ('title ',12, %) = '**ktitle **!

CHANGESTR(needle, haystack, newneedle)

Returns the result of changing all occurrences of the string needle in the string haystack
into occurrences of the string newneedle.

changestr('a', 'abABab', 'x') = 'xbABxb'
changestr('aa', 'aaabbaa', 'x') = 'xabbx'
changestr(’3’, ’123123123’, '') = 7121212’

CHARIN(fileid[,[start][,length]])
Reads data from a file. The read position for the file is first moved to the specified start
position in the file, and up to length characters are read in and returned as CHARIN’s
result. Fewer than /ength characters may be read if the file does not exist, if end-of-file
is reached, or if an I/O error occurs. If length is zero, then the read position is moved to
the specified start position, but no data is read.

Start defaults to the current read position for the file and length defaults to 1. If fileid is
not already open, it is first opened and the read position is set to 1 (the beginning of the
file). On completion of the read operation, the read position for the file is then moved
just beyond the last character read.

The maximum allowable value for start and for length is 999999999.
See page 374 for some general notes on KEXX’s I/O functions.
charin('sample.fil',6 6 14) = 'Data from file’

charin('sample.fil',100,19) = '100 bytes into file’

CHAROUT (fileid[,[string][,start]])

Writes data to a file. The write position for the file is first moved to the specified start
position in the file, and the contents of string are written to the file. CHAROUT returns

356 Chapter 6. Macro Reference

CHARS(fileid)

as its value the number of characters from string that were not written out; this value
will be 0 unless an I/O error or disk full condition is encountered.

Start defaults to the current write position for the file. If fileid is not already open, it is
first opened and the write position is initially set to the end of the file, so that the file
will be appended to. After the write operation completes, the write position for the file
is moved just beyond the last character written. If start is specified but string is omitted,
the write position for the file is updated but no data is written.

The maximum allowable value for start is 999999999.
If both string and start are omitted, the file is closed.
See page 374 for some general notes on KEXX’s I/0 functions.

charout ('name.ext', 'Some data') = 0 /* if no error */
charout ('name.ext', 'Data for byte 100',100) = 0 /* if no error */

Returns the number of characters remaining to be read in the specified file, starting
from the current read position.

The maximum value returned is 999999999, regardless of the actual size of the file in-
volved.

chars ('name.ext') = 1234 /* perhaps */
chars ('nonexist.ent') = 0 /* perhaps */

COMPARE(string1,string2[,pad])

Returns 0 if stringl equals string2. Otherwise, the position of the first mismatched
character is returned. The shorter string is padded with pad, which defaults to a blank.

compare ('this is it', 'this is it') =
compare ('this is it', 'this is not it') = 9

CONDITION([option])

Returns information about the currently trapped condition. For information about con-
dition handling, see Section 6.10, “Conditions”. If no condition is currently being han-
dled, the CONDITION() function returns the null string.

Possible values for option, which defaults to “I”, are:

C (“Condition name’’) Returns the name of the current condition, which can be ER-
ROR, FAILURE, HALT, SYNTAX, or NOVALUE.

Functions

357

@
Q
c
o
S
2
)
(14
o
S
o
®
=

COPIES(string,n)

D (“Description”) Returns a description of the current condition. For HALT and
SYNTAX conditions, this is the null string. For the ERROR or FAILURE condi-
tion, this is the command string that led to the error or failure. For the NOVALUE
condition, this is the derived name of the variable involved.

I (“Instruction”) Returns CALL or SIGNAL, depending on the method used to in-
voke the signal handler.

S (“State”) Returns the state of the current condition: ON, OFF, or DELAY.

Returns n copies of string concatenated together.

]]

copies('-"',10) =
copies('abc', 3) = 'abcabcabce'’
copies('',5) = e

COUNTSTR(needle, haystack)

Returns the number of occurrences of the string needle in the string haystack.

COUNTSTR('a', 'abABab') = 2
COUNTSTR('aa', 'aaabbaa') = 2
COUNTSTR('3', '123123123"') = 3

C2D(string)
Returns the decimal value of the internal representation of string. String is most often
one character long, in which case this amounts to returning the decimal value of the
character code for the specified character. An error occurs if the result cannot be ex-
pressed as a whole number according to the current NUMERIC DIGITS setting.
c2d('a') = 97
c2d (1) N 49
c2d (' ££'x) = 255
c2d('yz"') = 31098

C2X(string)
Returns a string consisting of the two-character hexadecimal values of the character
codes for each of the characters in string.
c2x('a') = 61
c2x (1) = 31
c2x ('£ff'x) = 'FE'
c2x('yz"'") = '797A"

358 Chapter 6. Macro Reference

DATATYPE(string[,option])

If option is not specified, returns “NUM” if string is a valid KEXX number or
“CHAR” if it is not. If option is specified, it is handled as follows:

A (“Alphanumeric”) Returns 1 if string consists entirely of alphabetic (“A—Z",
“a—z"") and/or numeric (“‘0—9”") characters, else returns 0;

B (“Binary”) Returns 1 if string consists entirely of the characters “0””and ““1”°, else
returns 0;

L (“Lowercase’) Returns 1 if string consists entirely of lowercase alphabetic char-
acters (“‘a—z""), else returns 0;

M (“Mixed case”) Returns 1 if string consists entirely of alphabetic characters
(“A—Z”, “a—12"), else returns 0;

N (“Numeric”’) Returns 1 if string is a valid KEXX number, else returns 0;

(““‘Symbol”’) Returns 1 if string consists entirely of characters that are valid in
KEXX symbols, else returns 0;

@
Q
c
o
S

2
)

(14
o
S
o
®

=

U (“Uppercase’) Returns 1 if string consists entirely of uppercase alphabetic char-
acters (“A—Z2""), else returns 0;

W (“Whole number’”) Returns 1 if string is a whole number. That is, 1 is returned if
string is a valid KEXX number that can be expressed as an integer, with no deci-
mal point or exponential notation, under the current NUMERIC DIGITS setting.
Otherwise returns 0;

X (“heXadecimal™) Returns 1 if string is the null string or consists entirely of valid
hexadecimal digits (“a—f"’, “A—F”, “0—9”"), with optional blanks between
pairs of hexadecimal digits. Otherwise returns 0.

For each of these options except “X”’ (which returns 1), 0 is returned if string is the null
string.

datatype (16)

datatype (16YY)
datatype (16, 'N')
datatype (16.0,'N")
datatype('Kexx','A'")
datatype('Kexx','L'")
datatype('Kexx','U'")
datatype ('Kexx', 'M'")
datatype ('KEXX 5.5','A")
datatype ('KEXX55','A")
datatype ('KEXX','L")
datatype ('KEXX','U'")
datatype ('KEXX', 'M')
datatype(‘'', 'M'")

'NUM'
'CHAR'

L L O A I A
O HOHOKROORHRHER

Functions 359

datatype ('KEXX','S'")
datatype('1010','B')
datatype('10 10 ','B')
datatype ('4e4f','X")
datatype ('4e 4f','X"'")
datatype('4.3','W'")

L N R
ORr R OR R

DATE([option])
Returns information about the current date. Possible values for option, which defaults
to “N”, are:

B (“Base”) Returns a unique serial number for each day (based on the number of
days since 1 January 0001);

D (“Days”) Returns the day of the year;

E (“European”) Returns the date in the form dd/mm/yy;
J (“Julian”) Returns the date in the form yyddd,

M (“Month”) Returns the name of the current month;

N (“Normal”) Returns the date in the form dd mmm yyyy, with no leading zero on the
day of the month;

O (“Ordered”) Returns the date in the form yy/mm/dd,

S (“Standard”) Returns the date in the form yyyymmdd,

U (““USA”) Returns the date in the form mm/dd/yy;

W (“Weekday”) Returns the English name of the current day of the week.

Here are the values returned by the DATE() function on August 23, 1994:

date () = '23 Aug 1994
date('b') = 728162
date('d') = 235

date('e') = 123/08/94"
date('j"'") = 94235
date('m') = 'August’
date('n') = '23 Aug 1994
date('o') = '94/08/23"
date('s') = 19940823
date('u') = '08/23/94"
date('w') = 'Tuesday'

360 Chapter 6. Macro Reference

DATECONV(date,input,[output])

DATECONYV converts date from one format to another and returns the result. The input
argument specifies the current format of date, which can be “B”, “D”’, “E”, “J”, “N”,
“O”’ ‘GS’7’ Or G‘U77. ’I‘he Outl]ut fomlat Can be ‘GB’?, K‘D”’ GGE”’ “J”’ G‘M’,’ GKN”’ ‘GO”’
“S”,“U”, or “W” and defaults to “N”’. The formats involved are based on those used
with the DATE() function. A null string is returned if date is not a valid date according
to the specified input format.

dateconv ('25 Dec 1994','n','w'") = 'Sunday'
dateconv('19940823','s','u') = '08/23/94"
dateconv ('19950201','s") = 'l Feb 1995’

When DATECONV() is used to convert a date that is specified using a 2-digit year, it
assumes that the date falls within a 100 year sliding window starting at

(current year - 50)
and ending at
(current year + 409)

For example, in 2007, DATECONYV would convert 2-digit years to 4-digit years in the
range 1957-2056. So, in 2007, DATECONYV would yield these results:

dateconv('12/17/02','u','n") = '17 Dec 2002’
dateconv('11/22/57','u','n") = '22 Nov 1957'

But in 2008, the sliding window would move by a year to cover 1958-2057. So, in
2008, DATECONYV would yield these results:

dateconv('12/17/02','u','n") = '17 Dec 2002’
dateconv('11/22/57','u','n") = '22 Nov 2057'

DELIMIT(string1[,string2])

Searches an internal list of valid KEDIT delimiter characters for a character that does
not appear in string/ and returns a string consisting of the delimiter character, string/,
and the delimiter character. If string? is also specified, looks for a delimiter character
that appears in neither string and returns a string consisting of the delimiter, string/, the
delimiter, string2, and the delimiter. In the very rare situation where no valid delimiter
is available, a null string is returned.

delimit('Hello') = ' /Hello/'
delimit('///") = "/l
delimit('a/b','c/d'") = '"la/blec/d!’

Several KEDIT commands, like LOCATE and DIALOG, require as an operand a string
delimited by special characters that do not appear in the string. Commands like the
CHANGE command involve two strings and a delimiter that appears in neither string.

Functions

361

@
Q
c
o
S

2
)

(14
o
S
o
®

=

In a macro where the strings involved are variable and no ““safe” delimiter can be deter-
mined in advance, you can use the DELIMIT() function to supply one.

* Build CHANGE command from two strings
say "Enter a string"

parse pull sl

say "Enter another"

parse pull s2

'CHANGE' delimit(sl,s2) 'ALL *'

DELSTR(string,n[,length])

Returns the value of string after deleting the characters starting at position n for a
length of length. If length is not specified, the remaining characters of string are
deleted.

'I think’
'T think I am’

delstr('I think, therefore, I am', 8)

=
delstr('I think, therefore, I am', 8, 12) =

DELWORD(string,n[,length])

DIGITS()

Returns the value of string after deleting the words starting at word » for length words.
If length is not specified, the remaining words are deleted. Trailing blanks after the last
word deleted are also deleted. Any string of consecutive nonblank characters is consid-
ered to be a word.

delword('I think, therefore, I am', 3) = 'I think, '/
delword('I think, therefore, I am', 3, 1) = 'T think, I am’

Returns the current NUMERIC DIGITS setting.

digits() = 9 /* default value */

DOSDIR([fileid][,[output][,search]])

Returns directory information for fileid.

e The first argument is the fileid involved. If fileid includes a drive and/or path speci-
fication, DOSDIR() looks in the specified drive and directory; otherwise
DOSDIR() looks in the current directory of the current drive. If fileid contains
wildcards in the name or extension, information about the first matching file is re-
turned and you can make subsequent calls to DOSDIR() in which fileid is omitted
to process additional matching files.

e Iffileid is not found, a null string is returned. Otherwise the second argument, out-
put, specifies the type of information to be returned and the order in which to re-
turn it. You can specify one or more of the following: 'N' to return the file's name
and extension, 'S' to return its size, 'D' for its date, "T" for its time, and 'A' for the

362

Chapter 6. Macro Reference

file's attributes; by default output is 'NSDTA' and all of this information is
returned.

Information is returned in the following format: the name and extension of the file
in the form name.ext, the size of the file in bytes, the file’s date in the form
mm/dd/yyyy, the file’s time in the form ~h:mm.ss, and the files attribute characters
(one or more of “R” for a Read-only file, ““H”’ for a Hidden file, S’ for a System
file, ““D” for a Directory, and ““A’ if the Archive bit is set; or a minus sign if none
of these attributes applies).

The maximum value returned for the size of a file is 999999999, regardless of the
actual size of the file involved.

e The third argument, search, controls whether DOSDIR() processes certain special
files. If search is omitted or is null, DOSDIR() omits directories, system files, and
hidden files from its search and looks only for “normal” files. You can specify
search as one or more of “D”’ (for directories), ““S” (for system files), or “H”’ (for
hidden files) to include these types of files in the search. This argument is ignored
when the fileid argument is omitted and DOSDIR is searching for the next match
for a previously-specified fileid pattern.

dosdir('test.c') = '"TEST.C 5907 07/14/94 15:47:54 A’
dosdir('test.c','nd') = 'TEST.C 07/14/94’

@
Q
c
o
S

2
)

(14
o
S
o
®

=

* total the sizes of all .TXT files in current dir
total = 0
size = dosdir('*.txt','s"')
do while size \= '’
total = total + size
size = dosdir(,'s')
end
say total

DOSENV(envvar)

Returns the value of the specified system environment variable envvar, or a null string
if envvar is not present in the environment. A typical usage:

dosenv ('path') = 'C:\DOS;D:\UTIL;C: \KEDIT'

D2C(whole-number)
Returns the character string that corresponds to the internal binary representation of
whole-number. Most often, whole-number is in the range 0 to 255 and this amounts to
returning the character that has whole-number as its character code.

d2c (97) = 'a'
d2c (255) = '£f'x
d2c(1234) = '04D2'x

Functions 363

D2X(whole-number)

Converts whole-number to hexadecimal and returns the result.

d2x (0) = 0

d2x (80) = 50
d2x (255) = 'FF'
d2x(1234) = '4D2"

ERRORTEXT(n)
Returns the text of KEXX error message n. If n is not the number of a KEXX error mes-
sage, ERRORTEXT)() returns the null string. KEXX error messages are currently in the
range 93—134.

errortext (100)
errortext (500)

'Control stack full'

rr

=
=

FORMAT (number],[before][,[after]]])

Formats number to have a specified number of digits before and after the decimal point
and returns the result. The number is first rounded according to the current NUMERIC
DIGITS setting.

If before is omitted, number is formatted with as many digits as necessary before the
decimal point. If before is smaller than necessary, an error results; if before is larger
than necessary, the result is padded on the left with blanks.

If after is omitted, number is formatted with as many digits as necessary after the deci-
mal point. If after is smaller than necessary, number is rounded to the number of deci-
mal places that you specify; if affer is larger than necessary, the result is padded on the
right with zeros. If after is zero, the result will be rounded to an integer and there will be
no decimal point.

format (123.456) = '123.456"

format (123.456,5,0) = ' 123"

format(-123.456,5,2) = ' -123.46"

format(-123.456, ,4) = '-123.4560"
FUZZ()

Returns the current NUMERIC FUZZ setting.

fuzz () = 0 /* default value */

INSERT(new,target[,[n][,[length][,pad]]])
Returns the result of inserting string new into string target after position n. The default
for n is 0 (that is, the beginning of the string farget). If necessary, prior to the insertion,

364 Chapter 6. Macro Reference

new will be truncated to a length of /ength or will be padded to that length with the pad
character, which defaults to a blank.

insert('title', '*¥*kkkkkkkkx! 6) = Thkkkkkkpitlekkkkkx!

LASTPOS(string1,string2[,end])

Returns the starting position of the last occurrence of string! in string2. LASTPOS()
only considers occurrences of string! that end at or before the end position of string?2,
where end defaults to the length of string2. Returns 0 if there are no such occurrences.

lastpos('I', 'I think, therefore, I am') = 21
lastpos('I', 'I think, therefore, I am',10) = 1

LEFT(string,length[,pad])

LENGTH(string)

Returns the leftmost length characters of string. If string has less than length charac-
ters, the result will be padded on the right with the pad character, which defaults to a
blank.

left('123',2) = 112!
left('123',5,'0") = '12300'
Returns the length of string.
length('314159") = 6
length('a . b') = 5
length('"') = 0

LINEIN(fileid[,[line][,count]])

Returns the contents of a line of data read in from a file.

Input lines in the file are assumed to be terminated by a linefeed or by a carriage
return-linefeed pair; this end-of-line sequence is not part of the value returned by
LINEIN. After completion of the read operation, the read position for the file is moved
to just beyond the end-of-line sequence. LINEIN returns the null string if no data can
be read because the file does not exist, the read position for the file is at the end of the
file or at an end-of-file character (character code 26), or because an I/O error is
encountered.

Line and count are usually omitted. By default, LINEIN starts reading at the file’s cur-
rent read position, but you can specify line as 1 to indicate that LINEIN should begin
reading at the start of the file; no other values are permitted for line. Count specifies the
number of lines to be read in; it can be either 1, in which case 1 line is read in, or 0, in
which case no data is read but the read position is reset to the start of the file if /ine is 1.

Functions

365

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Iffileid is not already open, it is first opened and the read position is set to the beginning
of the file.

See page 374 for some general notes on KEXX’s I/O functions.

linein('twoline.fil"') = 'First line of 2 line file’
linein('twoline.£fil') = 'Second line of 2 line file’
linein(’ twoline.fil’) = rr

LINEOUT(fileid[,[string]])

LINES(fileid)

Writes a line of data to a file. Returns 0 if successful and returns 1 if an I/O error or disk
full condition occurs.

LINEOUT starts writing at the current write position for the file. If fileid is not already
open, it is first opened and the write position is initially set to the end of the file, so that
the file will be appended to. After the write operation completes, the write position for
the file is moved just beyond the last character written.

If string is omitted, the file is closed.
See page 374 for some general notes on KEXX’s I/0O functions.

lineout ('name.ext','Line of data') = 0 /* if no error */

Returns 1 if there are any remaining lines to be read in fileid and 0 if there are no re-
maining lines. That is, LINES returns 0 if fileid does not exist, or if the read position for
fileid is positioned at the end of the file or at an end-of-file character (character code
26).

lines ('name.ext') = 0 /* if at eof, 1 if not */

LONGNAME(fileid)

Takes the fileid of an existing file and returns the long filename equivalent. That is, all
components of fileid that are 8.3 MS-DOS short format aliases are converted to their
long filename equivalents, and all components of fileid are converted to the correct
case. If fileid does not exist, the null string is returned.

LONGNAME ('C: \PROGRA~1\KEDITW\README . TXT') =
'C:\Program Files\KEDITW\ReadMe. txt' /* perhaps */

366

Chapter 6. Macro Reference

LOWER(string)

Returns the value of string with any uppercase letters translated to lowercase. The char-
acters “A—Z" are affected; accented characters with codes above 127 are not affected.

lower ('ABCDEF') = 'abcdef’
lower ('1F3De5"') = '1£3de5’

MAX(n1[,n2 ... n10])

MIN(n1[,n2 ... n10])

Returns the maximum number in the given list of up to ten numbers.

max(-1,3.2,4,5,0,-200,100) = 100
max(-1,-2,-4,-8.53,-16,-32.6,-64,-128) = -1 °
o
=
(<]
S
5
Returns the minimum number in the given list of up to ten numbers. (14
5
min(-1,3.2,4,5,0,-200,100) = -200 @©
min(-1,-2,-4,-8.53,-16,-32.6,-64,-128) = -128 =

OEMTOANSI(string)

Returns the result of converting string, which is assumed to be in the OEM character
set, to the ANSI character set.

OVERLAY (new, target[,[n][,[length][,pad]]])

Returns the result of overlaying the string target with the string new starting at position
n, which defaults to 1. If necessary, prior to the operation, new is padded to a length of
length with the pad character, which defaults to a blank.

overlay('dark', 'edge of night') = 'dark of night’
overlay('dark', 'edge of night',9,5) = 'edge of dark ’

POS(string1,string2,[start])

Returns the position of the first occurrence of string! in string2. The search starts at po-
sition start, which defaults to the beginning of string2.

pos('heat', 'in the heat of the night')
pos('heat', 'in the heat of the night',10)
pos('sleet','in the heat of the night')
pos('heat of','in the heat of the night')

0w O O ™

=
=
=
=

Functions

367

RANDOM(max)

RANDOM([min][,[max][,seed]])

REVERSE(string)

Returns a pseudo-random number.

If only a single argument is given it specifies the maximum possible result, and the re-
sult will be in the range 0 through that number. Otherwise you can specify min and max
(which default to 0 and 999), and the result will be in the range min through max.

If seed is specified, it will be used as the seed for a repeatable sequence of random num-
bers; otherwise an initial seed based on internal system counters is generated the first
time that RANDOM() is called after the start of each command-level macro.

All arguments must be non-negative whole numbers, max minus min cannot exceed
100,000, and the result will always be a non-negative whole number.

random () = 942 /* range 0..999 */
random (16384) = 8453 /* range 0..16384 */
random (400,500,123) = 467 /* repeatable, 400..500 */

Returns the result of reversing the characters in string.

reverse('123456789"'") = '987654321"

RIGHT((string,length[,pad])

Returns the rightmost length characters of string. If string has less than /ength charac-
ters, the result will be padded on the left with the pad character, which defaults to a
blank.

right('123"',2) N
right('123',4,'0") = '0123"
right('123',10,'.") =

SHORTNAME(fileid)

Takes the fileid of an existing file and returns the short, MS-DOS style, form of fileid.
That is, all components of fileid are uppercased and are converted to their correspond-
ing 8.3 MS-DOS short format alias. If fileid does not exist, or Windows is unable to
process the conversion, the null string is returned.

SHORTNAME ('C: \Program Files\KEDITW\ReadMe.txt') =
'C:\PROGRA~1\KEDITW\README . TXT' /* perhaps */

368

Chapter 6. Macro Reference

SIGN(number)

Returns -1, 0, or 1 indicating respectively that number (after rounding according to the
current NUMERIC DIGITS setting) is negative, zero, or positive.

sign(-3451) = -1

sign(3451.22E14) = 1

sign(0) = 0
SOURCELINE([n])

SPACE(string[,[n][,pad]])

SOURCELINE(), with no arguments, returns the number of lines in the currently-exe-
cuting KEXX macro.

SOURCELINE(%), where n can be no greater than the number of lines in the current
macro, returns the text of the nth line of the macro.

Replaces any strings of one or more inter-word blanks in string with n copies of the pad
character and returns the result. The default value of is 1 and the default value of pad
is a blank. Leading and trailing blanks in string are removed.

@
Q
c
o
S
2
)
(14
o
S
o
®
=

space (' edge of night ') = 'edge of night’
space (' edge of night ',0) = 'edgeofnight'
space (' edge of night ',2,'-") = 'edge—of—night'

STRIP(string[,[option][,char]])

Depending on whether option is “L” (““Leading*), T (“Trailing”’), or “B”
(“Both”, the default), all leading, trailing, or both leading and trailing occurrences of
char are deleted and the result is returned. The default for char is a blank.

strip (' title ") = 'title'
strip (' title ','LY) = 'title '
strip (' title ','T) = ! title'
strip('—title—"',,'-") = 'title'

SUBSTR(string,start[,[length][,pad]])

Returns the substring of string beginning at the start position for a length of length
characters. If necessary, the value is padded with the pad character, which defaults to a
blank. The default for length is the remaining length of string beginning at the start
position.

substr('in the heat of',4) = 'the heat of’
substr ('intheheatof',3,7) = 'theheat’

Functions

369

substr ('intheheatof',15,2)
substr ('intheheatof',15,2,'-")

Ul
;

SUBWORD(string,n[,length])

SYMBOL(name)

TIME([option])

Returns the substring of string starting at the nth blank-delimited word for a length of
length blank-delimited words. The default for /ength is the remaining number of words
in string. For example

subword ('red blue green', 1, 2) = 'red blue’
subword ('red blue green', 3) = 'green’'
subword ('’ red blue green’, 4, 3) = rr
subword (' red blue green', 1, 2) = 'red blue'

Returns “BAD” if name is not a valid KEXX symbol, returns “VAR” if name is a vari-
able to which a value has been assigned, and otherwise returns “LIT”.

After

x = 17

a. = 'Hello'
drop a.l7
drop y

the SYMBOL() function would yield:

symbol ('==") = 'BAD'

symbol('y") = 'LIT' /* y has no assigned value */
symbol('a.x"') = 'LIT' /* a.l7 has no assigned value */
symbol('x") = 'VAR' /* x has an assigned value */
symbol (x) = 'LIT' /* 17 is a literal */

Returns a form of the current time depending on option. The value of option, which de-
faults to “N”’, may be one of the following:

C (“Civil”) Returns the time in the format Ah:ssam or hh:sspm, where the hour does
not have a leading zero;

H (“Hours”) Returns the number of hours since midnight, from 0 to 23;

L (“Long”) Returns the time in the format hh:mm:ss.uuuuuu, where uuuuuu is in
microseconds, but is accurate only to the resolution of the system clock;

M (“Minutes’) Returns the number of minutes since midnight, from 0 to 1439;

N (“Normal”) Returns the time in the format Zh:mm:ss;

370

Chapter 6. Macro Reference

TRACE([setting])

S (“Seconds’’) Returns the number of seconds since midnight, from 0 to 86399.

At one o’clock in the afternoon, the TIME() function would return these values:

time () = 13:00:00
time('c') = 1:00pm
time('h') = 13

time ('1"') = 13:00:00.000000
time('m') = 780

time('n"') = 13:00:00
time('s"') = 46800

The TIME() function provides two other options, used to control an elapsed timer
facility:

E (“Elapsed”) If the elapsed timer has not been started in the current macro, starts
the timer and returns 0. Otherwise, returns the elapsed time since the timer was
started in the format ssss.uuuuuu (seconds, with no leading zeros, and microsec-
onds, accurate to the resolution of the system clock).

R (“Reset”) If the elapsed timer has not been started in the current macro, starts the
timer and returns 0. Otherwise, returns the elapsed time since the timer was started
and resets the timer to 0.

Whenever execution of a macro begins, a new elapsed timer, local to that macro, is
available. The value of the elapsed timer is preserved and restored across calls to inter-
nal routines.

* Time an operation with the elapsed timer
call time 'r'
doi=1 to 10
'get datafile.'i
end
say 'The elapsed time was' time('e') 'seconds'

TRACE() with no arguments returns the trace setting currently in effect. That is, it re-
turns 'A', 'C', 'E', 'F', 'T', 'L', 'N', 'O, or 'R', possibly preceded by '?".

If specified, setting is a new trace setting to put into effect, and can be '?', or one of 'A’,
'C,'E,'F', 'T', L', 'N', 'O', or 'R', optionally preceded by '?'.

TRANSLATE(string[,[tableo][,[tablei][,pad]]])

Informally, TRANSLATE() takes two lists of characters, an input list and an output list,
searches a string for occurrences of characters in the input list and translates these oc-
currences to the corresponding character in the output list.

TRANSLATE() returns the value of string with the characters in fablei translated to the
corresponding characters in tableo. If tableo is shorter than fablei, it is padded with

Functions

371

@
Q
c
o
S
2
)
(14
o
S
o
®
=

pad, which has a default value of blank. If tableo is longer than tablei, it is truncated to
the length of tablei. The default value of tablei is the 256-character string beginning
with '00'x and ending with 'FF'x. The default value of tableo is the null string. If tablei
and fableo are omitted, string is translated to uppercase, as if you had used the
UPPER() function.

translate ('abcdwxyz') = 'ABCDWXYZ'
translate('abxyze', '12345', 'abcde') = '12xyz5'
translate('56/12/34', 'mmddyy', '123456') = 'yy/mm/dd’

TRUNC(number[,n])

UPPER(string)

Truncates number to an integer followed by #» digits after the decimal point and returns
the result; » must be a non-negative number and defaults to 0. Before the truncation op-
eration takes place, number is first rounded according to the current NUMERIC
DIGITS setting.

trunc (12345.6789) = 12345
trunc(12345.6789,2) = 12345.67
trunc (12345, 3) = 12345.000

Returns the value of string with any lowercase letters translated to uppercase. The char-
acters ““a—z"" are affected; accented characters with codes above 127 are not affected.

upper ('abcdwxyz') = ' ABCDWXYZ'
upper ('90alff') = '90A1FF'

VALUE(name [,newvalue])

Returns the value of the symbol specified by name, and optionally assigns to the sym-
bol the value specified by newvalue.

After

a= 's'
a9 = 17
s - '9'

the VALUE() function would yield:

value('a') = 's'

value (a) = 9

value('a'||s) = 17

value('a', 'Tom') = 's' /* and sets a = 'Tom' */

372

Chapter 6. Macro Reference

VERIFY((string,reference[,[option][,start]])

Ifoption is ““N”’ (““Nomatch”) or is omitted, returns the position of the first character in
string that does not match any character in the string reference, or returns 0 if there is no
such character. If option is “M”’ (““Match’’), returns the position of the first character in
string that does match some character in the string reference, or 0 if there is no such
character. Characters in string before the start position, which defaults to 1, are not
considered.

verify ('$1,000.00', '0123456789S%,."')
verify ('1000 Dollars', '0123456789$,."')
verify('1000.00', '$,.', 'm')
verify('1000.00', '$,.', 'm' ,6)

uu Uy
o v u o

(]
o
3
WORD(string,n) 5
Returns the nth blank-delimited word in s#ring, or the null string if string contains less ‘®
than n words. 4
(o)
)
word('red blue green yellow', 1) = 'red' ©
word('red blue green yellow', 4) = 'yellow' =
word (' red blue green yellow', 1) = 'red'
word (' red blue green yellow’, 10) = re

WORDINDEX(string,n)
Returns the character position of the beginning of the nth blank-delimited word in
string, or returns 0 if s¢ring contains less than n words.

wordindex ('red blue green yellow',6 1) = 1
wordindex ('red blue green yellow',6 4) = 16
wordindex (' red blue green yellow ', 1) = 4
wordindex ('red blue green yellow', 10) = 0

WORDLENGTH(string,n)
Returns the length of the nth blank-delimited word in string, or returns 0 if string con-
tains less than n words.

wordlength ('red blue green yellow',61l) = 3
wordlength('red blue green yellow',3) = 5
wordlength('red blue green yellow',5) = 0

WORDPOS(phrase,string[,start])
If phrase is found in string, returns the word number in string of the first word of
phrase. Otherwise, returns 0. Start, which defaults to 1, specifies the word within string

Functions 373

at which the search is to start. The blank-delimited words in pArase and string are com-
pared, and the number of blanks separating the words does not affect the comparisons.

wordpos ('red', 'blue green red yellow') = 3

wordpos ('green red', 'blue green red yellow') = 2

wordpos ('green red', 'blue green red yellow') = 2

wordpos ('green red', 'blue green red yellow',3) = 0

wordpos ('black', 'blue green red yellow') = 0
WORDS(string)

Returns the number of blank-delimited words in string.

words ('in the heat of the night') = 6

words (' in the heat of the night ") = 6

words ('intheheatofthenight') = 1
XRANGE([start][,end])

X2B(hex-string)

X2C(hex-string)

Returns a string consisting of the start character (which defaults to '00'x) and, in order,
the characters whose codes follow it, through the end character (which defaults to
'FF'x). If start is greater than end, the sequence will wrap at 'FF'x, which will be fol-
lowed by '00'x.

xrange (1,9) = '123456789"
xrange('w','z") = 'wxyz'

xrange () = '00 01 02 ... fd fe ff'x
length (xrange ()) = 256

xrange ('fe'x, '01'x) = 'fe ££f 00 01'x

Converts a string in hexadecimal notation to binary notation and returns the result.
Blanks may be included in hex-string, at byte boundaries.

x2b('0d") = '00001101"
x2b('E2") = '11100010"
x2b (d2x (4095)) = '111111111111"

Takes a string containing a set of character codes expressed in hexadecimal notation
and returns a string consisting of the corresponding characters. Blanks may be included
in hex-string, at byte boundaries.

374

Chapter 6. Macro Reference

X2D(hex-string)

x2c('7a'") = 'z!
x2c (') = rr
x2c('f£f") = 'ff'x
x2c('61 62 63') = 'abc'’

Converts a string in hexadecimal notation to decimal notation and returns the result.
Blanks may be included in Aex-string, at byte boundaries. An error occurs if the result
cannot be expressed as a whole number according to the current NUMERIC DIGITS
setting.

x2d('7a') = 122
x2d (0) = 0

x2d ('abed') = 43981
x2d('ab cd') = 43981

6.8.2 Notes on I/O Functions

Line-oriented
functions

It is sometimes useful for a macro to directly read and write files on disk, as opposed to
files that are in memory and being edited by KEDIT. KEXX includes I/O functions that
you can use for this purpose. You can access disk files on a line-oriented basis by using
the LINEIN(), LINES(), and LINEOUT() functions, or access files on a character-ori-
ented basis by using the CHARIN(), CHARS() and CHAROUT() functions.

The line-oriented functions assume that the files you are working with are organized
into lines, with each line ended by a linefeed or by a carriage return-linefeed pair. Fur-
thermore, the KEXX version of these functions works properly only with lines whose
length is less than or equal to KEDIT’s WIDTH value (which by default is 1024). For
compatibility with other REXX implementations, these functions treat character code
26 as a special character indicating the end-of-file.

LINEIN(fileid) reads a line from the specified file and returns the contents of the line
(with the end-of-line indicators removed) as its value. Data is read starting from the
current read position for the file, which starts out at the beginning of the file and is
updated after each input operation.

LINES(fileid) returns 1 if there are more lines of data in the specified file and 0 if there
are not. That is, 0 is returned if the file does not exist, the read pointer is positioned at

the end of the file, or the read pointer is positioned at an end-of-file character (character
code 26).

LINEOUT(fileid,string) writes string (plus a carriage return-linefeed end-of-line
sequence) to fileid. Output from LINEOUT() is normally appended to the end of the
specified file; if you want to replace the existing contents of a file with new data, your
macro should first use KEDIT’s ERASE command to delete the existing file.

Functions

375

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Character-oriented The character-oriented functions treat the file as a continuous stream of characters and

functions

Read and write
positions

Opening and
closing files

File size limits

do no special processing of carriage returns, linefeeds, or end-of-file (character code
26) characters.

CHARIN(fileid[,[start][,length]]) reads data of a specified length (by default, 1 charac-
ter) from fileid. If start is specified, data is read starting at that byte offset into the file;
otherwise, data is read starting from the current read position in the file.

CHARS(fileid) returns the number of bytes of data remaining to be read in the specified
file, starting from the current read position in the file, or 0 if you are positioned at the
end of the file.

CHAROUT(fileid[,[string][,start]]) writes string to fileid. 1f start is specified, data is
output starting at that byte offset into the file; otherwise data is written starting at the
current write position in the file.

Each file has a read position and a write position. The read position starts out at 1 (the
beginning of the file) and is updated after each read operation to point just beyond the
last character read. There is a single read position, updated by both CHARIN() and
LINEIN(). You can use the start argument of CHARIN() to reposition the read pointer
anywhere in the file.

The write position starts out at the end of the file, so that by default write operations will
append to an existing file. If you instead want to replace the existing contents of a file
with new data, your macro should first use KEDIT’s ERASE command to delete the
existing file. You can use the start argument of CHAROUT() to reposition the write
pointer anywhere in the file, but repositioning the write pointer earlier in the file does
not delete the existing contents of the file. There is a single write position, updated by
both CHAROUT() and LINEOUT().

You do not need to explicitly open a file to begin using it; whenever you use an I/O
function to refer to a file that is not currently open, the file will be automatically
opened. Up to 10 files at a time can be open for use by the KEXX 1/O functions.

Files are automatically closed when the macro in which they were opened terminates.
You can explicitly close a file by calling the LINEOUT() or CHAROUT() functions
and specifying the fileid argument but no other arguments. It is good practice for a
macro to close a file explicitly when the macro has finished with it. In particular, you
should be sure that any file that has been used with a KEXX I/O function within a
macro is closed before you issue, from that same macro, any command (such as the
KEDIT, GET, PUT, SAVE, or FILE command) that accesses the same file.

The KEXX I/O functions cannot properly handle files larger than 2**32-1 (that is,
4294967295) bytes in size. Further, the CHARS() function will never return a value for
the remaining bytes in a file larger than 999999999, and the largest allowable value for
the start argument of the CHARIN() and CHAROUT() function, and for the length
argument of the CHARIN() function, is 999999999.

376

Chapter 6. Macro Reference

Examples

Here are two sample macros that illustrate how the I/O functions are typically used.

The first sample macro reads a disk file and inserts every non-blank line of that disk file
into the current file:

fileid = 'test.fil'
do while lines(fileid) \= 0
line = linein(fileid)
if line \= ’’ then ’'input’ line
end
call lineout fileid /* close the file */

The second sample macro creates a disk file containing each of the words in the current
file, with one word written to each line of the disk file:

fileid = 'words.fil'
'nomsg erase' fileid /* erase file if it exists */
ltopl
'down 1'
do while rc =0
line = curline.3()
do j = 1 to words(line)
call lineout fileid,word(line, j)
end
'down 1'
end
call lineout fileid /* close the file */

@
Q
c
o
S
2
)
(14
o
S
o
®
=

6.8.3 Boolean Functions

Boolean functions are functions that test a condition within KEDIT and return 1 if the
condition is true and 0 if it is false. An example:

if after() then 'sos firstch'

Here, if the cursor is located after the last nonblank character of the cursor line, the cur-
sor is moved to the first nonblank character of that line.

The results from several Boolean functions depend on the contents of the current field.
If the cursor is located on the top-of-file or end-of-file line, or on a shadow line, KEDIT
will act as if the current field were empty.

Here are the available Boolean functions:

AFTER() Returns 1 if the cursor is positioned after the last nonblank character of the cursor field
or if the cursor field is empty.

ALT() Returns 1 if the current file has been altered since the last SAVE (that is, returns 1 if the
second number displayed by QUERY ALT is nonzero).

Functions 377

ALTKEY() Returns 1 if, at the time of the last keystroke or mouse action processed by KEDIT,
either Alt key was down.

BEFORE() Returns 1 if the cursor is positioned before the first nonblank character of the cursor
field or if the cursor field is empty.

BLANK() Returns 1 if the cursor field is completely blank.

BLOCK() Returns 1 if a block is marked in the current file.

BOTTOMEDGE() Returns 1 if the cursor is in the bottommost line of the file area.

BUTTON1() Returns 1 if mouse button 1 is down. Should only be used while processing a mouse
click (that is, while the BUTTON1DOWN, BUTTON2DOWN, BUTTON1DBLCLK,
or BUTTON2DBLCLK macros are active).

BUTTON2() Returns 1 if mouse button 2 is down. Should only be used while processing a mouse
click (that is, while the BUTTON1DOWN, BUTTON2DOWN, BUTTON1DBLCLK,
or BUTTON2DBLCLK macros are active).

CLASSIC() Returns 1 if INTERFACE CLASSIC is in effect.

CLIPTEXT() Returns 1 if any text is currently stored in the Windows clipboard for possible use in a
Paste operation.

CMDSEL() Returns 1 if any text on the command line is currently selected.

COMMAND() Returns 1 if the cursor is on the command line.

CTRL() Returns 1 if, at the time of the last keystroke or mouse action processed by KEDIT,
either Ctrl key was down.

CUA() Returns 1 if INTERFACE CUA is in effect.

CURRENT() Returns 1 if the cursor is on the current line.

378 Chapter 6. Macro Reference

DELSEL()

DIR()

END()

EOF()

FILELINE()

FIRST()

FOCUSEOF()

FOCUSTOF()

FULLINP()

INBLOCK()

INITIAL()

INPREFIX()

INSERTMODE()

INTRUNC()

LEFTEDGE()

IfINTERFACE CUA is in effect, returns 1 when a selection or command line selection
is marked, and when a persistent block is marked and no cursor movement has taken
place since it was marked. Always returns 0 when INTERFACE CLASSIC is in effect.
The default Delete and Backspace definitions use DELSEL() to determine whether
they should use SOS DELSEL to delete the current block or command line selection, or
should instead delete only a single character. DELSEL() returns 1 under the same con-
ditions that the block indication on the status line is followed by an asterisk.

Returns 1 if the current file is the DIR.DIR file created via the KEDIT DIR command,
or if .DIR is the extension of the current file.

Returns 1 if the cursor is on the last nonblank character of the cursor field.

Returns 1 if the cursor is on the end-of-file line.

Returns 1 if the cursor is not on the command line.

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Returns 1 if the cursor is positioned in column 1 of the cursor field.

Returns 1 if the focus line is the end-of-file line.

Returns 1 if the focus line is the top-of-file line.

Returns 1 if KEDIT is in Input Mode with INPUTMODE FULL in effect.

Returns 1 if the cursor is in a marked block.

Returns 1 if the function is called while the profile for the first file in the ring is
executing.

Returns 1 if the cursor is in the prefix area.

Returns 1 if KEDIT is in Insert Mode.

Returns 1 if the cursor is not to the right of the truncation column.

Returns 1 if the cursor is in the leftmost column of the file area.

Functions

379

LINEINP() Returns 1 if KEDIT is in Input Mode with INPUTMODE LINE in effect.

MODIFIABLE() Returns 1 if the cursor is located in an area of the file that can be modified (that is, not
on top-of-file, end-of-file, a shadow line, or to the right of the truncation column.)

MOUSEPOSMODIFIABLE() Returns 1 if, at the time of the last mouse button click or double-click,
the mouse pointer was in the file area (that is, not in the prefix area or on the command
line) and was in a position where it would be legal to type a character.

MOUSEPOSVALID() Returns 1 if, at the time of the last mouse button click or double-click, the mouse
pointer was in a position where it would be legal to place the cursor.

MULTWINDOW() Returns 1 if more than one document window currently exists.

NOQUEUE() Returns 1 if no keystrokes are queued up within Windows waiting to be processed.

OEMFONT() Returns 1 if the font currently being used in KEDIT’s document windows is an OEM
font.

PENDING() Returns 1 if there are any pending prefix commands.

PREFIX() Returns 1 if PREFIX ON or PREFIX NULLS is in effect.

PREFIXLEFT() Returns 1 if the prefix area is displayed on the left of the window.

PROFILE() Returns 1 if the function is called while the profile for a file being added to the ring is
executing.

REPEATING() Returns 1 if KEDIT is processing an auto-repeat keystroke. REPEATING() is 0 for the
initial keystroke sent by Windows when you first press a key, but is 1 for each of the
additional keystrokes repeatedly sent by Windows for as long as you hold the key
down.

RIGHTEDGE() Returns 1 if the cursor is in the rightmost column of the file area.

SCROLLLOCK() Returns 1 if ScrollLock is in effect.

380 Chapter 6. Macro Reference

SHADOW()

SHIFT()

Returns 1 if the cursor is located on a shadow line.

Returns 1 if] at the time of the last keystroke or mouse action processed by KEDIT,
either Shift key was down.

SHOWPRINTDLG() Returns 1 if the Print File toolbar button should show the File Print dialog box, and

SPACECHAR()

TAB()

TOF()

TOPEDGE()

UNTITLED()

VERONE()

should not print immediately. That is, SHOWPRINTDLG() returns 1 when the ”’Print
File Toolbar Button Shows This Dialog” box in the File Print dialog box is checked.

Returns 1 if the character at the cursor position is blank.

Returns 1 if the cursor is located in one of the tab columns.

Returns 1 if the cursor is on the top-of-file line.

Returns 1 if the cursor is in the topmost line of the file area.

Returns 1 if the current file is an UNTITLED file. That is, UNTITLED() returns 1 if the
UNTITLED option was used when editing of the current file began, and the file’s initial
UNTITLED.n fileid has not been changed.

Returns 1 if column 1 of the current file is being displayed in column 1 of the file area.

6.9 The PARSE Instruction

While PARSE is a keyword instruction, like DO, RETURN, or SAY, it is more complex
than the other keyword instructions, so it is discussed in detail in this separate section.

PARSE takes character strings and assigns portions of their values to a set of KEXX
variables according to a template that you provide. The format of the PARSE instruc-
tion is

PARSE [UPPER] origin [template]

UPPER is optional and specifies that the strings are to be converted to uppercase before
being parsed according to the template.

Origin specifies where the PARSE instruction is to obtain the data to be parsed.

Template is a set of pattern specifications that control the parsing process, intermixed
with lists of variables to which the parse data is to be assigned.

The PARSE Instruction 381

@
Q
c
o
S

2
)

(14
o
S
o
®

=

PARSE origins There are several ways to specify the origin of the string to be parsed:

PARSE [UPPER] ARG |[template]
When executed from a KEXX macro while no internal routine is active, PARSE ARG
parses the argument string passed to the macro when it was invoked. When executed
from an internal routine within a KEXX macro, PARSE ARG parses the arguments to
that internal routine.

PARSE [UPPER] LINEIN [template]
KEDIT reads a line of user input from the command line and the resulting line of input
is parsed.

PARSE [UPPER|] PULL [template]

KEDIT reads a line of user input from the command line and the resulting line of input
is parsed. In KEXX, PARSE LINEIN and PARSE PULL are equivalent. (Both are
included in KEXX for compatibility with REXX, where PARSE LINEIN always reads
a line of user input but PARSE PULL first tries to read from a REXX facility known as
the “external data queue”, and reads a line of user input only if this queue is empty.
KEXX does not provide an external data queue, so PARSE PULL always acts as if it is
empty and always reads a line of user input.)

PARSE [UPPER] SOURCE [template]
KEXX parses a string that gives information about the currently executing macro. This
consists of the system under which KEDIT is running (for KEDIT for Windows, this is
“Windows””), the method used to invoke the macro (always “COMMAND” in this
version of KEDIT), and the name of the macro.

For example, if you issue the command

macro test

and use PARSE SOURCE within the macro, it would parse the string
“Windows COMMAND test™.

PARSE [UPPER] VALUE [expression] WITH [template]
KEXX takes the value of expression and uses it as the string to be parsed. The keyword
WITH is used to separate the expression from the template. For example,

parse value date() time() with template
would parse a string like “18 Jun 2007 11:37:52”.
PARSE [UPPER] VAR name [template]
KEXX takes the value of the specified variable as the string to be parsed. For example,

x = "tuna fish"
parse var x template

would parse the string “tuna fish™.

382 Chapter 6. Macro Reference

PARSE [UPPER] VERSION |[template]

PARSE
templates

Variable lists

KEXX parses a string with information about the current version and release date of the
KEXX language processor. This consists of the name of the language (“KEXX"), the
KEXX version number (for example, “5.61”°, the version included in the initial release
of KEDIT for Windows 1.6), and the date of this KEXX version (in the form *““dd Mmm
yyyy”’). For example, PARSE VERSION would parse a string like "KEXX 5.61 15
Aug 2007”.

PARSE templates consist of specifications that tell KEXX how to break the data being
parsed into smaller substrings and lists of variables to which the data in these substrings
is assigned.

The simplest templates consist only of a list of variables, to which all of the data in the
string being parsed is assigned.

parse value 'Clark Kent is Superman.' with vl v2 v3

In this example, ““Clark Kent is Superman.” is the string being parsed and the template
consists of a list of variables, V1, V2, and V3.

Data is assigned to variables in a list in this fashion: For all variables in the list except
the last variable, leading blanks are removed from the data, the next word (that is, the
next set of nonblank characters) is removed from the data and assigned to the next vari-
able in the list, and then the first trailing blank (if any) after the word is removed from
the data. When the last variable in the list is reached, all remaining data (which may
include leading and trailing blanks) is assigned to it. If the end of the data is reached
before all variables in the list have been assigned values, the remaining variables in the
list are set to the null string.

This example, in which there is a single blank between each word of the string to be
parsed, sets these variables:

parse value 'Clark Kent is Superman.' with vl v2 v3

sets these variables:

vl < 'Clark’
v2 < 'Kent'
v3 < 'is Superman.'

The next example has two blanks between each word of the string to be parsed:
parse value 'Clark Kent 1is Superman.' with vl v2 v3

It sets these variables:

vl < 'Clark’
v2 < 'Kent'
v3 & ' is Superman.'

The PARSE Instruction 383

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Parse
specifications

A list of variables can include periods that serve as dummy variables. The value that
would normally be assigned to the variable at the period’s position in the list is not
assigned to any variable but is simply ignored, as ““Kent”” is in the following example:

parse value 'Clark Kent is Superman.' with vl . v2

vl < 'Clark’
v2 < 'is Superman.'

To process a template, PARSE moves from left to right through the template, skipping
over lists of variables but stopping at each parse specification. PARSE uses the parse
specification to pick out a substring of the parse data. Then, if the parse specification is
preceded by a list of variables, this substring is assigned to the list of variables by the
process described above (that is, one word per variable except the last variable in the
list, which gets the rest of the substring). Ifthe last parse specification is followed by a
list of variables, the remainder of the parse string is assigned to the variables in the list
according to the same process.

Types of parse specifications are:

Absolute Absolute positional patterns are unsigned integers, optionally preceded by an equal
positional sign (“=""), that specify a specific position in the parse data.
patterns
parse value 'Clark Kent is Superman.' with vl 10 v2 15 v3
vl < 'Clark Ken'
v2 < 't is !
v3 < 'Superman.'
Relative Relative positional patterns are integers preceded by a plus sign (“+°) or by a minus
positional sign (“°-”’). They specify a position a certain number of characters after or before the
patterns column matched by the last parse specification (or, when there is no preceding parse
specification, from the beginning of the string).
parse value 'Clark Kent is Superman.' with vl 10 v2 +5 v3
vl < 'Clark Ken'
v2 < 't is !
v3 < 'Superman.'
Positional patterns that specify a position beyond the end of the parse data are consid-
ered to match the end of the data. Positional patterns that specify a position to the left of
the beginning of the parse data are considered to match the beginning of the parse data.
parse value 'Clark Kent is Superman.' with 0 vl 10 v2 40 v3
vl < 'Clark Ken'
v2 < 't is Superman.'
v3 & '
384 Chapter 6. Macro Reference

Literal
patterns

Variable
patterns

When a position at or to the left of the current position in the parse string is specified by
a positional pattern, it sets the new position in the parse data, and uses all data from the
previous position through the end of the data to set any preceding variable list.

parse value 'Clark Kent is Superman.' with vl 10 v2 -3 v3

vl < 'Clark Ken'
v2 < 't is Superman.'
v3 < 'Kent is Superman.'

Character strings enclosed in quotes are literal pattern specifications. PARSE starts
from its current position in the PARSE data and matches the first occurrence of the pat-
tern string that it finds.

parse value 'Clark Kent is Superman.' with vl 'Kent' v2

vl < 'Clark '
v2 < ' is Superman.'

When a relative positional pattern follows a literal pattern, the new position is deter-
mined relative to the first character matched by the literal pattern. Also, the substring
formed by the positional pattern and the preceding literal pattern includes all characters
from the first character matched by the literal pattern up to the column specified by the
relative positional pattern; in all other situations, the string matched by a literal pattern
is not included in this substring.

text = 'Clark Kent is Superman.'
parse var text vl 'Kent' v2 +8 v3

vl < 'Clark '
v2 < 'Kent is '
v3 < 'Superman.'

Pattern information can come from variables rather than being directly embedded in
the template. Variable patterns are indicated by variable names in parentheses. If the
parentheses are preceded by an equal sign (““=""), the value of the variable must be an
integer and its value is used as an absolute positional pattern. If the parentheses are pre-
ceded by a plus sign (“+’*) or minus sign (“-”"), the value of the variable must also be
an integer and its value is used as a relative positional pattern. Parentheses alone, not
preceded by an equal sign, minus sign, or plus sign, mean that the value of the variable

is to be used as a literal pattern.

n = 3; s = 'Super'
text = 'Clark Kent is Superman.'
parse var text vl =(n) v2 +(n) v3 (s) v4

vl < 'Cl'

v2 < 'ark'

v3 <« ' Kent is '
v4d & 'man.'

The PARSE Instruction 385

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Comma
patterns

A comma (*“,”) in a template matches the end of the string currently being parsed and
causes processing to continue at the start of the next parse string. Except when process-
ing PARSE ARG (and the ARG instruction), there is only one string to parse and a
comma in a template is not useful. But with PARSE ARG and with the ARG instruc-
tion, when executed from inside an internal routine that was passed multiple parame-
ters, all of the arguments to the routine can be processed with a single template that uses
commas. For example, assume that an internal routine had been passed the three argu-

ments “Clark Kent”, “Lois Lane”, and “Jimmy Olsen”:

parse arg vl, v2, v3 v4

vl < 'Clark Kent'
v2 < 'Lois Lane'
v3 & 'Jimmy'
v4d & 'Olsen'

6.10 Conditions

Condition handling, discussed in this section, is an advanced feature of KEXX that
most macro writers need not be familiar with.

You can have a KEXX macro automatically transfer control to a different location in
your macro when certain special conditions occur. This allows your macro to, for
example, display diagnostic information after a syntax error occurs, or ask a user of the
macro who has pressed Ctrl+Break whether to terminate the macro.

The conditions that can be handled are:
e The HALT condition, triggered when Ctrl+Break is pressed.

e The FAILURE condition, triggered when a command yields a negative return
code.

e The ERROR condition, triggered when a command yields a positive return code,
or when a command yields a negative return code and the FAILURE condition is
not enabled. Note that the ERROR condition is not usually useful in KEXX mac-
ros, since several KEDIT commands (such as a DOWN command that reaches the
End-of-File line) generate positive return codes in non-error situations.

e The SYNTAX condition, triggered by a syntax error in your macro, or by invalid
macro operations like division by zero or passing invalid arguments to a built-in
function.

e The NOVALUE condition, triggered by the use of an uninitialized variable in your
macro.

By default, user-specified condition handling is disabled and the above conditions are
handled as follows: Ctrl+Break and syntax errors cause termination of your macro.
Error and failure return codes are ignored. Use of uninitialized variables is ignored if

386

Chapter 6. Macro Reference

SET NOVALUE OFF is in effect, and causes termination of your macro if SET
NOVALUE ON is in effect.

Condition handling is most often enabled via this form of the SIGNAL instruction:
SIGNAL ON condition [NAME trapname]

When SIGNAL ON has been executed for a condition and that condition occurs, con-
trol is transferred, as if SIGNAL /abel had been executed, to the label specified by
trapname or, if NAME trapname was omitted, to a label corresponding to the name of
the condition.

For example, with
SIGNAL ON HALT

KEXX will transfer control to the label HALT if Ctrl+Break is pressed while your
macro is executing.

With
SIGNAL ON HALT NAME BREAKER

KEXX will transfer control to the label BREAKER if Ctrl+Break is pressed while your
macro is executing.

You can use
SIGNAL OFF condition

to disable user-specified condition handling and restore the default behavior.

With SIGNAL ON, control is transferred to the appropriate label when a condition is
raised, but there is no convenient way of resuming execution of your macro at the point
that the condition was detected. An alternative is to use

CALL ON condition [NAME trapname]

which calls your condition handler as a subroutine and, if your subroutine returns,
resumes execution immediately following the point where the condition was triggered.

You can use
CALL OFF condition

to disable this form of user-specified condition handling.

CALL ON condition can be used with the HALT, ERROR, and FAILURE conditions,
but cannot be used with the SYNTAX and NOVALUE conditions.

Notes e When a condition with SIGNAL ON handling in effect occurs, and before control
is transferred to the condition handler, SIGNAL OFF is put into effect for that con-
dition, so that the default behavior will take place if the condition occurs again and
user-specified condition handling has not been re-enabled.

Conditions 387

@
Q
c
o
S

2
)

(14
o
S
o
®

=

When a condition with CALL ON handling in effect occurs, and before control is
transferred to the condition handler, the condition is put into a delayed state, and
will be re-enabled on return from your handler. You can also use SIGNAL or
CALL instructions within your handler to enable or disable condition handling
while your handler is active.

While your handler is active, you can use the CONDITION() function to get infor-
mation about the current trapped condition.

For the ERROR and FAILURE conditions, the RC variable is set to the command
return code involved before control is transferred to the condition handler. For the
SYNTAX condition, the RC variable is set to the message number for the error in-
volved; the text of the message can be retrieved via the ERRORTEXT() function.

The SIGL variable is set before control is transferred to your condition handler to
the line number of the last clause executed.

6.11 KEXX and REXX

KEDIT’s macro language, KEXX, contains a large subset of the REXX language.
Almost all of the features of REXX, as documented in The REXX Language: A
Practical Approach to Programming by Michael Cowlishaw (Second Edition,
Prentice-Hall, 1990) are available in KEXX. Here are the primary differences between
KEXX and REXX:

KEXX clauses and comments must fit completely on a single line, and cannot be
continued on additional lines.

Lines of a KEXX macro are limited to 1024 characters.

KEXX comment lines that begin with an asterisk (“*’”) are not valid in REXX pro-
grams. The other form of KEXX comment, delimited by slash-asterisk (*‘/*”")
asterisk-slash (““*/””) pairs, are valid in REXX programs.

The maximum NUMERIC DIGITS value supported by KEXX is 1000.

KEXX does not support the following REXX instructions: ADDRESS, PUSH,
and QUEUE.

Control variables in KEXX DO loops must be simple symbols, and the values of
the control variable and the expressions involved in DO loop control must be
whole numbers with at most 9 digits.

TRACE + and TRACE -, used to turn interactive tracing on and off, are supported
in KEXX but not in REXX, which supports only TRACE ?, which toggles the sta-
tus of interactive tracing.

The STREAMY() built-in function is not available in KEXX.

KEXX does not support the NOTREADY condition.

Labels in KEXX programs are only valid when they are the first token on a line.

388

Chapter 6. Macro Reference

KEXX’s LINEIN(), LINEOUT(), LINES(), CHARIN(), CHAROUT(), and
CHARS() functions require that their first operand be specified. REXX lets you do
I/O to the console by omitting this argument.

The following REXX features are supported in KEXX, but are not documented
here because they are rarely-used and not of interest to most KEDIT users: the sec-
ond argument (“n””) of the C2D(), D2C(), and X2D() functions, the expp and expt
arguments of the FORMAT() function, the NUMERIC FORM instruction, the
FORM() function, SIGNAL VALUE, and TRACE VALUE. See the Cowlishaw
book for details about these items.

For compatibility with older versions of KEDIT, KEXX accepts the characters
“@?”, “#”,and “$” as valid in symbols and lets you use “*” and “~" to indicate
negation. These characters are not included in the latest REXX language definition
and are considered invalid by some REXX implementations, so their use is
discouraged.

KEXX and REXX

389

@
Q
c
o
S

2
)

(14
o
S
o
®

=

Chapter 7. Built-ln Macro Handling

71

Overview

While you can use the MACRO command to run macros directly from KEDIT’s com-
mand line, KEDIT macros are most often executed in response to some interaction with
KEDIT’s user interface. Whenever you press a key, select a toolbar button or menu
item, or click a mouse button, KEDIT runs a macro associated with that action. Most of
the macros involved are built into KEDIT, but you can use the DEFINE command to
redefine these macros and change KEDIT’s behavior.

This chapter has information on the naming conventions used in the processing of key-
board, toolbar, menu, and mouse macros.

You can use the MACROS command to see the definitions of all currently-defined
macros; this will include any macros that you have defined, as well as any default mac-
ros that you have not redefined. To see the default macros that are built into KEDIT,
you can run KEDIT with the NOPROFILE option, so that only the default macros are
defined, and then use the MACROS command.

Another way to see KEDIT’s default macro definitions is to look at the file
BUILTIN.KML, which is installed by the KEDIT for Windows SETUP program in the
SAMPLES subdirectory of the main KEDITW directory. If you decide to change any
of KEDIT’s default macro definitions, we recommend that you use separate DEFINE
commands or KML files for your modified definitions, and do not load the entire
BUILTIN.KML file from within your profile. This is because loading the entire file
would be time consuming and redundant, since the macros involved are already built
into the KEDIT module, and because if any of KEDIT’s default definitions change in
future releases of KEDIT, you may be loading in obsolete macro definitions from your
modified version of BUILTIN.KML.

7.2

Keyboard Macros

KEDIT has names for each key and key combination that it can read from the keyboard.
Whenever you press a key or a key combination recognized by KEDIT, KEDIT deter-
mines the name of the key that was pressed and executes the corresponding macro.

For example, when you press the F1 key, KEDIT runs the F1 macro, which by default
issues the command HELP, which in turn causes KEDIT to display its Help file. And
when you press the Shift+F1 key, KEDIT runs the SHIFT+F1 macro, which by default
issues the LOCATE command with no operands, causing KEDIT to re-execute the
most-recent LOCATE command.

KEDIT even has built-in macros corresponding to the character keys on your
keyboard. For example, when you press the ““A’” key, KEDIT runs a macro called “A”,

[TPE]

which issues the command ““text a” to enter a lowercase ““a” at the cursor position.

390

Chapter 7. Built-In Macro Handling

Naming
conventions

When you press Shift+A, KEDIT runs a macro called SHIFT+A, which issues the
command “‘text A” to enter an uppercase ““A” at the cursor position.

The system used for key names is straightforward. For most keys, the key name is sim-
ply the name that appears on the key. For keys pressed in combination with the Shift,
Ctrl, or Alt keys, key names are prefixed with “Shift+”, “Ctrl+”, or “Alt+” (which
can also be given in shorter form as “S+”, “C+”, or “A+""). For compatibility with
older versions of KEDIT, you can use “-” instead of “+” as the separator within
keynames. So, for example, “Ctrl+End”, “Ctrl-End”, “C+End”, and ““C-End” are all
equivalent. You can give key names in any combination of uppercase and lowercase.

For example, “J” (or “j””) names the alphabetic key that normally enters a lowercase
5> at the cursor position. “Shift+J” (or “Shift+j™, or “S+J”, etc.) names the shifted
version of this key, which normally enters an uppercase “J” at the cursor position.

KEDIT also handles key combinations involving Shift and Ctrl pressed in combination
with another key. For example, ““Shift+Ctrl+A”, “Ctrl+Shift+A”, “C+S+A”, and
“S+C+A” are all valid and all refer to the same key combination. Similarly, KEDIT
handles Alt and Ctrl pressed in combination with another key, as in “Ctrl+Alt+A” or
“Alt+Ctrl+A”.

The key names accepted by KEDIT are listed in the table on the next page. Some key
combinations are not available, because they are given special handling by Windows.
For example, Ctrl+Esc always brings up the Windows Task List window, and its behav-
ior cannot be changed by KEDIT. And pressing Shift+Space (that is, pressing the Shift
key in combination with the space bar) is treated the same as pressing Space alone.

Keyboard Macros

391

"
o
S
o
©
=
c
o
S
a1]

Notes on key
names

A...Z Shift+A...Z Ctrl+A...2 Alt+A...2Z

0...9 Shift+0...9 Ctrl+0...9 Alt+0...9

! Shift+’ Ctrl+’ Alt+’

- Shift+- Ctrl+- Alt+-

= Shift+= Ctrl+= Alt+=

[Shift+][Ctrl+| Alt+][

1 Shift+] Ctrl+] Alt+]

\ Shift+\ Ctrl+\ Alt+\

; Shift+; Ctrl+; Alt+;

! Shift+’/ Ctrl+’ Alt+’

, Shift+, Ctrl+, Alt+,

. Shift+. Ctrl+. Alt+.

/ Shift+/ Ctrl+/ Alt+/

Space Alt+Space

Enter Ctrl+Enter Alt+Enter

Tab Shift+Tab Ctrl+Tab

Esc

Bksp Ctrl+Bksp Alt+Bksp

Fl...F1l2 Shift+Fl...Fl1l2 Ctrl+Fl...F1l2 %1t+F1...F1

Home Shift+Home Ctrl+Home Alt+Home

Pgup Shift+Pgup Ctrl+Pgup Alt+Pgup

Pgdn Shift+Pgdn Ctrl+Pgdn Alt+Pgdn

Curu Shift+Curu Ctrl+Curu Alt+Curu

Curd Shift+Curd Ctrl+Curd Alt+Curd

Curl Shift+Curl Ctrl+Curl Alt+Curl

Curr Shift+Curr Ctrl+Curr Alt+Curr

End Shift+End Ctrl+End Alt+End

Ins Shift+Ins Ctrl+Ins Alt+Ins

Del Shift+Del Ctrl+Del Alt+Del

Center Shift+Center Ctrl+Center

Plus Ctrl+Plus Alt+Plus

Minus Ctrl+Minus Alt+Minus

Slash Ctrl+Slash Alt+Slash

Star Ctrl+Star Alt+Star

NumEnter Ctrl+NumEnter Alt+NumEnte
r

App Shift+App Ctrl+App Alt+App

Alt

e The table does not specifically list Shift+Ctrl+key and Alt+Ctrl+key key combina-
tions. Wherever Ctrl+key is valid, Shift+Ctrltkey is also valid. Wherever Alttkey
is valid, Alt+Ctrl+key is also valid, aside from Alt+Ctrl+Del, which is given spe-
cial handling by the operating system.

e ““Space’ is the name of the space bar. “Bksp” is the name of the Backspace key.

e “Curl”, “Curr”, “Curu”, and “Curd” are the names of the cursor left, right, up,
and down keys.

392

Chapter 7. Built-In Macro Handling

e “Plus”, “Minus”, “Star”, “Slash”, “NumEnter”, and ““Center”’ are the names of
the numeric keypad “+7, <-”, “*”_ /> Enter, and “5” keys.

e “App” is the name of the Application key found on some keyboards with Win-
dows-specific keys.

e The last keyname in the list, ““Alt™, refers to the Alt key, when pressed and re-
leased alone and not in combination with any other key.

e When you define your own keyboard macros, be sure to use the key names given
in the preceding table. For example, ““Esc” is the name of the macro that is run
when you press the key that is normally referred to as the Escape key. “Escape” is
a valid name for a KEDIT macro, so it is not an error to define a macro with that
name. But “Esc”, and not “Escape”, is the name of the macro that will be exe-
cuted if you press the Escape key.

e Most keyboards have a separate cursor pad and numeric pad. KEDIT does not
normally distinguish between the two sets of keys. For example, if you redefine
“Home” or “Ctrl+Home”, your new definition will affect both the cursor pad
Home key and the numeric pad Home key. Alt key combinations are an exception:
when you press the Alt key in combination with a key on the cursor pad, the ex-
pected definition (for example, Alt+Home) is processed, while Alt in combination
with the numeric pad is the “Alt key-numeric pad” method of entering special
characters.

e See SET RIGHTCTRL for information about how to use the right Ctrl key as the
equivalent of the NumEnter key.
e READV KEY and QUERY/EXTRACT LASTKEY always return key names in

332

uppercase, with possible “C-, “S-", “A-", “S-C-", or “A-C-" prefixes; “-” is

used in the prefix rather than “+” for compatibility with earlier versions of 8

KEDIT. o

1]

Notes on KEDIT’s keyboard naming scheme is based on the layout of the standard U.S. key- E
non-U.S. board, and users of non-U.S. keyboards should be aware of a few special T
keyboards considerations: 'S
a1]

e Special characters not found on U.S. keyboards, such as accented letters, are han-
dled via the ASCII macro, which is discussed immediately following these notes.

e Special characters that are located in different positions on U.S. and non-U.S. key-
boards are mapped into their location on the U.S. keyboard. To redefine the behav-
ior of one of these special characters you would need to refer to the character
according to its location on the U.S. keyboard.

For example, the “#” character is present on both the U.S. and British keyboards.
On the U.S. keyboard it is located on the same key as the digit ““3”’, and is entered
by pressing Shift+3. On the British keyboard, this character is on a key of its own,
located next to the Enter key. In both cases, when KEDIT sees that you have
pressed the key corresponding to the “#” character, KEDIT runs the macro that
corresponds to this character’s position on the U.S. keyboard: Shift+3. The default
Shift+3 macro uses the TEXT command to enter the “#” character at the cursor

Keyboard Macros 393

Special
characters and
the ASCII
macro

position. To redefine the behavior of the key that normally enters “#” into your
file, you would therefore need to redefine the Shift+3 macro.

e With non-U.S. keyboard drivers, Windows gives special handling to Alt+Ctrl,
treating it as equivalent to the AltGr key found on non-U.S. keyboards. You should
therefore not redefine Alt+Ctrl+x character keys that have additional characters
normally accessed in combination with the AltGr key.

Special characters not found on U.S. keyboards (such as accented letters found on most
non-U.S. keyboards), digits entered via the numeric pad, and characters entered via the
Alt key-numeric pad method of entering special characters do not correspond directly
to any of KEDIT’s defined key names. When KEDIT reads one of these characters
from the keyboard, the character code involved, in decimal, is passed to a special macro
called ASCII. (Many of the special characters involved are not defined in the ASCII
character set and are in fact based on the ANSI character set, but for compatibility with
earlier versions of KEDIT the macro is still called the ASCII macro.)

For example, if you use the Alt key-numeric pad method to enter character code 12,
KEDIT will internally issue the command

MACRO ASCII 12

The default definition for the macro ASCII uses KEDIT’s TEXT command to enter the
character involved at the cursor location. If the character was entered via the Alt
key-numeric pad method, or if you are using an non-OEM font, the character is entered
directly. If you are using an OEM font, the default ASCII macro first translates the
character from ANSI (the character set used by Windows for keyboard input) to OEM,
and enters the resulting character.

7.3 Toolbar Macros

Toolbar buttons are defined via the SET TOOLBUTTON command. To define a
toolbar button, you specify a name for the button, how the button will be displayed (that
is, what bitmap or text will represent the button on the toolbar), any conditions under
which the button will be disabled (for example, the Undo toolbutton is disabled when
no undoable changes have been made to the file), and the help text to be displayed as
popup toolbar help and on the status line.

You can then use the SET TOOLSET command to define the contents of KEDIT’s top
or bottom toolbar, or to add buttons to or remove buttons from the current contents of
the toolbar.

See the descriptions of SET TOOLBAR and SET TOOLSET for full information on
the operands for these commands, and for examples of their use.

Whenever you select one of the buttons on KEDIT’s toolbar, KEDIT runs a macro
called TOOL name, where name is the name of the button, as defined in the SET
TOOLBUTTON command. For example, whenever you select the Undo toolbar but-
ton, KEDIT runs a macro called TOOL UNDO. If you add your own buttons to

394

Chapter 7. Built-In Macro Handling

KEDIT’s toolbar, you will need to use the DEFINE command to supply KEXX macros
to be executed when those buttons are selected.

There is one exception to this: the Quick Find toolbar item is not a button, but is a
combo box that lets you work with recently-used search strings, and its behavior is
hard-coded into KEDIT and is not controlled by a macro.

Built into KEDIT are TOOLBUTTON definitions for all of the buttons used on
KEDIT’s default toolbars, as well as bitmaps and TOOL name macros for each of
those buttons.

You can use the command QUERY TOOLBUTTON * to see a list of all current
toolbutton definitions. You can use QUERY TOOLSET TOP, BOTTOM, or NOFILE
to see the current SET TOOLSET values. Since the TOOLSET values may be too wide
to be easily displayed; you may need to use MODIFY TOOLSET TOP, BOTTOM, or
NOFILES to get the TOOLSET values to the command line where they can be more
easily edited or preceded by INPUT and inserted into a file.

The file DEFTOOLB.KEX, in the SAMPLES subdirectory of the main KEDITW
directory, has commands corresponding to the default SET TOOLSET and SET
TOOLBUTTON definitions.

7.4 Menu Macros

The contents of KEDIT’s menus are built into the program and cannot be changed.
While you cannot change the menus themselves, you can redefine the macros that are
executed when menu items are selected, although in practice the default menu macros
rarely need to be changed.

When a menu item is selected, KEDIT runs a macro called MENU_menu_item, where
menu is the name of the menu involved, and ifem is the text of the menu item involved,
with all blanks removed. For example, when you select Save Settings from the Options
menu, KEDIT runs the macro MENU_OPTIONS SAVESETTINGS.

Exceptions to this are the document and frame window system menus, the
recently-edited files list at the bottom of the File menu, and the window list at the bot-
tom of the Window menu. The behavior of these menu items is hard-coded into KEDIT
and is not controlled by macros.

7.5 Mouse Macros

Mouse clicks and double-clicks within a document window cause KEDIT to run a cor-
responding macro, called BUTTONIDOWN, BUTTON2DOWN,
BUTTONIDBLCLK, or BUTTON2DBLCLK.

When you double-click a mouse button, KEDIT processes both the initial click and the
double-click, and runs both of the corresponding macros. For example, if you dou-
ble-click button 1, KEDIT runs BUTTONIDOWN and then runs
BUTTONIDBLCLK.

Mouse Macros

395

"
o
S
o
©

=
c

o

S

a1]

Built into KEDIT are default definitions for each of these macros. These are by far the
most complicated of KEDIT’s built-in macros, and we recommend that they be modi-
fied only by advanced users of KEDIT’s macro facilities. Note that these macros tend
to change significantly between one version of KEDIT and the next as KEDIT adapts to
new user interface conventions, so you should reprogram these macros only if you are
willing to deal with changes in future versions of KEDIT.

Also built into KEDIT are some helper macros: BUTTONXDOWN is called by
BUTTONIDOWN and BUTTON2DOWN, BUTTONXDBLCLK is called by
BUTTONIDBLCLK and BUTTON2DBLCLK, and BUTTON2POPUP is called by
BUTTONXDOWN.

396

Chapter 7. Built-In Macro Handling

Chapter 8. KEDIT Language Definition Files

KEDIT’s syntax coloring facility uses different colors to highlight comments, strings,
keywords, and other items in programs that you are editing. The rules that KEDIT uses
to determine which text to treat as part of a comment, a string, a keyword, etc., are spec-
ified in special files, called KLD (“KEDIT Language Definition™) files, that are
described in this chapter.

8.1 Loading KLD Files

KEDIT Language Definition files are loaded via the SET PARSER command:
[Set] PARSER parser fileid

Use the parser operand to specify the name of the parser you want to define.

The fileid operand specifies a file, with a default extension of .KLLD, containing your
language definition. KEDIT searches for the .KLD file in the same directories it uses
when searching for macro files, as controlled by SET MACROPATH.

For example, if you were working with a hypothetical language called LANG and you
had described the language in a KEDIT Language Definition file called
LANGDEF.KLD, you could define a parser called LANG with the command

SET PARSER LANG LANGDEF.KLD
After issuing the SET PARSER command, you could then issue the command
SET COLORING ON LANG

to use this parser to control syntax coloring for the current file.

If files in your language always had an extension of, for example, .LNG, you could use
the SET AUTOCOLOR command to tell KEDIT to always use the LANG parser for
.LNG files:

SET AUTOCOLOR .LNG LANG

SET PARSER commands are typically executed from your KEDIT profile when
KEDIT is initially loaded. For example:

* if first profile execution in a session,
* setup the LANG parser and then
* cause all .LNG files to be colored using the LANG parser
if initial() then do
'set parser lang langdef.kld'
'set autocolor .1lng lang'
end

n
0
™
(a]
-
X

Several language definitions are built into KEDIT, and when KEDIT is loaded it
automatically issues SET PARSER commands that use these language definitions to set

Loading KLD Files 397

up its default parsers. See the description of the SET PARSER command for a complete
list of built-in parsers. To distinguish these internal language definition files from
actual disk files, KEDIT uses an asterisk as the first character of their names. For
example, the command

SET PARSER C *C.KLD

tells KEDIT to use *C.KLD as the Language Definition File associated with the C
parser. The asterisk in the name tells KEDIT to use the special file *C.KLD, which is
built into KEDIT, and not to look for the file on disk.

Copies of all of the KLD files built into KEDIT are included in the SAMPLES subdi-
rectory of the main KEDITW directory. For example, there is a C.KLD file that is an
exact copy of the *C.KLD file that is built into KEDIT. If you modify one of these cop-
ies you should save it in a different location (normally the “KEDIT Macros” subdirec-
tory of your Windows Documents folder, which is sometimes known as the My
Documents folder) and load it by issuing a SET PARSER command referring to the
modified file.

Note that whenever you issue the SET PARSER command, the KLD file that you spec-
ify is loaded into memory, even if an identical SET PARSER command has previously
been issued. This makes it easy to develop and test modifications to KL.D files, because
if you make changes to a KLD file you can simply reissue the appropriate SET
PARSER command and KEDIT will load the updated version of the file. Any files
whose syntax coloring is controlled by your parser will automatically be re-colored, so
you can easily see the effect of the changes you have made to the KLD file.

8.2

KLD File Format

Here is a description of the format of KEDIT Language Definition files, which usually
have an extension of .KLD. The best way to get started with KLD files is to look over
this description briefly, and then to examine some of the KLD files that are included in
the SAMPLES directory of the main KEDITW directory.

The rules given here for KLD files are flexible enough to describe a number of popular
programming languages, to handle varying syntax conventions for comments, strings,
numbers, etc., and to have user-configurable lists of keywords. The goal is to handle
many common language variants with a relatively small number of parameters.

KLD files are divided into sections. Each section begins with a section header, consist-
ing of a colon in column one followed immediately by the section name. Following
each section header line are one or more lines of parameter information.

To improve readability, you can insert blank lines at any point in a KLD file. Addition-
ally, any line whose first nonblank character is an asterisk (““*”’) is considered a com-
ment line and is ignored by KEDIT. For example:

398

Chapter 8. KEDIT Language Definition Files

:CASE section

:OPTION
section

* Sample KLD contents
:case
ignore

:identifier
[a-z] [a-z0-9]

:keyword
if
then
else

The above example starts with a comment line, followed by a :CASE section with one
parameter line, an :IDENTIFIER section with one parameter line, and a :KEYWORD
section with three parameter lines. Parameter information is usually indented from
column one, as in this example, but it does not have to be.

Here are descriptions of each kind of KLD file section:

The :CASE section consists of a single line with the word RESPECT or the word
IGNORE. RESPECT means that the language you are describing is case-sensitive (for
example, “else”” and “ELSE’ are not considered identical), and IGNORE means that
the language is case-insensitive.

An example:

:CASE
respect

If the :CASE section is omitted, KEDIT assumes case insensitivity. If present, the
:CASE section must precede the :IDENTIFIER section.

The :OPTION section consists of a single line containing special options that are
needed to properly process some languages and special situations. There are three pos-
sible options:

PREPROCESSOR char

PREPROCESSOR indicates that the language supports a C-like preprocessor
mechanism, and that preprocessor keywords are preceded by the specified charac-
ter. For example:

:OPTION
preprocessor #

REXX

REXX indicates that the REXX language is being described. In REXX, certain
identifiers are sometimes considered keywords and are sometimes considered
variables, depending on the context in which they are used, and the REXX option
tells KEDIT to do the special processing that this requires.

KLD File Format

399

"
L
=
(a]
|
X

:IDENTIFIER
section

DEEPNESTING

KEDIT normally keeps track of :MATCH section items nested to a depth of 15.
You can specify DEEPNESTING in the :OPTION section of a .KLD file to cause
nesting to be tracked to a depth of 255.

The :IDENTIFIER section consists of a single line that specifies what characters can
appear within identifiers in the language you are describing. These characters are
specified in the same way as character class specifications within KEDIT regular
expressions. They consist of lists, enclosed in square brackets, of valid characters
and/or ranges of valid characters (with the first character in the range, a minus sign, and
the last character in the range). For example,

:IDENTIFIER
[a-zA-Z]

specifies that any set of alphabetic characters is a valid identifier.

In many languages, there are different rules for what is valid as the first character of an
identifier and for what is valid in additional characters in an identifier. To handle this
situation, you can include two identifier specifications: first specify what is valid as the
first identifier character and then specify what is valid in the remaining characters. For
example, in C programs the first character of an identifier can be any alphabetic charac-
ter or can be an underscore, while the remaining characters of an identifier can be
alphabetic or can be underscores, but can also be numeric digits:

:IDENTIFIER
[a-zA-Z_] [a-zA-20-9_]

In some cases (BASIC programs are the main example), the last character of an identi-
fier can be a special character that is not valid elsewhere in an identifier. For example,
in BASIC, ABC@ is a valid identifier. To handle this, you can include a third item spec-
ifying the special characters acceptable only at the end of an identifier. For example:

: IDENTIFIER
[a-zA-Z] [a-2zA-Z0-9_] [%&!'#@$]

You can also specify in the :IDENTIFIER section that identifiers that aren't keywords
should be displayed in a special color. To do this, add the word ALTERNATE followed
by a number from 1 to 9 that specifies the alternate ECOLOR to be used to for these
identifiers. For example:

: IDENTIFIER
[a-zA-Z_] [a-2zA-Z0-9_] ALTERNATE 2

In the above example, ALTERNATE 2 has been added to the usual specification for C
identifiers. This will cause C identifiers that are not keywords to be displayed in the
color specified by ECOLOR 2. An optional second number, also in the range 0 to 9,
controls the color used to display preprocessor identifiers that aren't keywords, as in
this example:

400

Chapter 8. KEDIT Language Definition Files

:COMMENT
section

: IDENTIFIER
[a-zA-Z_] [a-2zA-Z0-9] ALTERNATE 2 3

The :IDENTIFIER section is required if you will be using the :KEYWORD section to
give a list of the keywords in your language. The :IDENTIFIER section must appear
before the :KEYWORD section.

Use the :COMMENT section to describe the rules for comments in your language.
Each line of the :COMMENT section describes one type of comment; since some lan-
guages have multiple methods for specifying comments, there may be multiple lines in
the :COMMENT section.

Some languages have single-line comments, which are introduced by some type of
comment delimiter and cannot continue for multiple lines. Some languages have com-
ments with both a starting and an ending delimiter. This kind of comment can usually
continue for multiple lines, but in some languages may be restricted to a single line.

For example, C++ allows comments that are introduced by a pair of slashes (*‘//”’) and
continue until the end of the line. C++ also allows comments that can continue for mul-
tiple lines, introduced by a slash-asterisk pair (“/*”’) and terminated by an
asterisk-slash pair (““*/””). The corresponding :COMMENT section would be:

:COMMENT
line // any
paired /* */ nonest

Line comments are described using the format

LINE delim ANY|FIRSTNONBLANK |COLUMN n

where delim is the comment delimiter, which is followed by an indication of when the
comment delimiter takes effect:

ANY

indicates that appearance of the comment delimiter anywhere on a line (except
within a quoted string) starts a comment.

indicates that appearance of the comment delimiter anywhere on a line (except
within a quoted string) starts a comment.

When ANY is used an additional option, NOTAFTER [class], is also allowed. It
indicates that an occurrence of delim that immediately follows one of the specified
class of characters should not be taken to indicate the start of a comment. For
example,

: COMMENT
line % any notafter [*]

would prevent the first line below from being taken as a comment:

KLD File Format

401

"
L
=
(a]
|
X

:HEADER
section

*% This one is not a comment.
% This one is a comment.

FIRSTNONBLANK

indicates that the comment delimiter starts a comment only if it is the first
nonblank item on a line.

COLUMN n

indicates that the comment delimiter starts a comment only if it appears in column
n of a line.

Comments with both starting and ending delimiters are described using the format

PAIRED deliml delim2 [NEST|NONEST] [MULTIPLE |SINGLE]

where delim1 is the delimiter that starts a comment and delim?2 is the delimiter that ends
a comment.

NEST | NONEST

NEST indicates that multi-line comments can be nested inside multi-line com-
ments, with the comments ending only when as many comment end delimiters as
comment start delimiters have been encountered. NONEST is the default and indi-
cates that comments cannot be nested, and that a comment ends as soon as the next
comment end delimiter has been encountered. For example, consider

/*
/* here is a comment */
x = 17

*/

In the REXX language, which allows nested comments, “x = 17" would be con-
sidered part of a comment. In the C language, which does not allow nested com-
ments, “x = 17" would not be considered part of a comment, and the final ““*/** in
the example would be invalid.

MULTIPLE

indicates that the comments can continue for multiple lines; this is the default and
need not be specified.

SINGLE

indicates that, even though paired delimiters are being used, the comments must
begin and end on a single line.

The :HEADER section describes header lines. Header lines are used to indicate the
start of a new section in certain types of files; the section headers in .KLD files are
examples of header lines.

Header lines are specified in the same way as single-line comments:

402

Chapter 8. KEDIT Language Definition Files

:STRING
section

LINE delim ANY |FIRSTNONBLANK |COLUMN n

As far as KEDIT’s syntax coloring is concerned, the only difference between sin-
gle-line comments and headers is that comments are displayed using ECOLOR A and
headers are displayed using ECOLOR G. An example of a :HEADER section that
describes .KLD file section headers:

:HEADER
line : column 1

Use the :STRING section to describe the types of quoted strings used in your language.
Each line of the :STRING section describes one type of string; since some languages
have multiple methods for specifying strings, there may be multiple lines in the
:STRING section. There are three possibilities:

SINGLE

This means that your language uses strings enclosed in single quotes.

DOUBLE

This means that your language uses strings enclosed in double quotes.

DELIMITER c
Use this to specify that the character c is the string delimiter for your language.
SINGLE, DOUBLE, and DELIMITER ¢ can optionally be followed by the words

BACKSLASH, VERBATIM, or MULTILINE, by the combination BACKSLASH
MULTILINE, or by the combination VERBATIM MULTILINE.

BACKSLASH

This means that, as is the case in the C and C++ languages, the backslash character
serves as an escape character within strings and that quote characters following a
backslash do not terminate a string.

VERBATIM

This is used to handle the “verbatim” strings available in the C# language. These
are special C# strings that begin with an @ character in which backslash characters
don't serve as escape characters, so that you can use strings like

@"C:\Windows\System32"
instead of
"C:\\Windows\\System32"

MULTILINE

Indicates that strings need not begin and end on the same line, but can continue
across end-of-line boundaries.

If the :STRING section is omitted, KEDIT’s syntax coloring does not recognize any
strings in your files.

KLD File Format

403

n
0
™
(a]
-
X

:NUMBER
section

:LABEL
section

Another option, NOTAFTER [class], which must be the last option on the line, indi-
cates that a quote that immediately follows one of the specified class of characters
should not be taken to indicate the start of a string. For example,

: STRING
single notafter [a-zA-Z]

would prevent the first three quote characters here from being taken as the start of a
string:

a' + b' =c' 'only this is a string'

The NOTAFTER option is not valid if the VERBATIM option has been specified.

Use the :NUMBER section to indicate the format of numbers in your language. The
:NUMBER section is a single line long, with the word INTEGER, DECIMAL, C,
COBOL, PASCAL, REXX, or ADA.

e INTEGER means that numbers consist of strings of digits.

e DECIMAL means that numbers consist of strings of digits and periods.

e Cis used for C language numbers. These can be integers, decimal numbers, or
numbers in exponential notation, like 12.4E-2. Several other languages use nu-
meric formats that are similar to those used by C.

e COBOL is used for COBOL language numbers, which consist of digits and deci-
mal points, except that trailing decimal points are not counted as part of a number,
and digits immediately followed by COBOL identifier characters (for example,
1234-TEST) are not counted as numeric.

e PASCAL numbers are like C language numbers, except that they cannot start with
a decimal point. Also, hexadecimal values (for example, $abcd) are treated as
numeric.

e REXX handles REXX language constant symbols, which include REXX numbers
and symbols like 12ABC and .XYZ.

e ADA numbers are like C language numbers, except that underscores are allowed
within the numbers.

If the :NUMBER section is omitted, KEDIT’s syntax coloring does not recognize any
numbers in your files.

Use the :LABEL section to define what counts as a label in your language. The label
section normally consists of a single line, but can involve multiple lines if your lan-
guage has multiple ways of specifying labels. The label description has the format

DELIMITER delim FIRSTNONBLANK |ANY|COLUMN n

where delim is the delimiter that must follow the label and FIRSTNONBLANK indi-
cates that the label must be the first nonblank item on a line, ANY indicates that the

404

Chapter 8. KEDIT Language Definition Files

:MATCH
section

label can appear anywhere on a line, and “COLUMN #”* indicates that the label must
begin in column n of a line.

Instead of a DELIMITER line, you can specify

COLUMN n

to indicate that any non-keyword identifier beginning in the specified column should
be treated as a label, with no need for a delimiter following the label.

Use the :MATCH section to specify the matching characters and identifiers that indi-
cate nested structure within your language. For example, in most languages, left and
right parentheses can be nested and must match up properly in a syntactically correct
program. In some languages the same is true of keywords like BEGIN and END.

KEDIT’s syntax coloring facility uses the information in the :MATCH section for two
purposes:

First, items at different nesting levels are colored differently, so you can easily see
which items match. For example, in the line

if (F(x +y + z) = 17)

KEDIT can display the inner parentheses and the outer parentheses in different colors.

Second, when you use the CMATCH command (assigned by default to Shift+F3) to
find the matching item for the text at the cursor position, KEDIT can properly match
any items described in the :MATCH section. With the cursor on the first DO in the fol-
lowing example, Shift+F3 can move the cursor to the second END in the example:

if a = 5 then do
j =17
doi=1 to 10
say i*j
end
end

Each line of the :MATCH section (which can have up to 200 lines) has either two or
three items. The first item specifies the identifiers or character sequences that introduce
a matchable construct. The second item specifies the identifiers or character sequences
that end a matchable construct. The third item is optional, and is used to specify items
that always appear inside of a matchable construct.

For example,

:MATCH

()
{ }
#if #endif #else

Here, three matchable constructs are specified:

KLD File Format

405

"
L
=
(a]
|
X

e The first specifies that left parentheses will be matched with corresponding right
parentheses.

e The second specifies that left braces will be matched with corresponding right
braces.

e The third specifies that, as in the C preprocessor language, #if is matched with
#endif and that within an #if/#endif construct there may be an #else item that
should be colored in the same way as the corresponding #if and #endif.

KEDIT actually uses the following :MATCH section in its default C language parser:

:MATCH
()

{ }
#ifdef , #if, #ifndef #endif #telse, #felif, #telseif

This is because any of #ifdef, #if, and #ifndef can match up with #endif, with any of
#else, #elif, and #elseif allowed between them. As in this example, you can specify
multiple equivalent items in a :MATCH section, separated by commas.

You can specify multi-token keywords in the :MATCH section by using a plus sign
(“+”) to join the components of a multi-token keyword:

:MATCH
do end+do
if end+if

Some notes on using the :MATCH section:

e The current scheme for handling matched items works only for items that do not
contain blanks. That is, #if and #endif pairs or BEGIN and END pairs can be
matched, but WHILE and END WHILE or IF and END IF cannot be handled,
since they contain blanks.

e An identifier or character sequence should only appear once in the :MATCH sec-
tion; any additional occurrences of the same item will have no effect. So, for exam-
ple, in a language that has DO—END and BEGIN—END constructs, you should
not use
:MATCH

DO END
BEGIN END

but should instead use

:MATCH
DO,BEGIN END

e Any identifiers included in :MATCH specifications must also appear in the
:KEYWORD section, or they will be ignored.

e KEDIT can display up to 8 levels of nested items in different colors. But it keeps
track of nested items up to a depth of 15 — for example, up to 15 levels of nested

406 Chapter 8. KEDIT Language Definition Files

:KEYWORD
section

parentheses. You can specify DEEPNESTING in the :OPTION section of a . KLD
file to cause nesting to be tracked to a depth of 255.

Ifthe :MATCH section is omitted, KEDIT’s syntax coloring facility does not recognize
any matchable constructs in your files.

Use the keyword section to specify the keywords in your language. Each line of the
keyword section has the form

keyword [ALTERNATE n] [TYPE m]

where keyword must be a valid identifier in your language. (If you specified PREPRO-
CESSOR in the :OPTION section, you can also include preprocessor keywords, which
must consist of the preprocessor character followed by a valid identifier.)

Keywords are normally colored according to the current ECOLOR D setting, and pre-
processor keywords according to the current ECOLOR F setting. It is sometimes useful
to specify different types of keywords that will be colored differently. To do this, you
can specify

ALTERNATE n

following a keyword, where #n is a number from 1 through 9. When ALTERNATE 1 is
specified, ECOLOR 1 is used to color the keyword; when ALTERNATE 2 is specified,
ECOLOR 2 is used, etc.

TYPE m

is used only when REXX has been specified in the :OPTION section, and determines
what to treat as a REXX keyword, subkeyword, etc. The number m is determined as
follows: start with m equal to 0, then add 1 for a REXX keyword, add 2 for a REXX
subkeyword, and add 4 for a REXX keyword that takes subkeywords. For example,
SAY is a keyword that does not take subkeywords, so it is TYPE 1. ARG is a REXX
keyword, is also a REXX subkeyword (as in PARSE ARG), and it takes subkeywords
(as in ARG UPPER), so itis TYPE 7. For further examples, see the REXX .KLD file in
the SAMPLES subdirectory of the main KEDITW directory.

A sample :KEYWORD section:

: KEYWORD
if
then
else
do
end
switch
for
procedure alternate 1

If the :KEYWORD section is omitted, KEDIT’s syntax coloring facility does not rec-
ognize any keywords. If the :KEYWORD section is specified, it must be preceded by
the :IDENTIFIER section.

KLD File Format

407

"
L
=
(a]
|
X

:MARKUP
section

:COLUMN
section

The :MARKUP section is used with HTML and similar markup languages. It can con-
tain a TAG line and, optionally, a REFERENCE line.

Use the TAG line to specify the character string that initiates a markup tag and the char-
acter string that terminates a markup tag.

In an HTML file, where a typical line of text might be:

<Hl1>Level 1 header</H1>

“<” initiates a tag, and ‘“>”’ terminates it. This would be specified in the :MARKUP
section as

:MARKUP
TAG < >

Use the REFERENCE line to specify the character string that initiates a character or
entity reference and the character string that terminates it.

HTML lets you use entity references like ““&It;” or character references like ““<”
to refer to special characters. These references begin with an ampersand (““&””) and end
with a semi-colon (**;””). This would be specified in the :MARKUP section as:

:MARKUP
TAG < >
REFERENCE & ;

The following special rules apply if your KLD file contains a :MARKUP section:
e Tags are highlighted, using ECOLOR T. For example, in the line

<P>This is a new paragraph.

“<P>"" would be highlighted.

e Quoted strings within tags are highlighted using ECOLOR B. For example, in

the quoted string is displayed using ECOLOR B, while the rest of the tag is dis-
played using ECOLOR T.

e Similarly, numbers within tags are highlighted using ECOLOR C.
e Numbers and quoted strings that are not within markup tags are not highlighted.

e Character and entity references are highlighted using ECOLOR U.

Use the :COLUMN section to specify that the parser should ignore certain columns of
your file. For example, in COBOL columns 1 through 6 of a file and all columns
beyond column 72 of a file are ignored by the compiler. This would be specified as

: COLUMN
EXCLUDE 1 6
EXCLUDE 73 *

Each line of the :COLUMN section has the word EXCLUDE followed by the starting
and ending column of a range of columns that the parser is to ignore. The ending

408

Chapter 8. KEDIT Language Definition Files

:POSTCOMPARE
section

column can be given as an asterisk to indicate that all columns through the end of the
line are to be ignored.

When the syntax coloring parser processes a line of your file, it will treat the excluded
columns as if they were entirely blank. By default, the excluded columns will be dis-
played with no special highlighting, but you can specify that any of the 9 ALTERNATE
colors be used. For example,

: COLUMN
EXCLUDE 1 10 ALTERNATE 2

would display columns 1 through 10 of your file using ECOLOR 2.

The :POSTCOMPARE section is used to color character sequences that are not han-
dled by any of the other sections of a KLD file. For example, you might want to color

operators like “+”, ,and “=", oritems like ““.T.”” and *“.F.””, which indicate True or
False in xBase programs but are not valid identifiers.

The :POSTCOMPARE can contain CLASS lines and TEXT lines.

CLASS lines specify a set of characters that you want to have colored, using the same
regular expression character class notation that is used in the :IDENTIFIER section.
For example,

CLASS [+-=/]

means that <+, -’ ="’ _and “‘/”’ characters are to be colored. KEDIT uses ECOLOR
I by default, but you can instead specify any of the nine alternate keyword colors. For
example:

CLASS [+-=/] ALTERNATE 2
TEXT lines specify a string of nonblank characters that is to be colored. For example,
TEXT .T.

would color the character sequence ““.T.”. KEDIT uses ECOLOR D by default, but you
can specify an alternate keyword color. For example:

TEXT .T. ALTERNATE 3

You can specify any number of CLASS or TEXT lines in a :POSTCOMPARE section.
When applying syntax coloring to your file, the :POSTCOMPARE section is processed
last. That is, KEDIT first checks for identifiers, numbers, comments, tags, etc., and
checks the items in the :POSTCOMPARE section only if none of these are found.

Note that it is not useful to include valid identifiers in the :POSTCOMPARE section,
since the parser checks for identifiers before :POSTCOMPARE is processed, so identi-
fiers, even identifiers that are not listed in the :KEYWORD section, will never be
matched by :POSTCOMPARE. For this reason, any identifiers that you want to color
should be included in the :KEYWORD section.

KLD File Format

409

n
0
™
(a]
-
X

Chapter 9. Error Messages and Return Codes

The first part of this chapter lists all of KEDIT’s numbered error messages, with
descriptions of all messages that may not be self-explanatory. The return code associ-
ated with each of the errors is also given; the second part of the chapter discusses these
return codes.

In many cases, KEDIT displays additional information with these error messages. For
example, when KEDIT issues the “Invalid operand” message, it usually shows you the
invalid operand.

Macros that you write can use the EXTRACT /LASTMSG/ command to examine the
text of messages displayed by KEDIT. Note that the message numbers, message texts,
and the return codes given may change from one release of KEDIT to the next.

9.1

Error Messages

Error 1:

Error 2:

Error 3:

Error 4:

Error 5:

Error 6:

Error 7:

Error 8:

Invalid operand (RC=5)
Too many operands (RC=5)
Too few operands (RC=5)

Invalid number (RC=5)
You entered a non-numeric value for an operand that must be numeric, or you entered a
number that is not valid for the command you issued.

Numeric operand too small (RC=5)
The number that you specified as an operand for a command is less than the lowest
allowable value for that operand.

Numeric operand too large (RC=5)
The number that you specified as an operand for a command is greater than the highest
allowable value for that operand.

Invalid fileid (RC=20)

Invalid, protected, or locked file (RC=12)
KEDIT cannot access a file you have specified, possibly because the fileid you have
given is actually the name of a directory, or because the file is locked. This error can
also occur if you are trying to create a file in the root directory of a drive but the root
directory is full.

410

Chapter 9. Error Messages and Return Codes

Error 9: File not found (RC=28)

Error 10:

Error 13:

Error 14:

Error 15:

Error 16:

Error 17:

Error 18:

Error 19:

Error 20:

Error 21:

Error 22:

Error 26:

Error 27:

Path not found (RC=28)
KEDIT tried to access a file, but the path component of the fileid specified a directory
that does not exist.

Invalid drive specifier (RC=24)
You specified an invalid drive letter in a fileid. One possible cause of this is that you are
not properly logged on to a network drive that you are trying to access.

Not same device (RC=99)
You issued the RENAME command specifying fileids on two different drives;
RENAME requires that both fileids specify the same drive.

Incomplete target specification (RC=5)
Invalid target (RC=5)

Target not found (RC=2)

Invalid line name (RC=5)

Line name not defined (RC=2)

No line names defined (RC=3)

Invalid command (RC=-1)

File has been changed - QQUIT to quit anyway (RC=12)
You issued the QUIT command for a file that has been modified. If you are sure that
you want to abandon the changes to the file, use the QQUIT command instead.

Too many windows defined (RC=4)
You tried to use the SET SCREEN command to display more than its limit of 16
windows.

Invalid delimiter (RC=5)
Only special characters are valid as delimiters for strings in string targets and in the
CHANGE command and related commands, but KEDIT encountered an alphabetic or
numeric delimiter.

Error Messages

411

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 28:

Error 29:

Error 30:

Error 31:

Error 32:

Error 33:

Error 34:

Error 35:

Error 36:

Error 37:

Invalid range (RC=5)
You issued the SET RANGE command, but specified a starting line for the range that
comes later in the file than the ending line.

Synonym table full (RC=95)
You tried to define more than KEDIT’s limit of command synonyms, which is 1000, or
KEDIT’s limit of fifteen prefix synonyms.

Memory shortage - FSA memory full (RC=94)
A command could not execute properly because KEDIT’s FSA (File Storage Area)
filled up and all available system memory was already allocated to it. To free up some
space, you may need to remove some files from the ring by using File Close, or you
may need to close some other applications. This error message usually indicates that
the system swap file, or the disk on which it is located, is nearly full.

File already exists - use FFILE/SSAVE (RC=3)
You issued a FILE or SAVE command to write a file to disk under a new fileid, but a file
with the new fileid already exists on disk. If you are sure that you want to replace the
existing file, use an FFILE or SSAVE command instead.

Invalid hexadecimal or decimal value (RC=5)

Too many ARBCHAR characters - maximum is 50 (RC=5)
A string that you specified had more than the maximum of fifty ARBCHARs that
KEDIT can handle.

Line not found (RC=2)
You issued a FIND, FINDUP, NFIND, or NFINDUP command that was unsuccessful.

Truncated (RC=3)
Text that a KEDIT command would have placed beyond the truncation column was
truncated by KEDIT, since KEDIT commands do not operate beyond the truncation
column.

No lines changed (RC=4)
A KEDIT command unexpectedly made no changes to your file. For example, the
CHANGE command may have found no occurrences of the string that it was supposed
to change.

Maximum EDITYV variable length exceeded (RC=95)
You tried to set an EDITV variable to a value that is longer than the WIDTH setting,
which is the maximum allowable length for an EDITV variable.

412

Chapter 9. Error Messages and Return Codes

Error 38:

Error 39:

Error 43:

Error 44:

Error 45:

Error 46:

Error 47:

Error 48:

Error 49:

Error 50:

Improper cursor position (RC=2)
The cursor was not positioned properly for the action that you tried to carry out. For
example, you tried to enter text when the cursor was on the top-of-file or end-of-file
line or beyond the truncation column, or you tried to use a command like SPLIT or
JOIN that is invalid when the cursor is in the prefix area or beyond the truncation
column.

No remembered operand available (RC=3)
You gave no operands for a command like LOCATE or CHANGE, and no remembered
operands were available because the command had not previously been issued.

Operation would truncate box block or one-line stream block(RC=2)
KEDIT cannot carry out a move, copy, or overlay operation on a box block or a
one-line stream block, because to do so would affect data beyond the truncation col-
umn, and KEDIT commands cannot operate on text beyond the truncation column.

No marked block (RC=2)
You are trying to carry out some block operation, but there is currently no marked
block.

Marked block not in current file (RC=2)
There is a marked block in some other file in the ring, but not in the current file. Many
KEDIT commands that work with marked blocks require that the block be in the cur-
rent file.

Block boundary excluded, not in range, or past truncation column (RC=2)
KEDIT cannot handle block operations if the beginning or end of the block is an
excluded line and SCOPE DISPLAY is in effect, or if the beginning or end of the block
is outside of the current range or is located past the truncation column.

Operation invalid for line blocks (RC=2)
The currently marked block is a line block, and the block operation you are attempting
(such as OVERLAYBOX or FILLBOX) is invalid for line blocks.

Operation invalid for box blocks (RC=2)
The currently marked block is a box block, and the block operation you are attempting
(such as COMPRESS or DUPLICATE) is invalid for box blocks.

Operation invalid for stream blocks (RC=2)
The currently marked block is a stream block, and the block operation you are attempt-
ing is invalid for stream blocks.

Invalid MOVE, COPY, or OVERLAYBOX location (RC=2)
The destination of a block move, copy, or overlay is inside of the marked block or is the
top-of-file line.

Error Messages

413

)
)
(o)
T
]
7
@
=
S
o
S
S
w

Error 51:

Error 52:

Error 53

Error 54:

Error 55:

Error 56:

Error 57

Error 59:

Error 60:

Error 61:

Error 62:

Error 63:

No preserved settings to restore (RC=3)
You issued the RESTORE command, but there are no preserved values to restore.

Disk is write protected (RC=12)

: Command valid only when issued from a macro (RC=-3)

The ALERT, DIALOG, EXTRACT, POPUP, and READV commands, along with
some forms of the EDITV command, can only be issued from within macros and not
from the command line. This is because they need to examine or set the values of
macro variables.

Device not ready (RC=100)
A device that you tried to use is not ready. This is most often the result of a diskette
drive with no diskette in it.

Printer out of paper (RC=100)
KEDIT could not complete a PRINT command because the printer returned an
out-of-paper error.

I/O error on file (RC=100)
KEDIT could not complete a command involving disk input or output because it
encountered an input or output error while accessing the disk.

: Disk full error (RC=13)

KEDIT could not complete a FILE, SAVE, PUT, or AUTOSAVE because the disk
involved became full. You will need to free up some space on the disk before reissuing
the command that could not complete.

No lines are named (RC=3)
Line name not found (RC=2)

Command ignored due to error loading file (RC=6)
If your profile issues a command that causes KEDIT to load your file into memory but
KEDIT runs into errors that make it impossible to load the file, KEDIT executes your
profile to completion but any additional commands that your profile issues yield this
error message and are not otherwise processed.

Operation invalid for multi-line stream blocks (RC=2)
The currently marked block is a multi-line stream block, and the block operation you
are attempting (such as a SHIFT or CENTER command) is invalid for multi-line stream
blocks.

Invalid cursor line or column (RC=1)
You tried to use the CURSOR SCREEN command to move the cursor to a position on
the screen not valid for a cursor (for example, to the ID line or the arrow on the

414

Chapter 9. Error Messages and Return Codes

Error 64:

Error 65:

Error 66:

Error 67:

Error 68:

Error 69:

Error 70:

Error 71:

Error 74:

Error 75:

Error 76:

command line), or you tried to use the CURSOR FILE command to move the cursor to
a line or column of the file not currently displayed.

Line not reserved (RC=4)
You tried to use the SET RESERVED command to turn off a reserved line, but the line
was not reserved.

)
)
(o)
T
]
7
@

=
S
o
S
S

w

VERSHIFT would become too large (RC=5)
You tried to use the LEFT or RIGHT commands to offset the displayed columns to the
left or right by more than the maximum value that KEDIT can handle, which is equal to
the setting of the WIDTH initialization option.

Invalid match position (RC=2)
You issued the CMATCH command, but the cursor was positioned outside of the cur-
rent zone columns, or on the top-of-file or end-of-file line, or on a shadow line.

Invalid match character (RC=2)
You issued the CMATCH command, but the character in the focus column was not one
of the characters that CMATCH can handle (braces, brackets, angle brackets, or
parentheses).

Matching character not found (RC=2)
The CMATCH command could not find a character that matches the character in the
focus column.

Macro line exceeds 1024 character limit (RC=97)
Lines in KEDIT macros cannot be more than 1024 characters long.

No lines marked (RC=4)
You tried to mark a block in an empty file.

Macro not found (RC=-1)
You issued a MACRO command, but the macro you specified could not be located.

Prefix area contains pending commands (RC=8)
KEDIT cannot process the SORT command when there are pending prefix commands.

Too many sort fields - maximum is 50 (RC=95)
You issued a SORT command, but specified more than the maximum of fifty sort fields.

Fileid already in ring (RC=4)
You used SET FILEID or a similar command to change the fileid of the current file, but
the new fileid is the same as the fileid of some other file in the ring.

Error Messages

415

Error 77:

Error 78:

Error 79:

Error 80:

Error 84:

Error 85:

Error 86:

Error 87:

Error 88:

Error 89:

Error 90:

Command or feature unavailable in KEDIT demo version (RC=5)
You are using the demo version of KEDIT, and the command that you issued or feature
that you attempted to use is available only in the production version of KEDIT.

HIT queue full (RC=95)
The HIT queue is full, and no more macros can be queued up by the HIT command until
KEDIT processes some of the macros already in the queue. The HIT queue can have up
to twelve entries.

Invalid .KML file header line (RC=97)
KEDIT tried to load a .KML file, but the file began with something other than a com-
ment or a . KML-format macro definition.

Operation interrupted by Ctrl+Break or Alt+Ctrl+Shift (RC=96)
You pressed Ctrl+Break or Alt+Ctrl+Shift while a command was active.

Invalid macro name (RC=97)
The length of the name of a macro exceeds the allowable maximum of 40.

Files in ring would exceed maximum of 500 (RC=95)
You tried to add a new file to the ring, but the maximum allowable number of files is
already in the ring.

Unexpected null character encountered (RC=5)
Null characters (character code 0) cannot appear in the text of macros, and are valid
only in certain contexts within command strings that KEDIT processes.

Cursor line not in scope (RC=2)
Many KEDIT commands are invalid if issued from a macro when SCOPE DISPLAY is
in effect and the cursor is on a shadow line.

Macro has multi-line definition (RC=95)
You issued the MODIFY MACRO command for a macro with a multi-line definition,
but MODIFY MACRO requires that the macro to be modified have a one-line defini-
tion. You can instead use the QUERY MACRO command to see the definition of the

macro, or you can use the MACROS command to have the macro definition put into a
file.

Invalid column target (RC=5)

Internal KEDIT stack full (RC=95)
A command could not execute properly because KEDIT ran out of room on its internal
stack. This can happen if you are nesting your macros more deeply than KEDIT can
handle. (That is, one macro calls another, which calls another, etc.)

416

Chapter 9. Error Messages and Return Codes

Error 91:

Error 92:

Error 93:

Error 94

Error 95:

Error 96:

Error 97:

Memory shortage - ISA memory full (RC=94)
A command could not execute properly because KEDIT ran short of memory and all
available system memory was already allocated to it. To free up some space, you may
need to remove some files from the ring by using File Close, or you may need to close
some other applications. This error message usually indicates that the system swap file,
or the disk on which it is located, is nearly full.

Command too long (RC=95)
The maximum allowable length for a KEDIT command is equal to the value of the
WIDTH initialization option; a macro tried to issue a command that is longer than this.

Invalid variable reference (RC=98)
An instruction of a KEXX macro that used a variable reference (the name of a variable
in parentheses) did not have a right parenthesis as the first token after the variable
name.

: Arithmetic overflow/underflow (RC=98)

An arithmetic expression in a KEXX macro yielded an extremely large or small result.
This error is most often caused by an attempt to divide by zero.

Invalid data on end of clause (RC=98)
Unexpected text was found at the end of a clause in a KEXX macro. You may have for-
gotten a semicolon.

Invalid expression (RC=98)
An invalid expression was encountered in a KEXX macro. One possible cause of this
error is a macro that issues a KEDIT command involving special characters, but does
not have quotes around the command.

Invalid hexadecimal or binary string (RC=98)
An invalid hexadecimal or binary string was encountered in a KEXX macro. Examples
of valid hexadecimal strings are '124{f'X and 'FE 03'X. Examples of valid binary strings
are '10101111'b and '1100 0011'B.

This error is most often encountered when you aren't even intending to use a hexadeci-
mal or binary string, but are instead intending to concatenate a normal character string
with the value of a variable named B or X. For example,

val = 'something'b

is interpreted by KEXX as an invalid attempt to specify a binary string and not, as you
probably intended, an attempt to concatenate the string "something" and the value of
the variable B.

Unlike all other variables, the variables B and X cannot be specified immediately after
a string to cause implicit concatenation; with B and X, you instead need to use explicit
concatenation, for example

val = 'something' || b

Error Messages

417

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 98: Invalid variable name (RC=98)

An invalid variable name was encountered in a KEXX macro.

Error 99: Invalid whole number (RC=98)

Error 100:

Error 101:

Error 102:

Error 103:

Error 104:

Error 105:

Error 106:

Error 107:

Error 108:

In certain contexts, KEXX requires whole numbers (numbers that can be expressed
within the current NUMERIC DIGITS setting without using a decimal point or expo-
nential notation). For example, 2**3.1 is invalid, because KEXX can raise numbers
only to whole-number powers, and DO loop control variables must be whole numbers.

Control stack full (RC=98)
DO, SELECT, and IF—THEN—ELSE constructs are being nested too deeply within
the currently-active KEXX macros.

Logical value not zero or one (RC=98)
The only acceptable operands for logical operators such as & and | in KEXX macros are
0and 1.

Not numeric value (RC=98)
An operand of an arithmetic operator in a KEXX expression could not be converted to a
numeric value.

Symbol expected (RC=98)

A clause with invalid syntax has been encountered in a KEXX macro.

THEN expected (RC=98)
An IF instruction in a KEXX macro was not followed by a THEN clause.

Invalid expression result (RC=98)

An expression result is not valid for the context in which the expression was evaluated.
For example, the value specified for NUMERIC DIGITS or NUMERIC FUZZ was
non-numeric or not in the allowable range. (The maximum allowable value for
NUMERIC DIGITS is 1000, and NUMERIC DIGITS must always be larger than
NUMERIC FUZZ).

Unbalanced parentheses (RC=98)
An expression with unbalanced parentheses has been encountered in a KEXX macro.

Unexpected or unmatched END (RC=98)
A KEXX macro has an END that does not terminate a DO instruction, or a DO instruc-
tion not terminated by an END.

Unexpected THEN or ELSE (RC=98)
THEN or ELSE was encountered in a KEXX macro outside of the context of an IF
clause.

418

Chapter 9. Error Messages and Return Codes

Error 109:

Error 110:

Error 111:

Error 112:

Error 113:

Error 114:

Error 115:

Error 116:

Error 118:

Error 119:

Error 120:

Error 121:

Unmatched ““/**” or quote (RC=98)

An unmatched comment, single quote, or double quote was encountered in a KEXX
macro. You may have tried to use a comment or quoted string spanning more than one
line of a macro, which KEXX does not allow.

Maximum KEXX expression result length exceeded (RC=98)

The length of an expression result, or of an intermediate result used in the calculation of
an expression result, exceeded KEXX’s limit. The limit is equal to the current WIDTH
value plus 100.

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Incorrect call to routine (RC=98)
A function call in a KEXX macro specified too many or too few arguments, or one of
the arguments specified was invalid for the function involved.

Routine not found (RC=98)

A function or subroutine called from a KEXX macro could not be located. KEXX looks
for internal routines, built-in functions, implied EXTRACT functions, Boolean func-
tions, and external routines.

Macro interrupted by Ctrl+Break or Alt+Ctrl+Shift (RC=98)
Ctrl+Break or Alt+Ctrl+Shift interrupted execution of a KEXX macro.

Interpretation error (RC=98)
An internal processing error was encountered during execution of a KEXX macro.

Invalid LEAVE or ITERATE (RC=98)
A KEXX macro contains a LEAVE or ITERATE instruction outside of an iterative DO
loop.

Invalid DO syntax (RC=98)
A KEXX macro contains an invalid DO instruction, for example one which has two TO
expressions.

Unsupported REXX feature (RC=98)
A REXX feature that is not implemented in KEXX was used in a KEXX macro.

Invalid TRACE request (RC=98)

Invalid sub-keyword found (RC=98)

A KEXX macro used an invalid sub-keyword within a keyword instruction. For exam-
ple, a PARSE instruction may have incorrectly specified the origin of the string to be
parsed.

Invalid PARSE template (RC=98)

Error Messages

419

Error 122:

Error 123:

Error 124:

Error 125:

Error 126:

Error 127:

Error 128:

Error 129:

Error 130:

Error 131:

Error 132:

Function did not return result (RC=98)
A KEXX macro invoked an internal routine as a function, but the function did not
return a result.

Invalid label (RC=98)
Labels in KEXX macros that do not appear as the first token on a line are invalid.

Unexpected PROCEDURE (RC=98)
A PROCEDURE instruction was encountered that did not follow a label, as is required
in KEXX macros.

Uninitialized variable; NOVALUE ON (RC=98)

NOVALUE ON is in effect, and your macro attempted to use the value of a variable to
which you had not yet assigned a value. You might have spelled the variable name
wrong, or might have mistakenly used a variable name instead of a quoted string.

Unexpected WHEN or OTHERWISE (RC=98)
A WHEN or OTHERWISE instruction was encountered outside of a SELECT con-
struct, or improperly embedded in a DO—END construct within a SELECT construct.

WHEN or OTHERWISE expected (RC=98)

A SELECT construct was encountered that does not contain any WHEN clauses, or
that contains clauses in a context where only WHEN and OTHERWISE clauses are
valid. A common cause of this error is forgetting to use DO—END around multiple
clauses associated with a WHEN—THEN construct.

Incomplete DO/SELECT/IF (RC=98)
A DO or SELECT instruction without the matching END, or an IF instruction without a
THEN clause, has been encountered.

Machine resources exhausted (RC=98)
KEXX has run out of memory while trying to process a macro.

Label not found (RC=98)

The label specified by a SIGNAL instruction, or required to handle a condition like
SIGNAL ON NOVALUE, cannot be found. Note that labels in KEXX macros can only
appear as the first token on a line.

Error in called routine (RC=98)
A KEXX macro called an external routine, but there was an error loading the external
routine or the external routine terminated with an error.

Symbol or string expected (RC=98)
Within a KEXX macro, in a context where only a string or symbol is valid, either the
end of a clause was reached or an invalid token was encountered.

420

Chapter 9. Error Messages and Return Codes

Error 133:

Error 134:

Error 135:

Error 136:

Error 138:

Error 141:

Error 143:

Error 144:

Error 145:

Error 146:

INTERPRET string exceeds 1024-character limit (RC=98)
You tried to use the INTERPRET instruction to interpret a string that was longer than
1024 characters.

NUMERIC DIGITS must be > FUZZ and <= 1000 (RC = 98)
The maximum allowable value for NUMERIC DIGITS is 1000, and NUMERIC-
DIGITS must always be larger than NUMERIC FUZZ

Memory shortage - cursor field reset

You typed some text into the command line, the prefix area, or a line of your file, but
when KEDIT tried to process the change, it did not have enough available memory to
do so. The contents of the field you changed are reset to what they were before your text
was entered.

The file is already locked (RC=5)
You tried to use the LOCK command for a file that is already locked.

Unexpected file timestamp change - use FFILE/SSAVE (RC=3)

You issued a FILE or SAVE command, but TIMECHECK ON is in effect and the file’s
timestamp has changed since you began editing the file or last saved it. This occurs
when some other program, running either on your own computer or on another com-
puter on your network, changes the file while you are editing it. If you are sure that you
still want to replace the file, use an FFILE or SSAVE command instead.

Read-only file (RC=12)
You tried to write to a file that is marked on disk as read-only.

Network access error (RC=100)
A system function used by KEDIT failed due to a network-related error.

Nothing to UNDO (RC=4)

You issued the UNDO command but there was nothing to undo. You may not have
made any changes to your file, you may have already used UNDO to undo all changes
to your file, UNDOING OFF may be in effect, or KEDIT may have discarded undo
information due to memory limitations.

Nothing to REDO (RC=4)

You issued the REDO command but there was nothing to redo. The REDO command is
valid only after an UNDO command, and only when no undoable commands have been
issued since the corresponding UNDO command.

Out of memory - UNDO or REDO incompletely processed (RC=94)
KEDIT ran out of memory in the middle of processing an UNDO or REDO command.
Some portion of the undo or redo may have been carried out.

Error Messages

421

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 147:

Error 148:

Error 150:

Error 151:

Error 152:

Error 154:

Error 155:

Error 156:

Error 161:

Error 164:

Error 165:

Out of memory - couldn’t process UNDO or REDO (RC=4)
KEDIT ran out of memory in the middle of processing an UNDO or REDO command.
The undo or redo was not carried out.

Demo version save operations limited to n-line files (RC=5)

You are using the demo version of KEDIT and have attempted to save a file with more
lines in it than the demo version allows. Note that the production version of KEDIT
does not limit the size of the files that you can save.

Invalid KEDIT module (RC=99)

System error code n (RC=99)
An operating system function called by KEDIT unexpectedly returned with error code
n.

Macro not currently in storage (RC=3)
You issued a command like MACROS or QUERY MACRO and specified a macro
name, but there is no currently defined in-memory macro with that name.

JOIN would cause truncation (RC=4)

You are using the JOIN command to join two lines together, but the resulting text
would extend beyond the truncation column. To avoid truncating your data, KEDIT
cancels the join operation.

JOIN would involve excluded line (RC=4)
You are using the JOIN command to join two lines together, but the second of the two
lines is an excluded line that KEDIT cannot operate on.

Command line unavailable (RC=1)
You tried to move the cursor to the command line but SET CMDLINE OFF is in effect.

Out of system resources (RC=94)

KEDIT cannot complete a command because the supply of some system resource has
been exhausted. Windows may be out of memory, or the data areas that Windows uses
to keep track of fonts, windows, bitmaps, etc. may be full. To free up resources, you
may need to remove some files from the ring by using File Close, or you may need to
close some other applications.

Cannot merge overlapping areas (RC=1)
You tried to use the MERGE command to merge together two groups of lines, but the
MERGE command failed because the two groups of lines overlapped.

Invalid use of colon in regular expression (RC=5)

You used a colon in a regular expression, but did not follow it with the letter that
identifies one of the predefined regular expressions. If you do not want to use a
predefined expression, but instead want the colon to be taken literally, precede it with
the regular expression escape character, which is a backslash.

422

Chapter 9. Error Messages and Return Codes

Error 166: Unknown predefined string specified in regular expression (RC=5)

You used a colon in a regular expression, but the character that follows it does not iden-
tify one of the predefined regular expressions. If you do not want to use a predefined
expression, but instead want the colon to be taken literally, precede it with the regular
expression escape character, which is a backslash.

Error 167: Invalid escape sequence in regular expression (RC=5)

Your regular expression used a backslash, which introduces an escape sequence, but
either the escape sequence was invalid (for example, \x followed by an invalid hexa-
decimal value), or the escape sequence was missing (the backslash was the last charac-
ter in the regular expression). If you are using a backslash in a regular expression and
want to have it taken literally, you must actually use two backslashes.

Error 168: Unbalanced parenthesis in regular expression (RC=5)

Your regular expression contains an unbalanced parenthesis. If you are using a paren-
thesis in a regular expression and want to have it taken literally, you must precede it
with the regular expression escape character, which is a backslash.

Error 169: Unbalanced brace in regular expression (RC=5)

Your regular expression contains an unbalanced brace character. If you are using a
brace in a regular expression and want to have it taken literally, you must precede it
with the regular expression escape character, which is a backslash.

Error 170: Power specified in regular expression exceeds maximum of 255 (RC=5)

CEA

You used the power operator (a caret,
specified exceeds the limit of 255.

) in a regular expression, but the power you

Error 171: Infinite closure loop in regular expression (RC=5)

You have specified a regular expression that can never be successfully matched. For

[IPS L]

example, “(a*)@’ matches as many occurrences as possible of zero or more “a’’s,

[IPE]

which amounts to matching zero ““a’’s an infinite number of times.

Error 172: Invalid class specification in regular expression (RC=5)

Your regular expression contains an invalid character class specification. For example,
the class may have an opening left bracket but no closing right bracket, or it may have
an incomplete range specification. If you are using a bracket in a regular expression and
want to have it taken literally, you must precede it with the regular expression escape
character, which is a backslash.

Error 173: Invalid regular expression (RC=5)

Error 174: Too many tags in regular expression (RC=5)

Your regular expression contains more than the limit of nine tags, which begin with left
braces (“{”’) and end with right braces (“‘}”). If you are using a brace in a regular
expression and want to have it taken literally, you must precede it with the regular
expression escape character, which is a backslash.

Error Messages

423

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 175:

Error 176:

Error 179:

Error 180:

(RC=5)

Error 186:

Error 187:

Error 188:

Error 189:

Error 190:

Illegal tag specification in regular expression (RC=5)

Your regular expression contains an invalid tag specification. If you are using a brace in
aregular expression and want to have it taken literally, you must precede it with the reg-
ular expression escape character, which is a backslash.

Incorrect tag reference in regular expression (RC=5)

You used an ampersand (“&”’) in a regular expression. An ampersand signals a refer-
ence to a tagged expression, and must be followed by a digit indicating which tagged
expression is involved, but the digit was missing in your regular expression. If you are
using an ampersand in a regular expression and want to have it taken literally, you must
precede it with the regular expression escape character, which is a backslash.

Invalid use of cursor position operator (RC=5)

You used the cursor position operator (“\c”’) in an invalid way within a regular expres-
sion. For example, it was immediately preceded by the not operator (““~’"), or immedi-
ately followed by a closure operator.

Unsupported closure or power subexpression in regular expression

KEDIT’s regular expression processor cannot handle expressions involving closure or
power operators applied to closure or power operators. For example, KEDIT cannot
handle this regular expression: ““(x+)+.

Error accessing clipboard (RC=99)
KEDIT got an unexpected error when it attempted to access the system clipboard.

No text in clipboard (RC=2)
An attempt to Paste text into KEDIT from the clipboard failed because there was no
text in the clipboard.

Command not available in this version of KEDIT (RC=-1)
You have issued a command that is valid in some versions of KEDIT but is not sup-
ported in this version of KEDIT.

KEDIT Help file not found: KEDITW.CHM (RC=28)

Your tried to get access KEDIT's Help system but KEDIT's Help file, KEDITW.CHM,
could not be located. This file is normally put into KEDIT's program directory by the
KEDIT installation program. KEDIT looks for this file in the directory from which the
KEDIT for Windows program file, KEDITW32.EXE, was loaded, and in C:\Program
Files\KEDITW.

String contains all possible delimiters (RC=5)

Some of KEDIT’s dialog boxes, such as Edit Find and Edit Replace, work by internally
issuing commands like LOCATE and CHANGE to search for strings. The strings
passed to LOCATE and CHANGE must be delimited, and KEDIT issues this error
message in the very rare situation where no valid delimiters are available because the
strings it is working with contain every valid delimiter character.

424

Chapter 9. Error Messages and Return Codes

Error 191:

Error 192:

Error 193:

Error 194:

Error 195:

Error 196:

Error 197:

Error 198:

Error 199:

Error 200:

Drive/directory specifiers not allowed in OPENFILTER (RC=5)

The fileids passed to SET OPENFILTER must consist of file names and extensions,
possibly including wildcard characters, and they cannot include drive or directory
specifiers.

Button not defined via SET TOOLBUTTON (RC=5)
You have issued a SET TOOLSET command that specifies a toolbar button that has not
yet been defined via SET TOOLBUTTON.

Error creating bitmap (RC=99)

You have issued a SET TOOLBUTTON command that specifies a bitmap file on disk,
but KEDIT encountered an error converting the bitmap into Windows’ internal bitmap
format. This most often occurs when the data in the bitmap file is not in the proper Win-
dows bitmap format.

Error loading bitmap (RC=99)

You have issued a SET TOOLBUTTON command that specifies a bitmap file on disk,
but KEDIT encountered an error accessing the bitmap file or loading it into memory.
This most often occurs when the data in the bitmap file is not in the proper format.

Bitmap too wide or tall (RC=95)
You have issued a SET TOOLBUTTON command that specifies a bitmap file on disk,
but the bitmap involved exceeds KEDIT’s limits of 100 pixels high by 100 pixels wide.

Invalid placement of Quick Find toolbar item (RC=5)
You have issued a SET TOOLSET command that refers incorrectly to the Quick Find
toolbar item. Quick Find can only go on the top toolbar, and not on the bottom toolbar,
and can only appear once on a toolbar, and not multiple times.

TOOLBUTTON definition exceeds 400 character limit (RC=95)
The total length of the operands for the SET TOOLBUTTON command cannot exceed
400 characters.

Multi-line clipboard text cannot be pasted to command line (RC=2)

You have attempted to Paste text from the clipboard to the command line. KEDIT
allows this when the clipboard contains a single line of text, but not when the clipboard
contains multiple lines of text. Multiple lines of text can be pasted into your file, but not
to the command line. To Paste text into your file, you must position the cursor in the file
area at the location where you want the pasted text to be inserted.

Parser not defined: name (RC=5)
The parser referred to ina SET AUTOCOLOR or SET COLORING command has not
been previously defined via a SET PARSER command.

Too many items in target - maximum is 50 (RC=5)
You are trying to use and (“&““) and or (“‘|”’) to combine more than the limit of fifty tar-
gets together.

Error Messages

425

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 201:

SET SCREEN unavailable in One-File-Per-Window mode; try Window

Arrange (RC=2)

Error 202:

Error 204:

Error 205:

Error 206:

(RC=99)

Error 207:

(RC=99)

Error 208:

You are in One-File-Per-Window mode, with the default of OFPW ON in effect, and
you tried to use the SET SCREEN command. SET SCREEN is supported in KEDIT for
Windows for compatibility with text mode KEDIT, and is available only when OFPW
OFF is in effect. With One-File-Per-Window mode, KEDIT’s window handling is
much more like that of other Windows applications, and because of this we recommend
One-File-Per-Window mode for most users, even though it precludes use of the SET
SCREEN command. One alternative for arranging your document windows is to use
the Window Arrange dialog box.

For more information, see the descriptions of SET OFPW and of SET SCREEN.

Operand invalid with INTERFACE CLASSIC (RC=5)

INTERFACE CLASSIC is in effect, and you used a command operand that is only
valid with INTERFACE CUA. For example, since selections are available only with
INTERFACE CUA, the SELECTION operand of the MARK command is invalid with
INTERFACE CLASSIC.

FILE/SAVE of UNTITLED file requires fileid (RC=5)

You cannot save an UNTITLED file (edited via File New or by starting KEDIT with no
fileid specified on the command line) without assigning it a permanent name. Either
use the SET FILEID command to assign a name, or specify a name for the file on your
FILE or SAVE command.

DOS command is too long (RC=99)

The length of a DOS command that you are trying to execute exceeds the limit. The
command line that KEDIT passes to DOS can be up to 4096 characters long, but
because of certain parameters that KEDIT itself must include on this command line, the
practical limit for the length of your DOS command is typically closer to 4000
characters.

REXX macro invoked; this version of KEDIT supports only KEXX

You tried to run a REXX macro but KEDIT for Windows only supports KEXX macros.
A REXX macro is any KEDIT macro that begins with a REXX-style (“/* ... */”) com-
ment; KEXX macros cannot begin with REXX-style comments.

REXX not available; this version of KEDIT supports only KEXX

You tried to use the QUERY REXXVERSION command to determine the version of
REXX installed on your system, but KEDIT for Windows only supports KEXX
macros.

TOOLSET definition exceeds 400 character or 50 item limit (RC=95)

The total length of the operands for the SET TOOLSET command cannot exceed 400
characters, and the total number of items in a toolset, including periods used to indicate
spacing, cannot exceed 50.

426

Chapter 9. Error Messages and Return Codes

Error 209:

Error 210:

Error 211:

Error 212:

Error 213:

Error 214:

Error 215:

Error 216:

Error 218:

Error 219:

Error updating registry (RC=99)
KEDIT encountered an unexpected error while updating the Windows registry during
the processing of a REGUTIL command or of Options Save Settings.

Option is not one of the SET options kept in the registry (RC=5)

You issued the REGUTIL SAVE SETTING command, but specified a SET option that
KEDIT does not maintain in the Windows registry. If you want to put a new value for
the option into effect for every KEDIT session, you can place the SET command
involved in your profile.

Unable to create the special file fileid (RC=4)

You issued a REGUTIL command that adds a temporary file to the ring to hold infor-
mation from KEDIT's section of the Windows registry, but KEDIT encountered an
unexpected error when it tried to create the file.

SET option unavailable in this version of KEDIT (RC=5)
You issued a SET command for an option that is valid in earlier text mode versions of
KEDIT but that is not available in KEDIT for Windows.

QUERY option unavailable in this version of KEDIT (RC=5)
You issued a QUERY command for an option that is valid in earlier text mode versions
of KEDIT but that is not available in KEDIT for Windows.

MODIFY option unavailable in this version of KEDIT (RC=5)
You issued a MODIFY command for an option that is valid in earlier text mode ver-
sions of KEDIT but that is not available in KEDIT for Windows.

WINEXEC failed with system error code n (RC=99)

You issued the WINEXEC command, but when KEDIT used the WinExec function to
pass your command to Windows, system error code n was returned. The most common
error codes are 2, which means that Windows could not find the file that you specified,
and 3, which means that you specified a directory path for the file, and Windows could
not find that directory.

KLD error - info (RC=97)
An error in a KEDIT Language Definition file was encountered while processing a
SET PARSER command.

Built-in file not found: fileid (RC=28)
A SET PARSER command used an asterisk in front of a fileid, but the KEDIT Lan-
guage Definition file referred to is not built into KEDIT.

NULL parser cannot be redefined (RC=5)
You tried to use a SET PARSER command to redefine the NULL parser, but the NULL
parser is a special do-nothing parser that cannot be redefined.

Error Messages

427

)
)
(o)
T
]
7
@

=
S
o
S
S

w

Error 221:

Error 222:

Error 223:

Error 224

Error 225:

Error 227:

Error 228:

Error 229:

Error 230:

Error 231:

Bad network name or path: fileid (RC=28)
Youused a UNC (Universal Naming Convention) name that is invalid or refers to a net-
work resource that is not accessible to your machine.

Internal control stack full (RC=95)
MACRO commands or calls by macros to external routines are being nested too deeply.

Invalid DEFBUTTON value (RC=5)
You issued a DIALOG or ALERT command specifying a DEFBUTTON value that
exceeds the number of buttons in the dialog box.

: Another process has exclusive access to fileid (RC=12)

Another program has exclusive access to the specified file. The other program could be
another application running on your computer, or it might be running on another com-
puter on your network.

File not locked (RC=5)
You tried to use the UNLOCK command for a file that is not locked.

QUICKFIND longer than 120-character limit (RC=9)
You issued the SET QUICKFIND command, but the string that you specified is longer
than the maximum of 120 characters.

Invalid network password specified (RC=100)
KEDIT is unable to access a file because a password is required to access the computer
on which the file resides, but Windows does not have the correct password.

Error creating printer device context (RC = 99)
KEDIT got an unexpected error while trying to communicate with the Windows print-
ing subsystem.

Printer margins exceed printable area (RC =99)

The printer margins (controlled via the Margins... button in the File Print dialog box)
that are in effect, or that you are trying to put into effect, are too large for the currently
active Windows printer and paper size.

File already exists: fileid (RC =99)
You are trying to rename a file, but a file with the same name as the new filename
involved already exists.

428

Chapter 9. Error Messages and Return Codes

Error 232:

Error 233:

Error 234:

Error 235:

PATH or MACROPATH setting exceeds 1000-character limit (RC = 95)
The values specified with SET PATH and SET MACROPATH have a 1000-character
limit.

Command cannot have fewer ARCHAR chars on left than right (RC =5)
CHANGE and SCHANGE commands thatuse ARBCHAR characters must use at least
as many ARBCHAR characters in the left string as in the right string.

Manual not found in KEDIT program directory: fileid (RC = 28)
You tried to view the KEDIT User’s Guide or Reference Manual, but the PDF files
involved could not be found in the KEDIT for Windows program directory.

Error accessing PDF viewer for fileid (RC = 28)

You tried to view the KEDIT User's Guide or Reference Manual, which are in PDF for-
mat, but either there is no PDF viewer, such as Adobe Reader, installed on your system,
or KEDIT was not able to access it.

9.2 Return Codes

Every KEDIT command sets a return code that you can test in a macro to obtain infor-
mation about the success or failure of the command. The special macro variable RC is
automatically set equal to the value of the return code after a command completes.
(KEDIT keeps separate track of the return code of the last command issued from the
command line, which can be accessed via EXTRACT /LASTRCY/.)

KEDIT commands set a return code of 0 if they execute successfully, and set a nonzero
return code if an error is encountered. There is, however, one important exception to
this. A return code of 1 from any command except the CURSOR command is not an
indication of an error, but an indication that the command encountered the top-of-file or
end-of-file line during its processing or, for commands like LOCATE or FORWARD,
left you positioned at the top-of-file or end-of-file.

Macros can use the EXIT instruction to set their own return codes; the normal return
code from macros is 0.

Here is a summary of the return codes given with KEDIT commands. Where possible,
these return codes are modeled after those that XEDIT would return in a similar situa-
tion. Unfortunately, XEDIT does not follow a completely consistent pattern, so the fol-
lowing list is only approximate. The specific return codes set in connection with each
KEDIT error message are given in the preceding section.

Command completed successfully.
Top-of-file or end-of-file encountered (not an error).

String or target not found.

W N = O

Lines truncated by command.

Return Codes

429

)
)
(o)
T
]
7
@

=
S
o
S
S

w

4 A command unexpectedly had no effect. (For example, a CHANGE com-
mand found no occurrences of a string to change.)

An invalid command operand was encountered.

6 A command was issued from a profile after an error was encountered load-
ing the file involved, or a command is valid only when there are files in the
ring but was issued from a macro when the ring was empty. Commands that
get a return code of 6 are otherwise ignored, and in most cases no error
message is given.

8 There were pending prefix commands when you issued a command that
cannot operate when prefix commands are pending.

12 The operating system denied access to some file, or you tried to QUIT from
a modified file.

13 A disk full situation occurred.

20 Invalid fileid.

24 Invalid drive specifier.

28 File or path not found.

94 KEDIT did not have enough memory to process a command.

95 Some internal KEDIT limit has been exceeded.

96 Execution of a command was interrupted by Ctrl+Break or Alt+Ctrl+Shift.
97 KEDIT was unable to load or define a requested macro.

98 A macro language-related error occurred during the processing of a macro.
99 KEDIT encountered an error in accessing some system facility.

100 KEDIT encountered an Input/Output error.

-1 You asked KEDIT to execute a command or macro that could not be lo-
cated.
-3 A command was issued from an environment that is inappropriate for that

command. (For example, the EXTRACT command was issued from the
command line.)

430 Chapter 9. Error Messages and Return Codes

Index

o=

& command 148
QUERY and EXTRACT option 328
SET option 283
command 150

? command 149

ABBREV

built-in function 352
ABS

built-in function 352
ADD command 26
ADDLINE

SOS action 133
AFTER()

Boolean function 377
ALARM

SOS action 133
ALERT command 26
ALL command 27
ALT

QUERY and EXTRACT option 287

SET option 154
ALT()

Boolean function 377
ALTER command 28
ALTKEY()

Boolean function 378
ANSI fonts

SEE ““Character set handling”
ANSIDATATYPE

built-in function 352
ANSILOWER

built-in function 353
ANSITOOEM

built-in function 353

command 29
ANSIUPPER

built-in function 354
ARBCHAR

QUERY and EXTRACT option 287

SET option 155
ARG

KEXX instruction 339

built-in function 354
ARROW
QUERY and EXTRACT option 287
SET option 158
ASCII macro 116, 394
ATTRIBUTES
QUERY and EXTRACT option 287
SET option 153
AUS files 161
AUTOCOLOR
QUERY and EXTRACT option 288
SET option 158
AUTOEXIT
QUERY and EXTRACT option 289
SET option 160
AUTOINDENT
QUERY and EXTRACT option 289
SET option 160
AUTOSAVE
QUERY and EXTRACT option 289
SET option 161
reset alteration count 154
AUTOSCROLL
QUERY and EXTRACT option 289
SET option 162
Adding lines
SEE ”Inserting text”
Alteration count 154
SEE ALSO “AUTOSAVE”
Append
CLIPBOARD command 39
Arguments, passing to macros
ARG KEXX instruction 339
ARG built-in function 354
PARSE KEXX instruction 345
passing to profile 22
Arrays
SEE “Compound variables™
Assignments, KEXX 333

B2X
built-in function 355

BACKUP
QUERY and EXTRACT option 289
SET option 163

431

BACKWARD command 30 Boolean functions 377

BAK files 163 Boundary markers
BEEP SET BOUNDMARK option 165
QUERY and EXTRACT option 289 SET COLMARK option 169
SET MOUSEBEEP option 224 SET WINMARGIN option 279
SET option 164 Built-in functions 351
SOS action 133 Buttons
built-in function 355 defining 267
BEFORE()
Boolean function 378 C
BITAND D
built-in function 355 built-in function 358
BITOR 22X
built-in function 355 built-in function 358
BITXOR CALL
built-in function 355 KEXX instruction 339, 387
BLANK() CANCEL command 31
Boolean function 378 CAPPEND command 31
BLANKDOWN CASE
SOS action 133 QUERY and EXTRACT option 290
BLANKUP SET option 166
SOS action 133 CDELETE command 32
BLOCK CDN
QUERY and EXTRACT option 290 SOS action 134
BLOCK() CENTER
Boolean function 378 built-in function 356
BLOCKEND command 33
SOS action 133 CENTRE
BLOCKSTART built-in function 356
SOS action 133 CFIRST command 34
BOTTOM command 31 CHANGE
BOTTOMEDGE command 34
SOS action 134 effect of ARBCHAR on 156
BOTTOMEDGE() effect of ZONE on 282
Boolean function 378 repeating last CHANGE command 36
BOUNDMARK CHANGESTR
QUERY and EXTRACT option 290 built-in function 356
SET option 165 CHARIN
BUTTONI() built-in function 356
Boolean function 378 CHAROUT
BUTTON2() built-in function 356
Boolean function 378 CHARS
Backing up files built-in function 357
SET AUTOSAVE option 161 CHDIR command 36
SET BACKUP 163 CHDRIVE command 36
SEE ALSO “SAVE” CHECK
Blanks SOS action 134
trailing 218, 274 CINSERT command 38
Blocks CLASSIC interface
SET MARKSTYLE option 222 SEE ”Interface settings”
marking 97 CLASSIC()
unmarking 123 Boolean function 378

432

CLAST command 34
CLEFT
SOS action 134
CLICK
QUERY and EXTRACT option
CLIPBOARD
QUERY and EXTRACT option
CLIPBOARD command 39
CLIPTEXT()
Boolean function 378
CLOCATE
command 40
examples 41
used with CINSERT 38
CLOCK
QUERY and EXTRACT option
SET option 168
CMATCH command 41
CMDLINE
QUERY and EXTRACT option
SET option 168
CMDSEL()
Boolean function 378
CMSG command 43
COLMARK
QUERY and EXTRACT option
SET option 169
COLOR
QUERY and EXTRACT option
SET option 170
COLORING
QUERY and EXTRACT option
SET option 172
COLUMN
QUERY and EXTRACT option
initialization option 16
COMMAND command 43
COMMAND()
Boolean function 378
COMPARE
built-in function 357
COMPRESS command 44
CONDITION
built-in function 357
COPIES
built-in function 358
COPY command 45
COUNT command 46
COUNTSTR
built-in function 358
COVERLAY command 47
CREPLACE command 48
CRIGHT
SOS action 134

290

2901

292

292

292

292

293

293

CTRL()
Boolean function 378

CUA interface
SEE ’Interface settings*

CUA()
Boolean function 378

CUP
SOS action 134

CURLINE
QUERY and EXTRACT option 293
SET option 175

CURRBOX
QUERY and EXTRACT option 294
SET option 176

CURRENT
SOS action 134

CURRENT()
Boolean function 378

CURSOR
QUERY and EXTRACT option 294
command 49

CURSORADJUST
SOS action 134

CURSORSIZE
QUERY and EXTRACT option 294
SET option 177

CURSORTYPE
QUERY and EXTRACT option 294
SET option 178

Case conversion
ANSILOWER built-in function 353
ANSIUPPER built-in function 354
SET INTERNATIONAL option 211
to lowercase 93
to uppercase 144

Changing text
ALTER command 28
CAPPEND command 31
CDELETE command 32
CHANGE command 34
CINSERT command 38
COVERLAY command 47
CREPLACE command 48
OVERLAY command 106
REPLACE command 123
SCHANGE command 128
character codes 28
overlaying columns 47
recovering from 117
selective change 128
shifting 129
to lowercase 93
to uppercase 144

Character codes
converting from decimal 364

433

converting to decimal 358
displaying 77, 197
specifying 28, 197
Character set handling
ANSITOOEM built-in function 353
ANSITOOEM command 29
OEMTOANSI built-in function 367
OEMTOANSI command 106
SET INTERNATIONAL option 211
SET TRANSLATEIN option 275
SET TRANSLATEOUT option 275
Color handling
SET COLOR option 170
SET COLORING option 172
SET ECOLOR option 186
SET MONITOR option 223
SET PCOLOR option 233
Syntax coloring 172
Coloring
syntax coloring 397
Column markers
SEE ”’Boundary markers”
Column pointer
displaying 249
moving 40
Columns, working with
CAPPEND command 31
CDELETE command 32
CLOCATE command 40
MARK command 97
SET ZONE option 282
Command history

SOS RETRIEVEB, SOS RETRIEVEF 136

Commands
& command 148
=command 150
? command 149
entering several at one time 150, 216
in macros 338
last operand used 214
positioning of screen after 257
recalling 149
renaming 258
repeating 121, 148, 150
Compound variables 332
Condition handling
KEXX facility 386
Copying text
COPY command 45
GET command 75
to a disk file 112
Cowlishaw, Michael 329, 388
Current directory
CHDIR command 36
QUERY and EXTRACT option 295

SET INITIALDIR option 201
Current line

box around 176

location in window 175
Cursor

extracting position 299

shape 177 - 178
Customizing KEDIT

SEE “SET command”

SEE “WINPROF.KEX”

SEE “‘registry”
Cut and paste

CLIPBOARD command 39

D2C
built-in function 363
D2X
built-in function 364
DATATYPE
built-in function 359
DATE
built-in function 360
DATECONV
built-in function 361
DEBUG command 51
DEBUGGING
QUERY and EXTRACT option 295
SET option 179
DEFEXT
QUERY and EXTRACT option 295
SET option 179
DEFINE command 53
DEFPROFILE
QUERY and EXTRACT option 295
SET option 180
initialization option 16
DEFSORT
QUERY and EXTRACT option 295
SET option 181
DELBACK
SOS action 134
DELBEGIN
SOS action 134
DELCHAR
SOS action 134
DELEND
SOS action 134
DELETE command 54
DELIMIT
built-in function 361
DELLINE
SOS action 134

DELSEL

SOS action 134
DELSEL()

Boolean function 379
DELSTR

built-in function 362
DELWORD

SOS action 134

built-in function 362
DIALOG command 55
DIGITS

built-in function 362
DIR command 58
DIR()

Boolean function 379
DIRAPPEND command 58
DIRECTORY

QUERY and EXTRACT option 295

SEE ALSO ”’Current directory”
DIRFILEID

QUERY and EXTRACT option 296
DIRFORMAT

QUERY and EXTRACT option 296

SET option 182
DIRSORT command 59
DISPLAY

QUERY and EXTRACT option 296

SET option 183
DMSG command 60
DO-END

KEXX instruction 340
DOCSIZING

QUERY and EXTRACT option 297

SET option 184
DOPREFIX

SOS action 135
DOS

DIR command 58

ERASE simulation 67

EXIT 61

command 61
DOSDIR

built-in function 362
DOSENV

built-in function 363
DOSNOWAIT command 61
DOSQUIET command 61
DOWN command 63
DRAG

QUERY and EXTRACT option 297

SET option 185
DROP

KEXX instruction 342

DUPLICATE command 64
Debugging macros
DEBUG command 51
PROFDEBUG initialization option 20
SET DEBUGGING option 179
SET NOVALUE option 227
TRACE KEXX instruction 348
Decimal codes
SEE ““Character codes”
Deleting text
DELETE command 54
column delete 32
deleting words with Shift+Ctrl+W 280
Directory listing 15, 58
initial directory 201
Document window
SET DOCSIZING option 184
SET INITIALDOCSIZE option 203
SET OFPW option 228
SET SCREEN option 251
WINDOW command 145
SEE ALSO “Frame window”

ECOLOR
QUERY and EXTRACT option 297,314
SET option 186
EDITV command 65
EFILEID
QUERY and EXTRACT option 297
EMSG command 67
END()
Boolean function 379
ENDCHAR
SOS action 135
ENDWORD
SOS action 135
EOF
QUERY and EXTRACT option 298
EOF()
Boolean function 379
EOFIN
QUERY and EXTRACT option 298
SET option 189
EOFOUT
QUERY and EXTRACT option 298
SET option 189
EOL
QUERY and EXTRACT option 298
EOLIN
QUERY and EXTRACT option 298
SET option 190
EOLOUT
QUERY and EXTRACT option 299

435

SET option 191
ERASE command 67
ERRORBEEP

SOS action 135
ERRORTEXT

built-in function 364
EXECUTE

SOS action 135
EXIT

KEXX instruction 342

returning to KEDIT from DOS 61
EXPAND

command 68

used with COMPRESS 44
EXTEND command 68
EXTRACT command 69, 285
End-of-file character 189
Entering text

SEE Inserting text*
Environment variable

KEDITW 21
Equal buffer 121, 283, 328
Equalsign

SET option description 283
Error messages 410
Exit code

from DOS commands 62
Expressions, KEXX 333
Extended characters

SEE ”International support”

FCASE
QUERY and EXTRACT option 299
FEXT
QUERY and EXTRACT option 299
SET option 193
FFILE command 69
FIELD
QUERY and EXTRACT option 299
FIELDWORD
QUERY and EXTRACT option 299
FILE command 69
FILEID
QUERY and EXTRACT option 300
SET option 193
FILELINE()
Boolean function 379
FILESEARCH
QUERY and EXTRACT option 300
FILESTATUS
QUERY and EXTRACT option 300

FILL command 71
FILLBOX command 71
FIND
command 72
SEE ALSO “LOCATE”
FINDUP command 72
FIRST()
Boolean function 379
FIRSTCHAR
SOS action 135
FIRSTCOL
SOS action 135
FLOW command 73
FLSCREEN
QUERY and EXTRACT option 301
FMODE
QUERY and EXTRACT option 301
SET option 193
FNAME
QUERY and EXTRACT option 301
SET option 193
FOCUSEOF()
Boolean function 379
FOCUSTOEF()
Boolean function 379
FOCUSWORD
QUERY and EXTRACT option 301
FORMAT
QUERY and EXTRACT option 302
SET option 195
built-in function 364
FORWARD command 74
FPATH
QUERY and EXTRACT option 302
SET option 193
FRAMESIZE
initialization option 16
FTYPE
QUERY and EXTRACT option 302
SET option 193
FULLINP()
Boolean function 379
FUP command 72
FUzz
built-in function 364
File locking
LOCK command 93
LOCK initialization option 17
SET LOCKING option 217
UNLOCK command 143
Files
backing up 163
creating 83, 112, 148
default extensions 179

436

end-of-file character 189 IMMEDIATE command 81

extension of .AUS 161 IMPMACRO

extension of .BAK 163 QUERY and EXTRACT option 303
initial directory 201 SET option 199

line length 218, 245 INBLOCK()

IOCkl.ng 93 Boolean function 379

opening 83, 229 INISAVE

renaming 121, 193 QUERY and EXTRACT option 304, 317

saving automatically 161
search path for 83, 232, 300
switching between files 83
temporary 112

trailing blanks in lines 245, 274 INITIALDIR ,
unlocking 143 QUERY and EXTRACT option 304

Fixed length records 218, 245 SET option 201

SET option 200, 247
INITIAL()
Boolean function 379

Frame window INITIALDOCSIZE '
SET INITIALFRAMESIZE option 204 QUERY and EXTRACT option 304
WINDOW command 145 SET option 203
SEE ALSO “Document window” INITIALFRAMESIZE .
Functions QUERY and EXTRACT option 304
Boolean 377 SET option 204
built-in 351 INITIALINSERT
external 351 QUERY and EXTRACT option 304
implied EXTRACT 286 SET option 205
internal 350 INITIALWIDTH

QUERY and EXTRACT option 305
SET option 206

INPREFIX()
GET command 75 Boolean function 379
INPUT
command 82
HELP command 76 SEE ALSO ”INPUTMODE”
HELPDIR) INPUTMODE
SET option 196 QUERY and EXTRACT option 305
HEX) SET option 207
QUERY.and EXTRACT option 303 exit with Home key 207
SET option 197 INSERT
HEXDISPLAY) built-in function 364
QUERY_and EXTRACT option 303 INSERTMODE
SET option 197 QUERY and EXTRACT option 305
HEXTYPE command 77 SET option 208
HIGHLIGHT) INSERTMODE()
QUERY and EXTRACT option 303 Boolean function 379
SET option 198 INSTAB
HISTUTIL command 77 SOS action 135
HIT command 80 INSTANCE
Hexadecimal codes 77, 278 QUERY and EXTRACT option 305
Horizontal cursor 177 - 178 SET option 208
initialization option 17
INTERFACE
IDLINE QUERY and EXTRACT option 305
QUERY and EXTRACT option 303 SET option 209
SET option 199 INTERNATIONAL
IF-THEN-ELSE QUERY and EXTRACT option 305
KEXX instruction 342 SET option 211

437

INTERPRET Instructions, KEXX 339

KEXX instruction 343 Interface settings
INTRUNC() CLASSIC 209
Boolean function 379 CUA 209
ITERATE SET INTERFACE option 209
KEXX instruction 343 SET KEYSTYLE option 213
Implied EXTRACT functions 286 SET MARKSTYLE option 222
Indenting SET OFPW option 228
SET AUTOINDENT option 160 International support
SET MARGINS option 221 ANSILOWER built-in function 353
Initialization options 16 ANSIUPPER built-in function 354
COLUMN 16 DATECONY built-in function 361
DEFPROFILE 16 SET INTERNATIONAL option 211
FRAMESIZE 16 and printing 240
INSTANCE 17 and sorting 131, 211
LINE 17 case conversion 93, 144, 211
LOCK 17 keyboard 393
MACROPATH 18 Invoking KEDIT 14
NEW 18
NODEFEXT 18 J
NOFILEMENU 18 JOIN command 82
NOINI 18 Tustifyi
NOLOCK. 18 ustifying text
NOMSG 19 FLOW command 73
NOPROFILE 19 LEFTADJUST command 87
NOREG 19 RIGHTADJUST cqmmand 126
PATH 19 SET FORMAT option 195
PROFDEBUG 20 K
PROFILE 20
UNTITLED 20 KEDIT
WIDTH 20 Language Definition files 398
notes on 20 STATUS command 140
Initialization processing 22 - 23 command 83
editing additional files 24 - 25 default extensions 179
Input, in macros invoking 14, 83
ALERT command 26 SEE ALSO “Screen layout”
DIALOG command 55 KEDIT Language Definition files
PARSE, KEXX instruction 345 SEE KLD files
PULL, KEXX instruction 346 KEDITW environment variable 21
READV command 114 KEXX
Input/Output in KEXX 375 assignments 333
Inputting text expressions 333
SEE Inserting text* instructions 339
Insert mode 205, 208 language reference 329
Inserting text operators 331, 333
ADD command 26 symbols 331
INPUT command 82 tokens 330
SET INPUTMODE option 207 variables 331
SET WORDWRAP option 281 SEE ALSO “Macros”
adding lines 26, 226 KEYSTYLE
appending to end of text 31 QUERY and EXTRACT option 306
column insert 38 SET option 213
continuous entering 207, 281 KHELP command 85
duplicating lines 64 KLD files
from another file 75 file format 398

438

introduction 397
Keyboard

redefining 53
Keys, naming conventions 391

LASTKEY
QUERY and EXTRACT option
LASTMSG
QUERY and EXTRACT option
LASTOP
QUERY and EXTRACT option
SET option 214
LASTPOS
built-in function 365
LASTRC
QUERY and EXTRACT option
LEAVE
KEXX instruction 344
LEFT
built-in function 365
command 86
LEFTADJUST command 87
LEFTEDGE
SOS action 135
LEFTEDGE()
Boolean function 379
LENGTH
QUERY and EXTRACT option
built-in function 365
LESS command 87
LINE
QUERY and EXTRACT option
initialization option 17
LINEADD
SOS action 135
LINEDEL
SOS action 135
LINEFLAG
QUERY and EXTRACT option
SET option 215
LINEIN
built-in function 365
LINEINP()
Boolean function 380
LINEND
QUERY and EXTRACT option
SET option 216
LINEOUT
built-in function 366
LINES
built-in function 366
LOCATE
command 88

306

307

307

307

308

308

308

308

M

effect of ARBCHAR on 155
effect of CASE on 166
effect of WRAP on 281
repeating of 89
LOCK
command 93
initialization option 17
LOCKING

QUERY and EXTRACT option 308

SET option 217
LOWER

built-in function 367
LOWERCASE command 93
LPREFIX command 94
LRECL

QUERY and EXTRACT option 308

SET option 218
LSCREEN

QUERY and EXTRACT option 309

Leaving KEDIT
SEE “Ending KEDIT”
Line(s)
adding 207
copying 45
deleting 54
displaying line numbers 227
duplicating 64
locating 257, 281 - 282
maximum length 20, 206
moving 102
naming 235
problem with wrapping 20
recovering 117
Locating text
ALL command 27
CLOCATE command 40
FIND command 72
FINDUP 72
LOCATE command 88
NFIND command 104
NFINDUP command 104
SET QUICKFIND option 243
TFIND command 142
column locate 40
effect of ARBCHAR on 155
effect of CASE on 166
effect of WRAP on 281
Looping, in KEXX 340

MACRO

QUERY and EXTRACT option 309

command 95
MACROPATH

QUERY and EXTRACT option 309

439

SET option 219
initialization option 18
MACROS command 96
MAKECURR
SOS action 135
MARGINL
SOS action 135
MARGINR
SOS action 135
MARGINS
QUERY and EXTRACT option 309
SET option 221
MARK command 97
MARKSTYLE
QUERY and EXTRACT option 310
SET option 222
MAX
built-in function 367
MEMORY
QUERY and EXTRACT option 310
MERGE command 99
MIN
built-in function 367
MODIFIABLE()
Boolean function 380
MODIFY command 100
MONITOR
QUERY and EXTRACT option 310
SET option 223
MORE command 101
MOUSEBEEP
QUERY and EXTRACT option 310
SET option 224
SOS action 136
MOUSEPOSMODIFIABLE()
Boolean function 380
MOUSEPOSVALID()
Boolean function 380
MOUSETEXT
SET option 153
MOVE command 102
MSG command 103
MSGLINE
QUERY and EXTRACT option 311
SET option 224
MSGMODE
QUERY and EXTRACT option 311
SET option 225
MULTWINDOW()
Boolean function 380
Macros
WINPROF.KEX 23
debugging 179
defining 53

immediate execution 81
implied 199
in-memory 53, 96
language reference 329
path 219
reading data from command line 114
removing 111
Margin
line marking 279
Matching braces, brackets, etc. 42
Menu
macros 395
popup 107
Messages
CMSG command 43
DMSG command 60
EMSG command 67
MSG command 103
NOMSG command 105
NOMSG initialization option 19
SET MSGMODE option 225
WMSG command 148
summary of 410
Minimal truncation 12
Moving text
MOVE command 102
SHIFT command 129
to a disk file 112
Multiple file editing 83

NBFILE
QUERY and EXTRACT option 311
NBSCOPE
QUERY and EXTRACT option 311
NBWINDOW
QUERY and EXTRACT option 312
NEW
initialization option 18
NEWLINES
QUERY and EXTRACT option 312
SET option 226
NEXT command 104
NFIND command 104
NFINDUP command 104
NFUP command 104
NODEFEXT
initialization option 18
NOFILEMENU
initialization option 18
NOINI
initialization option 18
NOLOCK
initialization option 18

440

NOMSG
initialization option 19
NOMSG command 105

NOP

KEXX instruction 344
NOPROFILE

initialization option 19
NOQUEUE()

Boolean function 380
NOREG

initialization option 19
NOVALUE

QUERY and EXTRACT option 312
SET option 227

NUMBER
QUERY and EXTRACT option 312
SET option 227

Naming files
SEE “Files”

Naming lines 235

OEM fonts

SEE ““Character set handling”
OEMFONT()

Boolean function 380
OEMTOANSI

built-in function 367

command 106
OFPW

SET option 228
OPENFILTER

SET option 229
OPMODE

QUERY an EXTRACT option 312
OPSYS

QUERY and EXTRACT option 313
OPTIONS

KEXX instruction 345
OTHERWISE

KEXX instruction 347
OVERLAY

built-in function 367

command 106
OVERLAYBOX command 107
One-file-per-window 228
Operator precedence, KEXX 337
Operators, KEXX 331
Options of SET command 129

displaying 100, 113, 140

modifying 100
Output from macros, displaying

ALERT command 26

CMSG command 43
DIALOG command 55
DMSG command 60
MSG command 103
WMSG command 148
Overlaying text
enter line with OVERLAY 106
specified columns with COVERLAY 47

PARINDENT
SOS action 136
PARSE
KEXX instruction 345, 381, 383, 385
PARSER
QUERY and EXTRACT option 313
SET option 230
PATH
QUERY and EXTRACT option 314
SET option 232
initialization option 19
PCOLOR
SET option 233
PENDING()
Boolean function 380
POINT
QUERY and EXTRACT option 314
SET option 235
POPUP command 107
POS
built-in function 367
POWER equivalent 207
PREFIX
QUERY and EXTRACT option 315
SET option 236
SOS action 136
PREFIX SYNONYM
SET option description 236
PREFIX()
Boolean function 380
PREFIXLEFT()
Boolean function 380
PREFIXWIDTH
SET option 239
PRESERVE command 108
PRINT command 109
PRINTCOLORING
SET option 239
PRINTER
QUERY and EXTRACT option 315
SET option 240
PRINTPROFILE
QUERY and EXTRACT option 316
SET option 242

441

PRINTSIZE
QUERY and EXTRACT option 316
PROCEDURE
KEXX instruction 345
PROFDEBUG
initialization option 20
PROFILE
initialization option 20
SEE ALSO “WINPROF.KEX”
PROFILE()
Boolean function 380
PULL
KEXX instruction 346
PURGE command 111
PUT command 112
PUTD command 112
Paste
CLIPBOARD command 39
Prefix area
SET PREFIX option 236
SET PREFIXWIDTH option 239
commands 237
disappears in Input Mode 207
processing prefix commands 94
resetting pending prefix commands 123
Profiles
editing additional files 24 - 25
in initialization processing 22 - 23
Put
CLIPBOARD command 39

QCMND

SOS action 136
QQUIT command 114
QUERY command 113
QUICKFIND

QUERY and EXTRACT option 316

SET option 243
QUICKFINDACT

SOS action 136
QUICKFINDB

SOS action 136
QUICKFINDF

SOS action 136
QUIT command 114

RANDOM
built-in function 368

RANGE
QUERY and EXTRACT option 316
SET option 244

READYV command 114
RECENTFILES
QUERY and EXTRACT option 316
SET option 245
RECFM
QUERY and EXTRACT option 317
SET option 245
RECOVER command 117
REDO command 118
REFRESH command 118
REGUTIL command 119
RENAME command 121
REPEAT
command 121
used with CDELETE 33
used with COVERLAY 48
REPLACE
can trigger Input Mode 207
command 123
REPROFILE
QUERY and EXTRACT option 317
SET option 246
RESERVED
QUERY and EXTRACT option 317
SET option 248
RESET command 123
RESTORE
SOS action 136
command 124
RESTORECOL
SOS action 136
RESTORELINE
SOS action 136
RETRIEVEB
SOS action 136
RETRIEVEF
SOS action 136
RETURN
KEXX instruction 346
REVERSE
built-in function 368
REXX language 388
The REXX Language 329, 388
RGTLEFT command 125
RIGHT
built-in function 368
command 125
RIGHTADJUST command 126
RIGHTCTRL
QUERY and EXTRACT option 317
SET option 249
RIGHTEDGE
SOS action 136

442

RIGHTEDGE()
Boolean function 380
RING
QUERY and EXTRACT option 317
Record length
SET LRECL option 218
SET RECFM option 245
WIDTH initialization option 20
truncation column 276
Recovering text
SEE “RECOVER command”
SEE ”UNDO command”
Registry 23
NOREG initialization option 19
SET REGSAVE option 247
and profile processing 23
Regular Expressions 35
Regular expressions 92
Reserved lines 248
Return codes 429
TRACE KEXX instruction 348
Routines
external 351
internal 350
Running external programs 61, 146

SAVE
SOS action 137
command 127
default extensions 179
SAVECOL
SOS action 137
SAVELINE
SOS action 137
SAY
KEXX instruction 346
SCALE
QUERY and EXTRACT option 318
SET option 249
SCHANGE command 128
SCOPE
QUERY and EXTRACT option 318
SET option 250
SCREEN
SET option 251
SCROLLBAR
QUERY and EXTRACT option 318
SET option 253
SCROLLLOCK()
Boolean function 380
SELECT
KEXX instruction 347
QUERY and EXTRACT option 318

SET option 253
SET
STATUS command 140
command 129
preserving option values 108
querying settings 113
restoring preserved option values 124
SETCOLPTR
SOS action 137
SETLEFTM
SOS action 137
SETTAB
SOS action 137
SHADOW
QUERY and EXTRACT option 319
SET option 255
SHADOW()
Boolean function 381
SHARING
QUERY and EXTRACT option 319
SET option 255
SHIFT command 129
SHIFT()
Boolean function 381
SHOWDLG command 130
SHOWPRINTDLG()
Boolean function 381
SIGN
built-in function 366, 368 - 369
SIGNAL
KEXX Instruction 387
KEXX instruction 348
SIZE
QUERY and EXTRACT option 319
SORT command 131
SOS command 133
SOURCELINE
built-in function 369
SPACE
built-in function 369
SPACECHAR()
Boolean function 381
SPLIT command 138
SPLTJOIN command 139
SSAVE command 127
STARTUP
QUERY and EXTRACT option 319
STARTWORD
SOS action 137
STATUS command 140
STATUSLINE
QUERY and EXTRACT option 320
SET option 256

443

STAY

QUERY and EXTRACT option 315, 320

SET option 257
used with CHANGE 35
STREAM
QUERY and EXTRACT option 320
SET option 257
used with CDELETE 32
STRIP
built-in function 369
SUBSTR
built-in function 369
SUBWORD
built-in function 370
SYMBOL
built-in function 370
SYNEX command 140
SYNONYM
QUERY and EXTRACT option 320
SET option 258
Saving your work
FILE command 69
SAVE command 127
SET AUTOSAVE option 161
SET BACKUP option 163
Screen layout
SET ARROW option 158
SET CLOCK option 168
SET CURLINE option 175
SET HEXDISPLAY option 197
SET IDLINE option 199
SET NUMBER 227
SET PREFIX option 236
SET PREFIXWIDTH option 239
SET RESERVED option 248
SET SCALE option 249
SET SCREEN option 251
SET SCROLLBAR option 253
SET STATUSLINE option 256
SET TABLINE option 260
SET VERIFY option 278
displaying character code 197
multiple windows 251
numbers on lines 227
reserved lines 248
scale line 249
Scrolling
SET AUTOSCROLL option 162
backward 30
forward 74
horizontal 86, 125, 162
Search and replace
SEE ”’Changing text”
SEE ’Locating text”

Selective changing of text 128
Shelling to DOS
SEE ’Running external programs”
Shifting text
SHIFT command 129
Sorting
SORT command 131
and international characters 211
Special characters
changing 29
Starting KEDIT 14, 83
Stem variables 331
Symbols, KEXX 331
Synonyms
for commands 258
for prefix area commands 236
Syntax coloring
controlling colors 186, 233,239
enabling 172
loading KLD files 397
Syntax conventions 12 - 13

TAB()
Boolean function 381
TABB
SOS action 137
TABCMD
SOS action 137
TABCMDB
SOS action 137
TABCMDF
SOS action 137
TABF
SOS action 137
TABFIELDB
SOS action 138
TABFIELDF
SOS action 138
TABLINE
QUERY and EXTRACT option 320
SET option 260
TABS
QUERY and EXTRACT option 321
SET option 261
used with COMPRESS 44
TABSAVE
QUERY and EXTRACT option 321
SET option 262
TABSIN
QUERY and EXTRACT option 321
SET option 263
TABSOUT
QUERY and EXTRACT option 321

SET option 264
TABWORDB
SOS action 138
TABWORDF
SOS action 138
TAG command 140
TARGET
QUERY and EXTRACT option 321
TEXT command 141
TFIND command 142
THIGHLIGHT
QUERY and EXTRACT option 322
SET option 265
TIME
QUERY and EXTRACT option 322
built-in function 370
TIMECHECK
QUERY and EXTRACT option 322
SET option 266
TOF
QUERY and EXTRACT option 322
TOF()
Boolean function 381
TOFEOF
QUERY and EXTRACT option 322
SET option 266
TOL
QUERY and EXTRACT option 323
TOOLBAR
QUERY and EXTRACT option 323
SET option 267
TOOLBUTTON
QUERY and EXTRACT option 323
SET option 267
TOOLSET
QUERY and EXTRACT option 324
SET option 272
TOP command 143
TOPEDGE
SOS action 138
TOPEDGE()
Boolean function 381
TRACE
KEXX instruction 348
built-in function 371
TRAILING
QUERY and EXTRACT option 324
SET option 274
TRANSLATE
built-in function 371
TRANSLATEIN
QUERY and EXTRACT option 324
SET option 275

TRANSLATEOUT
QUERY and EXTRACT option 324
SET option 275
TRUNC
QUERY and EXTRACT option 324
SET option 276
built-in function 372
Tab characters
compression of 44, 264
expansion of 68, 263
preservation of 262
Tab stops
displaying 260
setting 261
Tailoring KEDIT
SEE “WINPROF.KEX”
SEE ”SET command”
Targets
blanks, special handling 277
column 41
examples of with CHANGE command 34
examples of with LOCATE command 88
specifying character codes in 197
string 277, 282
summary 90
wildcard characters used in 155
SEE ALSO “Regular Expressions”
Temporary file 112
Tokens, KEXX 330
Toolbar
defining contents 267, 272
displaying 267
Truncation column
SET TRUNC option 276

UNC
in fileid specifications 193
UNDO
QUERY and EXTRACT option 325
command 143
resetting undo levels 123
UNDOING
QUERY and EXTRACT option 325
SET option 276
UNIQUEID
QUERY and EXTRACT option 325
UNLOCK command 143
UNTITLED
initialization option 20
UNTITLED()
Boolean function 381

445

UP command 144
UPPER
built-in function 372
UPPERCASE command 144
Universal Naming Convention
in fileid specifications 193

VALUE
built-in function 372
VARBLANK
QUERY and EXTRACT option 325
SET option 277
VERIFY
QUERY and EXTRACT option 325
SET option 278
built-in function 373
VERONE()
Boolean function 381
VERSHIFT
QUERY and EXTRACT option 326
VERSION
QUERY and EXTRACT option 326
Variables, KEXX 331
Vertical cursor 177 - 178

WHEN
KEXX instruction 347
WIDTH
QUERY and EXTRACT option 326
initialization option 20
WINDIR
QUERY and EXTRACT option 326
WINDOW command 145
WINDOWNAME
QUERY and EXTRACT option 327
WINEXEC command 146
WINHELP command 147
WINMARGIN
SET option 279
WINPROF.KEX 23
SET REPROFILE option 246
default profile 180
re-executing for new file 246
WMSG command 148
WORD
QUERY and EXTRACT option 327
SET option 280
built-in function 373
punctuation delineates words 280
WORDINDEX
built-in function 373

WORDLENGTH
built-in function 373
WORDPOS
built-in function 373
WORDS
built-in function 374
WORDWRAP
QUERY and EXTRACT option 327
SET option 281
WRAP
QUERY and EXTRACT option 327
SET option 281
Wildcard characters
ARBCHAR in targets 155
blanks in FIND command 72
SEE ALSO ’Regular expressions”
Window margin 279
Window(s)
SEE ”’Document window*
SEE ”Frame window”
Word processing
GML tags 195
SET FORMAT option 195
SET WORDWRAP option 281
blanks after punctuation 195
continuous entering of text 207, 281
margins 221
paragraph definition 195
printing 109
Wrapped lines
problem with 20

X2B

built-in function 374
X2C

built-in function 374
X2D

built-in function 375
XEDIT command 148
XEDIT compatibility

SEE User’s Guide Appendix A
XRANGE

built-in function 374

ZONE
QUERY and EXTRACT option 328
SET option 282

446

	Contents
	Chapter 1. Introduction 11
	1.1 Overview of Documentation 11
	1.2 Syntax Conventions 12

	Chapter 2. Invoking KEDIT 14
	2.1 Running KEDITW32.EXE 14
	2.2 KEDIT Initialization Options 16
	2.3 Initialization Processing 22
	2.4 Editing Additional Files 24

	Chapter 3. KEDIT Commands 26
	 ADD 26
	 ALERT 26
	 ALL 27
	 ALTER 28
	 ANSITOOEM 29
	 BACKWARD 30
	 BOTTOM 31
	 CANCEL 31
	 CAPPEND 31
	 CDELETE 32
	 CENTER 33
	 CFIRST, CLAST 34
	 CHANGE 34
	 CHDIR, CHDRIVE 36
	 CINSERT 38
	 CLIPBOARD 39
	 CLOCATE 40
	 CMATCH 41
	 CMSG 43
	 COMMAND 43
	 COMPRESS 44
	 COPY 45
	 COUNT 46
	 COVERLAY 47
	 CREPLACE 48
	 CURSOR 49
	 DEBUG 51
	 DEFINE 53
	 DELETE 54
	 DIALOG 55
	 DIRAPPEND 58
	 DIRSORT 59
	 DMSG 60
	 DOS, DOSNOWAIT, DOSQUIET 61
	 DOWN 63
	 DUPLICATE 64
	 EDITV 65
	 EMSG 67
	 ERASE 67
	 EXPAND 68
	 EXTEND 68
	 EXTRACT 69
	 FILE, FFILE 69
	 FILL, FILLBOX 71
	 FIND, FINDUP, FUP 72
	 FLOW 73
	 FORWARD 74
	 GET 75
	 HELP 76
	 HEXTYPE 77
	 HISTUTIL 77
	 HIT 80
	 IMMEDIATE 81
	 INIUTIL 81
	 INPUT 82
	 JOIN 82
	 KEDIT 83
	 KHELP 85
	 LEFT 86
	 LEFTADJUST 87
	 LESS 87
	 LOCATE 88
	 LOCK 93
	 LOWERCASE 93
	 LPREFIX 94
	 MACRO 95
	 MACROS 96
	 MARK 97
	 MERGE 99
	 MODIFY 100
	 MORE 101
	 MOVE 102
	 MSG 103
	 NEXT 104
	 NFIND, NFINDUP, NFUP 104
	 NOMSG 105
	 OEMTOANSI 106
	 OVERLAY 106
	 OVERLAYBOX 107
	 POPUP 107
	 PRESERVE 108
	 PRINT 109
	 PURGE 111
	 PUT, PUTD 112
	 QUERY 113
	 QUIT, QQUIT 114
	 READV 114
	 RECOVER 117
	 REDO 118
	 REFRESH 118
	 REGUTIL 119
	 RENAME 121
	 REPEAT 121
	 REPLACE 123
	 RESET 123
	 RESTORE 124
	 RGTLEFT 125
	 RIGHT 125
	 RIGHTADJUST 126
	 SAVE, SSAVE 127
	 SCHANGE 128
	 SET 129
	 SHIFT 129
	 SHOWDLG 130
	 SORT 131
	 SOS 133
	 SPLIT 138
	 SPLTJOIN 139
	 STATUS 140
	 SYNEX 140
	 TAG 140
	 TEXT 141
	 TFIND 142
	 TOP 143
	 UNDO 143
	 UNLOCK 143
	 UP 144
	 UPPERCASE 144
	 WINDOW 145
	 WINEXEC 146
	 WINHELP 147
	 WMSG 148
	 XEDIT 148
	 & 148
	 ? 149
	 = 150

	Chapter 4. The SET Command 151
	 SET ALT 154
	 SET ARBCHAR 155
	 SET ARROW 158
	 SET AUTOCOLOR 158
	 SET AUTOEXIT 160
	 SET AUTOINDENT 160
	 SET AUTOSAVE 161
	 SET AUTOSCROLL 162
	 SET BACKUP 163
	 SET BEEP 164
	 SET BOUNDMARK 164
	 SET CASE 166
	 SET CLOCK 168
	 SET CMDLINE 168
	 SET COLMARK 169
	 SET COLOR 170
	 SET COLORING 172
	 SET CURLINE 175
	 SET CURRBOX 176
	 SET CURSORSIZE 177
	 SET CURSORTYPE 178
	 SET DEBUGGING 178
	 SET DEFEXT 179
	 SET DEFPROFILE 180
	 SET DEFSORT 181
	 SET DIRFORMAT 182
	 SET DISPLAY 183
	 SET DOCSIZING 184
	 SET DRAG 185
	 SET ECOLOR 186
	 SET EOFIN 189
	 SET EOFOUT 189
	 SET EOLIN 190
	 SET EOLOUT 191
	 SET FCASE 192
	 SET FILEID, FMODE, FPATH, FNAME, FEXT, FTYPE 192
	 SET FORMAT 195
	 SET HELPDIR 196
	 SET HEX 196
	 SET HEXDISPLAY 197
	 SET HIGHLIGHT 198
	 SET IDLINE 199
	 SET IMPMACRO 199
	 SET INISAVE 200
	 SET INITIALDIR 201
	 SET INITIALDOCSIZE 203
	 SET INITIALFRAMESIZE 204
	 SET INITIALINSERT 205
	 SET INITIALWIDTH 206
	 SET INPUTMODE 206
	 SET INSERTMODE 208
	 SET INSTANCE 208
	 SET INTERFACE 209
	 SET INTERNATIONAL 211
	 SET KEYSTYLE 213
	 SET LASTOP 214
	 SET LINEFLAG 215
	 SET LINEND 216
	 SET LOCKING 217
	 SET LRECL 218
	 SET MACROPATH 219
	 SET MARGINS 221
	 SET MARKSTYLE 222
	 SET MONITOR 223
	 SET MOUSEBEEP 224
	 SET MSGLINE 224
	 SET MSGMODE 225
	 SET NEWLINES 226
	 SET NOVALUE 227
	 SET NUMBER 227
	 SET OFPW 228
	 SET OPENFILTER 229
	 SET PARSER 230
	 SET PATH 232
	 SET PCOLOR 233
	 SET POINT 235
	 SET PREFIX 236
	 SET PREFIXWIDTH 239
	 SET PRINTCOLORING 239
	 SET PRINTER 240
	 SET PRINTPROFILE 242
	 SET QUICKFIND 243
	 SET RANGE 244
	 SET RECENTFILES 245
	 SET RECFM 245
	 SET REPROFILE 246
	 SET REGSAVE 247
	 SET RESERVED 248
	 SET RIGHTCTRL 249
	 SET SCALE 249
	 SET SCOPE 250
	 SET SCREEN 251
	 SET SCROLLBAR 253
	 SET SELECT 253
	 SET SHADOW 254
	 SET SHARING 255
	 SET STATUSLINE 256
	 SET STAY 257
	 SET STREAM 257
	 SET SYNONYM 258
	 SET TABLINE 260
	 SET TABS 261
	 SET TABSAVE 262
	 SET TABSIN 263
	 SET TABSOUT 264
	 SET THIGHLIGHT 265
	 SET TIMECHECK 265
	 SET TOFEOF 266
	 SET TOOLBAR 267
	 SET TOOLBUTTON 267
	 SET TOOLSET 272
	 SET TRAILING 274
	 SET TRANSLATEIN, TRANSLATEOUT 275
	 SET TRUNC 275
	 SET UNDOING 276
	 SET VARBLANK 277
	 SET VERIFY 277
	 SET WINMARGIN 279
	 SET WORD 280
	 SET WORDWRAP 281
	 SET WRAP 281
	 SET ZONE 282
	 SET = 283

	Chapter 5. QUERY and EXTRACT 284
	5.1 QUERY 284
	5.2 EXTRACT and Implied EXTRACTs 285
	5.3 QUERY and EXTRACT Operands 287

	Chapter 6. Macro Reference 329
	6.1 Program Structure 329
	6.2 Tokens 330
	6.3 Symbols and Variables 331
	6.4 Assignments 333
	6.5 Operators and Expressions 333
	6.6 Commands 338
	6.7 Keyword Instructions 339
	6.8 Functions 349
	 6.8.1 Built-in Functions 351
	 6.8.2 Notes on I/O Functions 375
	 6.8.3 Boolean Functions 377

	6.9 The PARSE Instruction 381
	6.10 Conditions 386
	6.11 KEXX and REXX 388

	Chapter 7. Built-In Macro Handling 390
	7.1 Overview 390
	7.2 Keyboard Macros 390
	7.3 Toolbar Macros 394
	7.4 Menu Macros 395
	7.5 Mouse Macros 395

	Chapter 8. KEDIT Language Definition Files 397
	8.1 Loading KLD Files 397
	8.2 KLD File Format 398

	Chapter 9. Error Messages and Return Codes 410
	9.1 Error Messages 410
	9.2 Return Codes 429

	Index 431

	Index
	!
	& command 148
	=
	QUERY and EXTRACT option 328
	SET option 283
	command 150

	? command 149

	A
	ABBREV
	built-in function 352

	ABS
	built-in function 352

	ADD command 26
	ADDLINE
	SOS action 133

	AFTER()
	Boolean function 377

	ALARM
	SOS action 133

	ALERT command 26
	ALL command 27
	ALT
	QUERY and EXTRACT option 287
	SET option 154

	ALT()
	Boolean function 377

	ALTER command 28
	ALTKEY()
	Boolean function 378

	ANSI fonts
	SEE ‘‘Character set handling’’

	ANSIDATATYPE
	built-in function 352

	ANSILOWER
	built-in function 353

	ANSITOOEM
	built-in function 353
	command 29

	ANSIUPPER
	built-in function 354

	ARBCHAR
	QUERY and EXTRACT option 287
	SET option 155

	ARG
	KEXX instruction 339
	built-in function 354

	ARROW
	QUERY and EXTRACT option 287
	SET option 158

	ASCII macro 116, 394
	ATTRIBUTES
	QUERY and EXTRACT option 287
	SET option 153

	AUS files 161
	AUTOCOLOR
	QUERY and EXTRACT option 288
	SET option 158

	AUTOEXIT
	QUERY and EXTRACT option 289
	SET option 160

	AUTOINDENT
	QUERY and EXTRACT option 289
	SET option 160

	AUTOSAVE
	QUERY and EXTRACT option 289
	SET option 161
	reset alteration count 154

	AUTOSCROLL
	QUERY and EXTRACT option 289
	SET option 162

	Adding lines
	SEE ’’Inserting text’’

	Alteration count 154
	SEE ALSO ‘‘AUTOSAVE’’

	Append
	CLIPBOARD command 39

	Arguments, passing to macros
	ARG KEXX instruction 339
	ARG built-in function 354
	PARSE KEXX instruction 345
	passing to profile 22

	Arrays
	SEE ‘‘Compound variables’’

	Assignments, KEXX 333

	B
	B2X
	built-in function 355

	BACKUP
	QUERY and EXTRACT option 289
	SET option 163

	BACKWARD command 30
	BAK files 163
	BEEP
	QUERY and EXTRACT option 289
	SET MOUSEBEEP option 224
	SET option 164
	SOS action 133
	built-in function 355

	BEFORE()
	Boolean function 378

	BITAND
	built-in function 355

	BITOR
	built-in function 355

	BITXOR
	built-in function 355

	BLANK()
	Boolean function 378

	BLANKDOWN
	SOS action 133

	BLANKUP
	SOS action 133

	BLOCK
	QUERY and EXTRACT option 290

	BLOCK()
	Boolean function 378

	BLOCKEND
	SOS action 133

	BLOCKSTART
	SOS action 133

	BOTTOM command 31
	BOTTOMEDGE
	SOS action 134

	BOTTOMEDGE()
	Boolean function 378

	BOUNDMARK
	QUERY and EXTRACT option 290
	SET option 165

	BUTTON1()
	Boolean function 378

	BUTTON2()
	Boolean function 378

	Backing up files
	SET AUTOSAVE option 161
	SET BACKUP 163
	SEE ALSO ‘‘SAVE’’

	Blanks
	trailing 218, 274

	Blocks
	SET MARKSTYLE option 222
	marking 97
	unmarking 123

	Boolean functions 377
	Boundary markers
	SET BOUNDMARK option 165
	SET COLMARK option 169
	SET WINMARGIN option 279

	Built-in functions 351
	Buttons
	defining 267

	C
	C2D
	built-in function 358

	C2X
	built-in function 358

	CALL
	KEXX instruction 339, 387

	CANCEL command 31
	CAPPEND command 31
	CASE
	QUERY and EXTRACT option 290
	SET option 166

	CDELETE command 32
	CDN
	SOS action 134

	CENTER
	built-in function 356
	command 33

	CENTRE
	built-in function 356

	CFIRST command 34
	CHANGE
	command 34
	effect of ARBCHAR on 156
	effect of ZONE on 282
	repeating last CHANGE command 36

	CHANGESTR
	built-in function 356

	CHARIN
	built-in function 356

	CHAROUT
	built-in function 356

	CHARS
	built-in function 357

	CHDIR command 36
	CHDRIVE command 36
	CHECK
	SOS action 134

	CINSERT command 38
	CLASSIC interface
	SEE ’’Interface settings’’

	CLASSIC()
	Boolean function 378

	CLAST command 34
	CLEFT
	SOS action 134

	CLICK
	QUERY and EXTRACT option 290

	CLIPBOARD
	QUERY and EXTRACT option 291

	CLIPBOARD command 39
	CLIPTEXT()
	Boolean function 378

	CLOCATE
	command 40
	examples 41
	used with CINSERT 38

	CLOCK
	QUERY and EXTRACT option 292
	SET option 168

	CMATCH command 41
	CMDLINE
	QUERY and EXTRACT option 292
	SET option 168

	CMDSEL()
	Boolean function 378

	CMSG command 43
	COLMARK
	QUERY and EXTRACT option 292
	SET option 169

	COLOR
	QUERY and EXTRACT option 292
	SET option 170

	COLORING
	QUERY and EXTRACT option 293
	SET option 172

	COLUMN
	QUERY and EXTRACT option 293
	initialization option 16

	COMMAND command 43
	COMMAND()
	Boolean function 378

	COMPARE
	built-in function 357

	COMPRESS command 44
	CONDITION
	built-in function 357

	COPIES
	built-in function 358

	COPY command 45
	COUNT command 46
	COUNTSTR
	built-in function 358

	COVERLAY command 47
	CREPLACE command 48
	CRIGHT
	SOS action 134

	CTRL()
	Boolean function 378

	CUA interface
	SEE ’’Interface settings‘‘

	CUA()
	Boolean function 378

	CUP
	SOS action 134

	CURLINE
	QUERY and EXTRACT option 293
	SET option 175

	CURRBOX
	QUERY and EXTRACT option 294
	SET option 176

	CURRENT
	SOS action 134

	CURRENT()
	Boolean function 378

	CURSOR
	QUERY and EXTRACT option 294
	command 49

	CURSORADJUST
	SOS action 134

	CURSORSIZE
	QUERY and EXTRACT option 294
	SET option 177

	CURSORTYPE
	QUERY and EXTRACT option 294
	SET option 178

	Case conversion
	ANSILOWER built-in function 353
	ANSIUPPER built-in function 354
	SET INTERNATIONAL option 211
	to lowercase 93
	to uppercase 144

	Changing text
	ALTER command 28
	CAPPEND command 31
	CDELETE command 32
	CHANGE command 34
	CINSERT command 38
	COVERLAY command 47
	CREPLACE command 48
	OVERLAY command 106
	REPLACE command 123
	SCHANGE command 128
	character codes 28
	overlaying columns 47
	recovering from 117
	selective change 128
	shifting 129
	to lowercase 93
	to uppercase 144

	Character codes
	converting from decimal 364
	converting to decimal 358
	displaying 77, 197
	specifying 28, 197

	Character set handling
	ANSITOOEM built-in function 353
	ANSITOOEM command 29
	OEMTOANSI built-in function 367
	OEMTOANSI command 106
	SET INTERNATIONAL option 211
	SET TRANSLATEIN option 275
	SET TRANSLATEOUT option 275

	Color handling
	SET COLOR option 170
	SET COLORING option 172
	SET ECOLOR option 186
	SET MONITOR option 223
	SET PCOLOR option 233
	Syntax coloring 172

	Coloring
	syntax coloring 397

	Column markers
	SEE ’’Boundary markers’’

	Column pointer
	displaying 249
	moving 40

	Columns, working with
	CAPPEND command 31
	CDELETE command 32
	CLOCATE command 40
	MARK command 97
	SET ZONE option 282

	Command history
	SOS RETRIEVEB, SOS RETRIEVEF 136

	Commands
	& command 148
	= command 150
	? command 149
	entering several at one time 150, 216
	in macros 338
	last operand used 214
	positioning of screen after 257
	recalling 149
	renaming 258
	repeating 121, 148, 150

	Compound variables 332
	Condition handling
	KEXX facility 386

	Copying text
	COPY command 45
	GET command 75
	to a disk file 112

	Cowlishaw, Michael 329, 388
	Current directory
	CHDIR command 36
	QUERY and EXTRACT option 295
	SET INITIALDIR option 201

	Current line
	box around 176
	location in window 175

	Cursor
	extracting position 299
	shape 177 - 178

	Customizing KEDIT
	SEE ‘‘SET command’’
	SEE ‘‘WINPROF.KEX’’
	SEE ‘‘registry’’

	Cut and paste
	CLIPBOARD command 39

	D
	D2C
	built-in function 363

	D2X
	built-in function 364

	DATATYPE
	built-in function 359

	DATE
	built-in function 360

	DATECONV
	built-in function 361

	DEBUG command 51
	DEBUGGING
	QUERY and EXTRACT option 295
	SET option 179

	DEFEXT
	QUERY and EXTRACT option 295
	SET option 179

	DEFINE command 53
	DEFPROFILE
	QUERY and EXTRACT option 295
	SET option 180
	initialization option 16

	DEFSORT
	QUERY and EXTRACT option 295
	SET option 181

	DELBACK
	SOS action 134

	DELBEGIN
	SOS action 134

	DELCHAR
	SOS action 134

	DELEND
	SOS action 134

	DELETE command 54
	DELIMIT
	built-in function 361

	DELLINE
	SOS action 134

	DELSEL
	SOS action 134

	DELSEL()
	Boolean function 379

	DELSTR
	built-in function 362

	DELWORD
	SOS action 134
	built-in function 362

	DIALOG command 55
	DIGITS
	built-in function 362

	DIR command 58
	DIR()
	Boolean function 379

	DIRAPPEND command 58
	DIRECTORY
	QUERY and EXTRACT option 295
	SEE ALSO ’’Current directory’’

	DIRFILEID
	QUERY and EXTRACT option 296

	DIRFORMAT
	QUERY and EXTRACT option 296
	SET option 182

	DIRSORT command 59
	DISPLAY
	QUERY and EXTRACT option 296
	SET option 183

	DMSG command 60
	DO-END
	KEXX instruction 340

	DOCSIZING
	QUERY and EXTRACT option 297
	SET option 184

	DOPREFIX
	SOS action 135

	DOS
	DIR command 58
	ERASE simulation 67
	EXIT 61
	command 61

	DOSDIR
	built-in function 362

	DOSENV
	built-in function 363

	DOSNOWAIT command 61
	DOSQUIET command 61
	DOWN command 63
	DRAG
	QUERY and EXTRACT option 297
	SET option 185

	DROP
	KEXX instruction 342

	DUPLICATE command 64
	Debugging macros
	DEBUG command 51
	PROFDEBUG initialization option 20
	SET DEBUGGING option 179
	SET NOVALUE option 227
	TRACE KEXX instruction 348

	Decimal codes
	SEE ‘‘Character codes’’

	Deleting text
	DELETE command 54
	column delete 32
	deleting words with Shift+Ctrl+W 280

	Directory listing 15, 58
	initial directory 201

	Document window
	SET DOCSIZING option 184
	SET INITIALDOCSIZE option 203
	SET OFPW option 228
	SET SCREEN option 251
	WINDOW command 145
	SEE ALSO ‘‘Frame window’’

	E
	ECOLOR
	QUERY and EXTRACT option 297, 314
	SET option 186

	EDITV command 65
	EFILEID
	QUERY and EXTRACT option 297

	EMSG command 67
	END()
	Boolean function 379

	ENDCHAR
	SOS action 135

	ENDWORD
	SOS action 135

	EOF
	QUERY and EXTRACT option 298

	EOF()
	Boolean function 379

	EOFIN
	QUERY and EXTRACT option 298
	SET option 189

	EOFOUT
	QUERY and EXTRACT option 298
	SET option 189

	EOL
	QUERY and EXTRACT option 298

	EOLIN
	QUERY and EXTRACT option 298
	SET option 190

	EOLOUT
	QUERY and EXTRACT option 299
	SET option 191

	ERASE command 67
	ERRORBEEP
	SOS action 135

	ERRORTEXT
	built-in function 364

	EXECUTE
	SOS action 135

	EXIT
	KEXX instruction 342
	returning to KEDIT from DOS 61

	EXPAND
	command 68
	used with COMPRESS 44

	EXTEND command 68
	EXTRACT command 69, 285
	End-of-file character 189
	Entering text
	SEE ’’Inserting text‘‘

	Environment variable
	KEDITW 21

	Equal buffer 121, 283, 328
	Equalsign
	SET option description 283

	Error messages 410
	Exit code
	from DOS commands 62

	Expressions, KEXX 333
	Extended characters
	SEE ’’International support’’

	F
	FCASE
	QUERY and EXTRACT option 299

	FEXT
	QUERY and EXTRACT option 299
	SET option 193

	FFILE command 69
	FIELD
	QUERY and EXTRACT option 299

	FIELDWORD
	QUERY and EXTRACT option 299

	FILE command 69
	FILEID
	QUERY and EXTRACT option 300
	SET option 193

	FILELINE()
	Boolean function 379

	FILESEARCH
	QUERY and EXTRACT option 300

	FILESTATUS
	QUERY and EXTRACT option 300

	FILL command 71
	FILLBOX command 71
	FIND
	command 72
	SEE ALSO ‘‘LOCATE’’

	FINDUP command 72
	FIRST()
	Boolean function 379

	FIRSTCHAR
	SOS action 135

	FIRSTCOL
	SOS action 135

	FLOW command 73
	FLSCREEN
	QUERY and EXTRACT option 301

	FMODE
	QUERY and EXTRACT option 301
	SET option 193

	FNAME
	QUERY and EXTRACT option 301
	SET option 193

	FOCUSEOF()
	Boolean function 379

	FOCUSTOF()
	Boolean function 379

	FOCUSWORD
	QUERY and EXTRACT option 301

	FORMAT
	QUERY and EXTRACT option 302
	SET option 195
	built-in function 364

	FORWARD command 74
	FPATH
	QUERY and EXTRACT option 302
	SET option 193

	FRAMESIZE
	initialization option 16

	FTYPE
	QUERY and EXTRACT option 302
	SET option 193

	FULLINP()
	Boolean function 379

	FUP command 72
	FUZZ
	built-in function 364

	File locking
	LOCK command 93
	LOCK initialization option 17
	SET LOCKING option 217
	UNLOCK command 143

	Files
	backing up 163
	creating 83, 112, 148
	default extensions 179
	end-of-file character 189
	extension of .AUS 161
	extension of .BAK 163
	initial directory 201
	line length 218, 245
	locking 93
	opening 83, 229
	renaming 121, 193
	saving automatically 161
	search path for 83, 232, 300
	switching between files 83
	temporary 112
	trailing blanks in lines 245, 274
	unlocking 143

	Fixed length records 218, 245
	Frame window
	SET INITIALFRAMESIZE option 204
	WINDOW command 145
	SEE ALSO ‘‘Document window’’

	Functions
	Boolean 377
	built-in 351
	external 351
	implied EXTRACT 286
	internal 350

	G
	GET command 75

	H
	HELP command 76
	HELPDIR
	SET option 196

	HEX
	QUERY and EXTRACT option 303
	SET option 197

	HEXDISPLAY
	QUERY and EXTRACT option 303
	SET option 197

	HEXTYPE command 77
	HIGHLIGHT
	QUERY and EXTRACT option 303
	SET option 198

	HISTUTIL command 77
	HIT command 80
	Hexadecimal codes 77, 278
	Horizontal cursor 177 - 178

	I
	IDLINE
	QUERY and EXTRACT option 303
	SET option 199

	IF-THEN-ELSE
	KEXX instruction 342

	IMMEDIATE command 81
	IMPMACRO
	QUERY and EXTRACT option 303
	SET option 199

	INBLOCK()
	Boolean function 379

	INISAVE
	QUERY and EXTRACT option 304, 317
	SET option 200, 247

	INITIAL()
	Boolean function 379

	INITIALDIR
	QUERY and EXTRACT option 304
	SET option 201

	INITIALDOCSIZE
	QUERY and EXTRACT option 304
	SET option 203

	INITIALFRAMESIZE
	QUERY and EXTRACT option 304
	SET option 204

	INITIALINSERT
	QUERY and EXTRACT option 304
	SET option 205

	INITIALWIDTH
	QUERY and EXTRACT option 305
	SET option 206

	INPREFIX()
	Boolean function 379

	INPUT
	command 82
	SEE ALSO ’’INPUTMODE’’

	INPUTMODE
	QUERY and EXTRACT option 305
	SET option 207
	exit with Home key 207

	INSERT
	built-in function 364

	INSERTMODE
	QUERY and EXTRACT option 305
	SET option 208

	INSERTMODE()
	Boolean function 379

	INSTAB
	SOS action 135

	INSTANCE
	QUERY and EXTRACT option 305
	SET option 208
	initialization option 17

	INTERFACE
	QUERY and EXTRACT option 305
	SET option 209

	INTERNATIONAL
	QUERY and EXTRACT option 305
	SET option 211

	INTERPRET
	KEXX instruction 343

	INTRUNC()
	Boolean function 379

	ITERATE
	KEXX instruction 343

	Implied EXTRACT functions 286
	Indenting
	SET AUTOINDENT option 160
	SET MARGINS option 221

	Initialization options 16
	COLUMN 16
	DEFPROFILE 16
	FRAMESIZE 16
	INSTANCE 17
	LINE 17
	LOCK 17
	MACROPATH 18
	NEW 18
	NODEFEXT 18
	NOFILEMENU 18
	NOINI 18
	NOLOCK 18
	NOMSG 19
	NOPROFILE 19
	NOREG 19
	PATH 19
	PROFDEBUG 20
	PROFILE 20
	UNTITLED 20
	WIDTH 20
	notes on 20

	Initialization processing 22 - 23
	editing additional files 24 - 25

	Input, in macros
	ALERT command 26
	DIALOG command 55
	PARSE, KEXX instruction 345
	PULL, KEXX instruction 346
	READV command 114

	Input/Output in KEXX 375
	Inputting text
	SEE ’’Inserting text‘‘

	Insert mode 205, 208
	Inserting text
	ADD command 26
	INPUT command 82
	SET INPUTMODE option 207
	SET WORDWRAP option 281
	adding lines 26, 226
	appending to end of text 31
	column insert 38
	continuous entering 207, 281
	duplicating lines 64
	from another file 75

	Instructions, KEXX 339
	Interface settings
	CLASSIC 209
	CUA 209
	SET INTERFACE option 209
	SET KEYSTYLE option 213
	SET MARKSTYLE option 222
	SET OFPW option 228

	International support
	ANSILOWER built-in function 353
	ANSIUPPER built-in function 354
	DATECONV built-in function 361
	SET INTERNATIONAL option 211
	and printing 240
	and sorting 131, 211
	case conversion 93, 144, 211
	keyboard 393

	Invoking KEDIT 14

	J
	JOIN command 82
	Justifying text
	FLOW command 73
	LEFTADJUST command 87
	RIGHTADJUST command 126
	SET FORMAT option 195

	K
	KEDIT
	Language Definition files 398
	STATUS command 140
	command 83
	default extensions 179
	invoking 14, 83
	SEE ALSO ‘‘Screen layout’’

	KEDIT Language Definition files
	SEE KLD files

	KEDITW environment variable 21
	KEXX
	assignments 333
	expressions 333
	instructions 339
	language reference 329
	operators 331, 333
	symbols 331
	tokens 330
	variables 331
	SEE ALSO ‘‘Macros’’

	KEYSTYLE
	QUERY and EXTRACT option 306
	SET option 213

	KHELP command 85
	KLD files
	file format 398
	introduction 397

	Keyboard
	redefining 53

	Keys, naming conventions 391

	L
	LASTKEY
	QUERY and EXTRACT option 306

	LASTMSG
	QUERY and EXTRACT option 307

	LASTOP
	QUERY and EXTRACT option 307
	SET option 214

	LASTPOS
	built-in function 365

	LASTRC
	QUERY and EXTRACT option 307

	LEAVE
	KEXX instruction 344

	LEFT
	built-in function 365
	command 86

	LEFTADJUST command 87
	LEFTEDGE
	SOS action 135

	LEFTEDGE()
	Boolean function 379

	LENGTH
	QUERY and EXTRACT option 308
	built-in function 365

	LESS command 87
	LINE
	QUERY and EXTRACT option 308
	initialization option 17

	LINEADD
	SOS action 135

	LINEDEL
	SOS action 135

	LINEFLAG
	QUERY and EXTRACT option 308
	SET option 215

	LINEIN
	built-in function 365

	LINEINP()
	Boolean function 380

	LINEND
	QUERY and EXTRACT option 308
	SET option 216

	LINEOUT
	built-in function 366

	LINES
	built-in function 366

	LOCATE
	command 88
	effect of ARBCHAR on 155
	effect of CASE on 166
	effect of WRAP on 281
	repeating of 89

	LOCK
	command 93
	initialization option 17

	LOCKING
	QUERY and EXTRACT option 308
	SET option 217

	LOWER
	built-in function 367

	LOWERCASE command 93
	LPREFIX command 94
	LRECL
	QUERY and EXTRACT option 308
	SET option 218

	LSCREEN
	QUERY and EXTRACT option 309

	Leaving KEDIT
	SEE ‘‘Ending KEDIT’’

	Line(s)
	adding 207
	copying 45
	deleting 54
	displaying line numbers 227
	duplicating 64
	locating 257, 281 - 282
	maximum length 20, 206
	moving 102
	naming 235
	problem with wrapping 20
	recovering 117

	Locating text
	ALL command 27
	CLOCATE command 40
	FIND command 72
	FINDUP 72
	LOCATE command 88
	NFIND command 104
	NFINDUP command 104
	SET QUICKFIND option 243
	TFIND command 142
	column locate 40
	effect of ARBCHAR on 155
	effect of CASE on 166
	effect of WRAP on 281

	Looping, in KEXX 340

	M
	MACRO
	QUERY and EXTRACT option 309
	command 95

	MACROPATH
	QUERY and EXTRACT option 309
	SET option 219
	initialization option 18

	MACROS command 96
	MAKECURR
	SOS action 135

	MARGINL
	SOS action 135

	MARGINR
	SOS action 135

	MARGINS
	QUERY and EXTRACT option 309
	SET option 221

	MARK command 97
	MARKSTYLE
	QUERY and EXTRACT option 310
	SET option 222

	MAX
	built-in function 367

	MEMORY
	QUERY and EXTRACT option 310

	MERGE command 99
	MIN
	built-in function 367

	MODIFIABLE()
	Boolean function 380

	MODIFY command 100
	MONITOR
	QUERY and EXTRACT option 310
	SET option 223

	MORE command 101
	MOUSEBEEP
	QUERY and EXTRACT option 310
	SET option 224
	SOS action 136

	MOUSEPOSMODIFIABLE()
	Boolean function 380

	MOUSEPOSVALID()
	Boolean function 380

	MOUSETEXT
	SET option 153

	MOVE command 102
	MSG command 103
	MSGLINE
	QUERY and EXTRACT option 311
	SET option 224

	MSGMODE
	QUERY and EXTRACT option 311
	SET option 225

	MULTWINDOW()
	Boolean function 380

	Macros
	WINPROF.KEX 23
	debugging 179
	defining 53
	immediate execution 81
	implied 199
	in-memory 53, 96
	language reference 329
	path 219
	reading data from command line 114
	removing 111

	Margin
	 line marking 279

	Matching braces, brackets, etc. 42
	Menu
	macros 395
	popup 107

	Messages
	CMSG command 43
	DMSG command 60
	EMSG command 67
	MSG command 103
	NOMSG command 105
	NOMSG initialization option 19
	SET MSGMODE option 225
	WMSG command 148
	summary of 410

	Minimal truncation 12
	Moving text
	MOVE command 102
	SHIFT command 129
	to a disk file 112

	Multiple file editing 83

	N
	NBFILE
	QUERY and EXTRACT option 311

	NBSCOPE
	QUERY and EXTRACT option 311

	NBWINDOW
	QUERY and EXTRACT option 312

	NEW
	initialization option 18

	NEWLINES
	QUERY and EXTRACT option 312
	SET option 226

	NEXT command 104
	NFIND command 104
	NFINDUP command 104
	NFUP command 104
	NODEFEXT
	initialization option 18

	NOFILEMENU
	initialization option 18

	NOINI
	initialization option 18

	NOLOCK
	initialization option 18

	NOMSG
	initialization option 19

	NOMSG command 105
	NOP
	KEXX instruction 344

	NOPROFILE
	initialization option 19

	NOQUEUE()
	Boolean function 380

	NOREG
	initialization option 19

	NOVALUE
	QUERY and EXTRACT option 312
	SET option 227

	NUMBER
	QUERY and EXTRACT option 312
	SET option 227

	Naming files
	SEE ‘‘Files’’

	Naming lines 235

	O
	OEM fonts
	SEE ‘‘Character set handling’’

	OEMFONT()
	Boolean function 380

	OEMTOANSI
	built-in function 367
	command 106

	OFPW
	SET option 228

	OPENFILTER
	SET option 229

	OPMODE
	QUERY an EXTRACT option 312

	OPSYS
	QUERY and EXTRACT option 313

	OPTIONS
	KEXX instruction 345

	OTHERWISE
	KEXX instruction 347

	OVERLAY
	built-in function 367
	command 106

	OVERLAYBOX command 107
	One-file-per-window 228
	Operator precedence, KEXX 337
	Operators, KEXX 331
	Options of SET command 129
	displaying 100, 113, 140
	modifying 100

	Output from macros, displaying
	ALERT command 26
	CMSG command 43
	DIALOG command 55
	DMSG command 60
	MSG command 103
	WMSG command 148

	Overlaying text
	enter line with OVERLAY 106
	specified columns with COVERLAY 47

	P
	PARINDENT
	SOS action 136

	PARSE
	KEXX instruction 345, 381, 383, 385

	PARSER
	QUERY and EXTRACT option 313
	SET option 230

	PATH
	QUERY and EXTRACT option 314
	SET option 232
	initialization option 19

	PCOLOR
	SET option 233

	PENDING()
	Boolean function 380

	POINT
	QUERY and EXTRACT option 314
	SET option 235

	POPUP command 107
	POS
	built-in function 367

	POWER equivalent 207
	PREFIX
	QUERY and EXTRACT option 315
	SET option 236
	SOS action 136

	PREFIX SYNONYM
	SET option description 236

	PREFIX()
	Boolean function 380

	PREFIXLEFT()
	Boolean function 380

	PREFIXWIDTH
	SET option 239

	PRESERVE command 108
	PRINT command 109
	PRINTCOLORING
	SET option 239

	PRINTER
	QUERY and EXTRACT option 315
	SET option 240

	PRINTPROFILE
	QUERY and EXTRACT option 316
	SET option 242

	PRINTSIZE
	QUERY and EXTRACT option 316

	PROCEDURE
	KEXX instruction 345

	PROFDEBUG
	initialization option 20

	PROFILE
	initialization option 20
	SEE ALSO ‘‘WINPROF.KEX’’

	PROFILE()
	Boolean function 380

	PULL
	KEXX instruction 346

	PURGE command 111
	PUT command 112
	PUTD command 112
	Paste
	CLIPBOARD command 39

	Prefix area
	SET PREFIX option 236
	SET PREFIXWIDTH option 239
	commands 237
	disappears in Input Mode 207
	processing prefix commands 94
	resetting pending prefix commands 123

	Profiles
	editing additional files 24 - 25
	in initialization processing 22 - 23

	Put
	CLIPBOARD command 39

	Q
	QCMND
	SOS action 136

	QQUIT command 114
	QUERY command 113
	QUICKFIND
	QUERY and EXTRACT option 316
	SET option 243

	QUICKFINDACT
	SOS action 136

	QUICKFINDB
	SOS action 136

	QUICKFINDF
	SOS action 136

	QUIT command 114

	R
	RANDOM
	built-in function 368

	RANGE
	QUERY and EXTRACT option 316
	SET option 244

	READV command 114
	RECENTFILES
	QUERY and EXTRACT option 316
	SET option 245

	RECFM
	QUERY and EXTRACT option 317
	SET option 245

	RECOVER command 117
	REDO command 118
	REFRESH command 118
	REGUTIL command 119
	RENAME command 121
	REPEAT
	command 121
	used with CDELETE 33
	used with COVERLAY 48

	REPLACE
	can trigger Input Mode 207
	command 123

	REPROFILE
	QUERY and EXTRACT option 317
	SET option 246

	RESERVED
	QUERY and EXTRACT option 317
	SET option 248

	RESET command 123
	RESTORE
	SOS action 136
	command 124

	RESTORECOL
	SOS action 136

	RESTORELINE
	SOS action 136

	RETRIEVEB
	SOS action 136

	RETRIEVEF
	SOS action 136

	RETURN
	KEXX instruction 346

	REVERSE
	built-in function 368

	REXX language 388
	The REXX Language 329, 388

	RGTLEFT command 125
	RIGHT
	built-in function 368
	command 125

	RIGHTADJUST command 126
	RIGHTCTRL
	QUERY and EXTRACT option 317
	SET option 249

	RIGHTEDGE
	SOS action 136

	RIGHTEDGE()
	Boolean function 380

	RING
	QUERY and EXTRACT option 317

	Record length
	SET LRECL option 218
	SET RECFM option 245
	WIDTH initialization option 20
	truncation column 276

	Recovering text
	SEE ‘‘RECOVER command’’
	SEE ’’UNDO command’’

	Registry 23
	NOREG initialization option 19
	SET REGSAVE option 247
	and profile processing 23

	Regular Expressions 35
	Regular expressions 92
	Reserved lines 248
	Return codes 429
	TRACE KEXX instruction 348

	Routines
	external 351
	internal 350

	Running external programs 61, 146

	S
	SAVE
	SOS action 137
	command 127
	default extensions 179

	SAVECOL
	SOS action 137

	SAVELINE
	SOS action 137

	SAY
	KEXX instruction 346

	SCALE
	QUERY and EXTRACT option 318
	SET option 249

	SCHANGE command 128
	SCOPE
	QUERY and EXTRACT option 318
	SET option 250

	SCREEN
	SET option 251

	SCROLLBAR
	QUERY and EXTRACT option 318
	SET option 253

	SCROLLLOCK()
	Boolean function 380

	SELECT
	KEXX instruction 347
	QUERY and EXTRACT option 318
	SET option 253

	SET
	STATUS command 140
	command 129
	preserving option values 108
	querying settings 113
	restoring preserved option values 124

	SETCOLPTR
	SOS action 137

	SETLEFTM
	SOS action 137

	SETTAB
	SOS action 137

	SHADOW
	QUERY and EXTRACT option 319
	SET option 255

	SHADOW()
	Boolean function 381

	SHARING
	QUERY and EXTRACT option 319
	SET option 255

	SHIFT command 129
	SHIFT()
	Boolean function 381

	SHOWDLG command 130
	SHOWPRINTDLG()
	Boolean function 381

	SIGN
	built-in function 366, 368 - 369

	SIGNAL
	KEXX Instruction 387
	KEXX instruction 348

	SIZE
	QUERY and EXTRACT option 319

	SORT command 131
	SOS command 133
	SOURCELINE
	built-in function 369

	SPACE
	built-in function 369

	SPACECHAR()
	Boolean function 381

	SPLIT command 138
	SPLTJOIN command 139
	SSAVE command 127
	STARTUP
	QUERY and EXTRACT option 319

	STARTWORD
	SOS action 137

	STATUS command 140
	STATUSLINE
	QUERY and EXTRACT option 320
	SET option 256

	STAY
	QUERY and EXTRACT option 315, 320
	SET option 257
	used with CHANGE 35

	STREAM
	QUERY and EXTRACT option 320
	SET option 257
	used with CDELETE 32

	STRIP
	built-in function 369

	SUBSTR
	built-in function 369

	SUBWORD
	built-in function 370

	SYMBOL
	built-in function 370

	SYNEX command 140
	SYNONYM
	QUERY and EXTRACT option 320
	SET option 258

	Saving your work
	FILE command 69
	SAVE command 127
	SET AUTOSAVE option 161
	SET BACKUP option 163

	Screen layout
	SET ARROW option 158
	SET CLOCK option 168
	SET CURLINE option 175
	SET HEXDISPLAY option 197
	SET IDLINE option 199
	SET NUMBER 227
	SET PREFIX option 236
	SET PREFIXWIDTH option 239
	SET RESERVED option 248
	SET SCALE option 249
	SET SCREEN option 251
	SET SCROLLBAR option 253
	SET STATUSLINE option 256
	SET TABLINE option 260
	SET VERIFY option 278
	displaying character code 197
	multiple windows 251
	numbers on lines 227
	reserved lines 248
	scale line 249

	Scrolling
	SET AUTOSCROLL option 162
	backward 30
	forward 74
	horizontal 86, 125, 162

	Search and replace
	SEE ’’Changing text’’
	SEE ’’Locating text’’

	Selective changing of text 128
	Shelling to DOS
	SEE ’’Running external programs’’

	Shifting text
	SHIFT command 129

	Sorting
	SORT command 131
	and international characters 211

	Special characters
	changing 29

	Starting KEDIT 14, 83
	Stem variables 331
	Symbols, KEXX 331
	Synonyms
	for commands 258
	for prefix area commands 236

	Syntax coloring
	controlling colors 186, 233, 239
	enabling 172
	loading KLD files 397

	Syntax conventions 12 - 13

	T
	TAB()
	Boolean function 381

	TABB
	SOS action 137

	TABCMD
	SOS action 137

	TABCMDB
	SOS action 137

	TABCMDF
	SOS action 137

	TABF
	SOS action 137

	TABFIELDB
	SOS action 138

	TABFIELDF
	SOS action 138

	TABLINE
	QUERY and EXTRACT option 320
	SET option 260

	TABS
	QUERY and EXTRACT option 321
	SET option 261
	used with COMPRESS 44

	TABSAVE
	QUERY and EXTRACT option 321
	SET option 262

	TABSIN
	QUERY and EXTRACT option 321
	SET option 263

	TABSOUT
	QUERY and EXTRACT option 321
	SET option 264

	TABWORDB
	SOS action 138

	TABWORDF
	SOS action 138

	TAG command 140
	TARGET
	QUERY and EXTRACT option 321

	TEXT command 141
	TFIND command 142
	THIGHLIGHT
	QUERY and EXTRACT option 322
	SET option 265

	TIME
	QUERY and EXTRACT option 322
	built-in function 370

	TIMECHECK
	QUERY and EXTRACT option 322
	SET option 266

	TOF
	QUERY and EXTRACT option 322

	TOF()
	Boolean function 381

	TOFEOF
	QUERY and EXTRACT option 322
	SET option 266

	TOL
	QUERY and EXTRACT option 323

	TOOLBAR
	QUERY and EXTRACT option 323
	SET option 267

	TOOLBUTTON
	QUERY and EXTRACT option 323
	SET option 267

	TOOLSET
	QUERY and EXTRACT option 324
	SET option 272

	TOP command 143
	TOPEDGE
	SOS action 138

	TOPEDGE()
	Boolean function 381

	TRACE
	KEXX instruction 348
	built-in function 371

	TRAILING
	QUERY and EXTRACT option 324
	SET option 274

	TRANSLATE
	built-in function 371

	TRANSLATEIN
	QUERY and EXTRACT option 324
	SET option 275

	TRANSLATEOUT
	QUERY and EXTRACT option 324
	SET option 275

	TRUNC
	QUERY and EXTRACT option 324
	SET option 276
	built-in function 372

	Tab characters
	compression of 44, 264
	expansion of 68, 263
	preservation of 262

	Tab stops
	displaying 260
	setting 261

	Tailoring KEDIT
	SEE ‘‘WINPROF.KEX’’
	SEE ’’SET command’’

	Targets
	blanks, special handling 277
	column 41
	examples of with CHANGE command 34
	examples of with LOCATE command 88
	specifying character codes in 197
	string 277, 282
	summary 90
	wildcard characters used in 155
	SEE ALSO ‘‘Regular Expressions’’

	Temporary file 112
	Tokens, KEXX 330
	Toolbar
	defining contents 267, 272
	displaying 267

	Truncation column
	SET TRUNC option 276

	U
	UNC
	in fileid specifications 193

	UNDO
	QUERY and EXTRACT option 325
	command 143
	resetting undo levels 123

	UNDOING
	QUERY and EXTRACT option 325
	SET option 276

	UNIQUEID
	QUERY and EXTRACT option 325

	UNLOCK command 143
	UNTITLED
	initialization option 20

	UNTITLED()
	Boolean function 381

	UP command 144
	UPPER
	built-in function 372

	UPPERCASE command 144
	Universal Naming Convention
	in fileid specifications 193

	V
	VALUE
	built-in function 372

	VARBLANK
	QUERY and EXTRACT option 325
	SET option 277

	VERIFY
	QUERY and EXTRACT option 325
	SET option 278
	built-in function 373

	VERONE()
	Boolean function 381

	VERSHIFT
	QUERY and EXTRACT option 326

	VERSION
	QUERY and EXTRACT option 326

	Variables, KEXX 331
	Vertical cursor 177 - 178

	W
	WHEN
	KEXX instruction 347

	WIDTH
	QUERY and EXTRACT option 326
	initialization option 20

	WINDIR
	QUERY and EXTRACT option 326

	WINDOW command 145
	WINDOWNAME
	QUERY and EXTRACT option 327

	WINEXEC command 146
	WINHELP command 147
	WINMARGIN
	SET option 279

	WINPROF.KEX 23
	SET REPROFILE option 246
	default profile 180
	re-executing for new file 246

	WMSG command 148
	WORD
	QUERY and EXTRACT option 327
	SET option 280
	built-in function 373
	punctuation delineates words 280

	WORDINDEX
	built-in function 373

	WORDLENGTH
	built-in function 373

	WORDPOS
	built-in function 373

	WORDS
	built-in function 374

	WORDWRAP
	QUERY and EXTRACT option 327
	SET option 281

	WRAP
	QUERY and EXTRACT option 327
	SET option 281

	Wildcard characters
	ARBCHAR in targets 155
	blanks in FIND command 72
	SEE ALSO ’’Regular expressions’’

	Window margin 279
	Window(s)
	SEE ’’Document window‘‘
	SEE ’’Frame window’’

	Word processing
	GML tags 195
	SET FORMAT option 195
	SET WORDWRAP option 281
	blanks after punctuation 195
	continuous entering of text 207, 281
	margins 221
	paragraph definition 195
	printing 109

	Wrapped lines
	problem with 20

	X
	X2B
	built-in function 374

	X2C
	built-in function 374

	X2D
	built-in function 375

	XEDIT command 148
	XEDIT compatibility
	SEE User’s Guide Appendix A

	XRANGE
	built-in function 374

	Z
	ZONE
	QUERY and EXTRACT option 328
	SET option 282

